
Instance Based Learning[Read Ch. 8]� k-Nearest Neighbor� Locally weighted regression� Radial basis functions� Case-based reasoning� Lazy and eager learning
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Instance-Based LearningKey idea: just store all training examples hxi; f(xi)iNearest neighbor:� Given query instance xq, �rst locate nearesttraining example xn, then estimatef̂(xq) f(xn)k-Nearest neighbor:� Given xq, take vote among its k nearest nbrs (ifdiscrete-valued target function)� take mean of f values of k nearest nbrs (ifreal-valued) f̂ (xq) Pki=1 f(xi)k
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When To Consider Nearest Neighbor
� Instances map to points in <n� Less than 20 attributes per instance� Lots of training dataAdvantages:� Training is very fast� Learn complex target functions� Don't lose informationDisadvantages:� Slow at query time� Easily fooled by irrelevant attributes
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Behavior in the LimitConsider p(x) de�nes probability that instance xwill be labeled 1 (positive) versus 0 (negative).Nearest neighbor:� As number of training examples !1,approaches Gibbs AlgorithmGibbs: with probability p(x) predict 1, else 0k-Nearest neighbor:� As number of training examples !1 and k getslarge, approaches Bayes optimalBayes optimal: if p(x) > :5 then predict 1, else 0Note Gibbs has at most twice the expected error ofBayes optimal
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Distance-Weighted kNNMight want weight nearer neighbors more heavily...f̂ (xq) Pki=1wif(xi)Pki=1wiwhere wi � 1d(xq; xi)2and d(xq; xi) is distance between xq and xiNote now it makes sense to use all trainingexamples instead of just k! Shepard's method
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Curse of DimensionalityImagine instances described by 20 attributes, butonly 2 are relevant to target functionCurse of dimensionality: nearest nbr is easilymislead when high-dimensional XOne approach:� Stretch jth axis by weight zj, where z1; : : : ; znchosen to minimize prediction error� Use cross-validation to automatically chooseweights z1; : : : ; zn� Note setting zj to zero eliminates this dimensionaltogether see [Moore and Lee, 1994]
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Locally Weighted RegressionNote kNN forms local approximation to f for eachquery point xqWhy not form an explicit approximation f̂ (x) forregion surrounding xq� Fit linear function to k nearest neighbors� Fit quadratic, ...� Produces \piecewise approximation" to fSeveral choices of error to minimize:� Squared error over k nearest neighborsE1(xq) � 12 Xx2 k nearest nbrs of xq(f(x) � f̂(x))2� Distance-weighted squared error over all nbrsE2(xq) � 12 Xx2D(f(x) � f̂(x))2 K(d(xq; x))� : : :206 lecture slides for textbook Machine Learning, cTom M. Mitchell, McGraw Hill, 1997



Radial Basis Function Networks� Global approximation to target function, interms of linear combination of localapproximations� Used, e.g., for image classi�cation� A di�erent kind of neural network� Closely related to distance-weighted regression,but \eager" instead of \lazy"
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Radial Basis Function Networks
...

...

f(x)

w1w0 wk

1

1a  (x)
2

a  (x)
n

a  (x)where ai(x) are the attributes describing instancex, and f(x) = w0 + kXu=1wuKu(d(xu; x))One common choice for Ku(d(xu; x)) isKu(d(xu; x)) = e� 12�2ud2(xu;x)
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Training Radial Basis Function Net-worksQ1: What xu to use for each kernel functionKu(d(xu; x))� Scatter uniformly throughout instance space� Or use training instances (reects instancedistribution)Q2: How to train weights (assume here GaussianKu)� First choose variance (and perhaps mean) foreach Ku{ e.g., use EM� Then hold Ku �xed, and train linear output layer{ e�cient methods to �t linear function
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Case-Based ReasoningCan apply instance-based learning even whenX 6= <n! need di�erent \distance" metricCase-Based Reasoning is instance-based learningapplied to instances with symbolic logicdescriptions((user-complaint error53-on-shutdown)(cpu-model PowerPC)(operating-system Windows)(network-connection PCIA)(memory 48meg)(installed-applications Excel Netscape VirusScan)(disk 1gig)(likely-cause ???))
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Case-Based Reasoning in CADETCADET: 75 stored examples of mechanical devices� each training example: h qualitative function,mechanical structurei� new query: desired function,� target value: mechanical structure for thisfunctionDistance metric: match qualitative functiondescriptions
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Case-Based Reasoning in CADET
A stored case: 
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Case-Based Reasoning in CADET� Instances represented by rich structuraldescriptions�Multiple cases retrieved (and combined) to formsolution to new problem� Tight coupling between case retrieval andproblem solvingBottom line:� Simple matching of cases useful for tasks such asanswering help-desk queries� Area of ongoing research
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Lazy and Eager LearningLazy: wait for query before generalizing� k-Nearest Neighbor, Case based reasoningEager: generalize before seeing query� Radial basis function networks, ID3,Backpropagation, NaiveBayes, : : :Does it matter?� Eager learner must create global approximation� Lazy learner can create many localapproximations� if they use same H, lazy can represent morecomplex fns (e.g., consider H = linear functions)
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