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1 Introduction

The Voronoi diagram of a set of sites partitions space into regions, one per site; the
region for a site s consists of all points closer to s than to any other site. The dual of
the Voronoi diagram, the Delaunay triangulation, is the unique triangulation so that
the circumsphere of every triangle contains no sites in its interior. Voronoi diagrams
and Delaunay triangulations have been rediscovered or applied in many areas of math-
ematics and the natural sciences; they are central topics in computational geometry,
with hundreds of papers discussing algorithms and extensions.

Section 2 discusses the definition and basic properties in the usual case of point
sites in R? with the Euclidean metric, while section 3 gives basic algorithms. Some of
the many extensions obtained by varying metric, sites, environment, and constraints
are discussed in section 4. Section 5 finishes with some interesting and nonobvious
structural properties of Voronoi diagrams and Delaunay triangulations.

Glossary

site: A defining object for a Voronoi diagram or Delaunay triangulation. Also genera-
tor, source, Voronoi point.

Voronoi face: The set of points for which a single site is closest (or more generally a
set of sites is closest). Also Voronoi region, Voronoi cell.

Voronoi diagram: The set of all Voronoi faces. Also Thiessen diagram, Wigner-Seitz
diagram, Blum transform, Dirichlet tesselation.

Delaunay triangulation: The unique triangulation of a set of sites so that the cir-
cumsphere of each triangle has no sites in its interior.

2 Point sites in the Euclidean metric

See [5, 13, 15] for more details and proofs of material in this section.
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Figure 1: Voronoi diagram and Delaunay triangulation of the same set of sites in two
dimensions(a,b) and three dimensions(c,d).

Definitions Let S be a finite set of points in R?, called sites. The Voronoi face of a
site s € S is the set of all points of R? strictly closer to s than to any other site in S.
The Voronoi face of a site is always a nonempty, open, convex, full-dimensional subset
of RY. More generally, for T' a nonempty subset of S, the Voronoi face V(T') is the set
of points of R? equidistant from all members of 7" and closer to any member of 7' than
to any member of S\T. The Voronoi diagram of S is the collection of all nonempty
Voronoi faces V(T), for T'C S. The Voronoi diagram forms a cell complex partitioning
R

In two dimensions (figure 1(a)), the Voronoi face of a site is the interior of a convex,
possibly infinite polygon; its boundary consists of Voronoi edges (1-dimensional faces)
equidistant from two sites and Voronoi vertices (0-dimensional faces) equidistant from
at least three sites. Figure 1(c) shows a Voronoi diagram in three dimensions.

For T' a subset of S, a Delaunay face D(T) is defined whenever there is a sphere
through all the sites of 7" with all other sites exterior (equivalently, whenever V(7' is
nonempty); then D(T) is the (relative) interior of the convex hull of T. For example,
in two dimensions (figure 1(b)), a Delaunay triangle is formed by three sites whose
circumcircle 18 empty and a Delaunay edge connects two sites that have an empty cir-
cumcircle (in fact, infinitely many empty circumcircles). The Delaunay triangulation
of S is the collection of all Delaunay faces. The Delaunay triangulation forms a cell
complex partitioning the convex hull of S.

There is an obvious one-one correspondence between the Voronoi diagram and the
Delaunay triangulation; it maps the Voronoi face V(7T') to the Delaunay face D(T).
This correspondence has the property that the sum of the dimensions of V(7') and
D(T) is always d. Thus in two dimensions V(T) is a Voronoi vertex iff D(T') is an open
polygonal region; V(T) is an edge iff D(T) is; V(T') is an open polygonal region iff D(T)
is a vertex, i.e. a site. In fact, the one-one correspondence is a duality between cell
complexes, reversing face ordering: for subsets T, 7" C S, V(T") is a face of V(T) iff
D(T) is a face of D(T").



Figure 2: (a) The intersection of a plane with A is an ellipse that projects to a circle;
(b) on any vertical line, the surfaces {D;} appear in the same order as the planes {P;}.

The set of sites S C R? is in general position (or is nondegenerate) if no d+2 points
lie on a common d-sphere and no k+2 points lie on a common k-flat, for k<d. If S 1s
in general position, then the Delaunay triangulation of S is a simplicial complex, and
every vertex of the Voronoi diagram has degree d+1. If S is not in general position, then
Delaunay faces need not be simplices; for example the four cocircular sites in figure 1(b)
form a Delaunay quadrilateral. A completion of a Delaunay triangulation i1s obtained
by splitting nonsimplicial faces into simplices without adding new vertices.

Relation to convexity There is an intimate connection between Delaunay trian-
gulations in R? and convex hulls in R%! and between Voronoi diagrams in R? and
halfspace intersections in R%t!. To see the connections, consider the special case of
d=2. Identify R? with the plane spanned by the first two coordinate axes of R3, and
call the third coordinate direction the wertical direction.

The lifting map A : R? — R? is defined by A(x1,22) = (x1, x2, 27 +23); A = M(R?) is
a paraboloid of revolution about the vertical axis. See figure 2(a). Let H be the convex
hull of the lifted sites A(S).

The Delaunay triangulation of S is exactly the orthogonal projection into R? of the
lower faces of H (a face is lower if it has a supporting plane with inward normal having
positive vertical coordinate). To see this informally, suppose that triangle A(s)A(t)A(w)
is a lower facet of H, and that plane P passes through A(s)A(2)A(u). The intersection
of P with A is an ellipse that projects orthogonally to a circle in R? (figure 2(a)). Since



all other lifted sites are above the plane, all other unlifted sites are outside the circle,
and stu 1s a Delaunay triangle. The opposite direction, that a Delaunay triangle is a
lower facet, is similar.

For Voronoi diagrams, assign to each site s = (s1, s2) the plane

Py = {(w1, 22, 23) : w3 = 22151 + 5] — 200 + 53}

Let I be the intersection of the lower halfspaces of the planes P;. The Voronoi diagram is
exactly the orthