
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 5: Wednesday, Feb 22

Least squares: the big idea

Least squares problems are a special sort of minimization. Suppose A ∈ Rm×n

and m > n. In general, we will not be able to exactly solve overdetermined
equations Ax = b; the best we can do is to minimize the residual r = b−Ax.
In least squares problems, we minimize the two-norm of the residual1:

Find x̂ to minimize ‖r‖22 = 〈r, r〉.

This is not the only way to approximate the solution to an overdetermined
system, but it is attractive for several reasons:

1. It’s really mathematically attractive. ‖x‖2 is a smooth function of x,
and the solution to the least squares problem is a linear function of b
(x = A†b where A† is the Moore-Penrose pseudoinverse of A)

2. There’s a nice picture that goes with it – the least squares solution is
the projection of b onto the span of A, and the residual at the least
squares solution is orthogonal to the span of A.

3. It’s a mathematically reasonable choice in statistical settings when the
data vector b is contaminated by Gaussian noise.

Normal equations

One way to solve the least squares problem is to attack it directly. We know
‖r‖2 = ‖b − Ax‖2; and from a given x, the directional derivative in any
direction δx is

∇x‖r‖2 · δx = 2〈Aδx, b− Ax〉 = 2δxT (AT b− ATAx).

The minimum occurs when all posible directional derivatives are zero, which
gives us the normal equations2

ATAx = AT b.
1 Minimizing the two-norm is equivalent to miminizing the squared two-norm.
2They are called the normal equations because they specify that the residual must be

normal (orthogonal) to every vector in the span of A.
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Rearranging, we have

x = (ATA)−1AT b = A†b;

the matrix A† = (ATA)−1AT is the Moore-Penrose pseudoinverse of A (some-
times just called the pseudoinverse).

If the columns of A are not too close to linearly dependent, we would
usually just form the normal equations and solve them by using Cholesky
factorization to write

ATA = RTR,

where R is an upper triangular matrix.

QR factorization

Another approach is to write a QR factorization:

A = QR =
[
Q1 Q2

] [R1

0

]
= Q1R1

where Q ∈ Rm×m is orthogonal (QTQ = I) and R is upper triangular. The
columns of Q1 ∈ Rm×n form an orthonormal basis for the range space of A,
and the columns of Q2 span the orthogonal complement. The factorization
A = Q1R1 is sometimes called the “economy” QR factorization.

Multiplication by an orthogonal matrix does not change lengths, so

‖r‖2 = ‖QT r‖2 =

∥∥∥∥[R1

0

]
x−QT b

∥∥∥∥2 = ‖R1x−QT
1 b‖2 + ‖QT

2 b‖2.

The second part of this expression (‖QT
2 b‖2) is error that we cannot reduce;

but R1x − QT
1 b can be made exactly equal to zero. That is, the solution to

the least squares problem is

x = R−11 QT
1 b.

In Matlab, we can compute the QR factorization using the qr routine:

[Q, R ] = qr(A); % Full QR
[Q1,R1] = qr(A,0); % Economy QR

We also use QR implicitly if we solve a least-squares system using the ever-
useful backslash operator:

x = A\b; % Minimize norm(Ax−b) via a QR factorization
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Sensitivity and conditioning

At a high level, there are two pieces to solving a least squares problem:

1. Project b onto the span of A.

2. Solve a linear system so that Ax equals the projected b.

Correspondingly, there are two ways we can get into trouble in solving least
squares problem: either b may be nearly orthogonal to the span of A, or the
linear system might be ill-conditioned.

Let’s consider the issue of b nearly orthogonal to A first. Suppose we have
the trivial problem

A =

[
1
0

]
, b =

[
ε
1

]
.

The solution to this problem is x = ε; but the solution for

A =

[
1
0

]
, b̂ =

[
−ε
1

]
.

is x̂ = −ε. Note that ‖b̂ − b‖/‖b‖ ≈ 2ε is small, but |x̂ − x|/|x| = 2 is
huge. That is because the projection of b onto the span of A (i.e. the
first component of b) is much smaller than b itself; so an error in b that is
small relative to the overall size may not be small relative to the size of the
projection onto the columns of A.

Of course, the case when b is nearly orthogonal to A often corresponds to
a rather silly regression, like trying to fit a straight line to data distributed
uniformly around a circle, or trying to find a meaningful signal when the
signal to noise ratio is tiny. This is something to be aware of and to watch
out for, but it isn’t exactly subtle: if ‖r‖/‖b‖ is close to one, we have a
numerical problem, but we also probably don’t have a very good model. A
more subtle issue problem occurs when some columns of A are nearly linearly
dependent (i.e. A is ill-conditioned).

The condition number of A for least squares is

κ(A) = ‖A‖‖A†‖ = κ(R1) =
√
κ(ATA).

We generally recommend solving least squares via QR factorization because
κ(R1) = κ(A), while forming the normal equations squares the condition
number. If κ(A) is large, that means:
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1. Small relative changes to A can cause large changes to the span of A
(i.e. there are some vectors in the span of Â that form a large angle
with all the vectors in the span of A).

2. The linear system to find x in terms of the projection onto A will be
ill-conditioned.

If θ is the angle between b and the range of A3, then the sensitivity to
perturbations in b is

‖∆x‖
‖x‖

≤ κ(A)

cos(θ)

‖δb‖
‖b‖

,

while the sensitivity to perturbations in A is

‖∆x‖
‖x‖

≤
(
κ(A)2 tan(θ) + κ(A)

) ‖E‖
‖A‖

.

Even if the residual is moderate, the sensitivity of the least squares problem
to perturbations in A (either due to roundoff or due to measurement error)
can quickly be dominated by κ(A)2 tan(θ) if κ(A) is at all large.

In regression problems, the columns of A correspond to explanatory fac-
tors. For example, we might try to use height, weight, and age to explain the
probability of some disease. In this setting, ill-conditioning happens when
the explanatory factors are correlated — for example, perhaps weight might
be well predicted by height and age in our sample population. This hap-
pens reasonably often. When there is some correlation, we get moderate ill
conditioning, and might want to use QR factorization. When there is a lot
of correlation and the columns of A are truly linearly dependent (or close
enough for numerical work), we have a rank-deficient problem. We will talk
about rank-deficient problems next lecture.

Problems to Ponder

1. If x minimizes ‖b− Ax‖2, argue that r ⊥ Ax.

2. Show that if x is minimizes ‖Ax− b‖, then ‖Ax‖2 + ‖r‖2 = ‖b‖2.

3. Suppose that A ∈ Rm×n, m > n, and that A has full column rank.
Then ATA is symmetric and positive definite. Why?

3Note that b, Ax, and r are three sides of a right triangle, so sin(θ) = ‖r‖/‖b‖.
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4. Suppose ATA = LLT , where L is a lower triangular Cholesky factor.
Show that the columns of AL−T are orthonormal.

5. Show that minimizing ‖Ax−b‖ is equivalent to solving the linear system[
I A
AT 0

] [
r
x

]
=

[
b
0

]
.

Can you think of an advantage of writing the least square problem in
this way?

6. Find an orthonormal basis for P2 with the L2([−1, 1]) inner product.

7. How would you find the quadratic p(x) to minimize∫ 1

−1
(p(x)− f(x))2 dx?

8. Suppose A = Rm×n, m > n is full rank, and that b ∈ Rn. The linear
system ATx = b is underdetermined. How would you find the solution
that minimizes ‖x‖?

9. Maybe only if you’ve had some stats: Suppose the entries of z ∈ Rn

are independent standard normal random variables. Show that for any
orthogonal matrixQ, the entries ofQT z are again independent standard
normal random variables.


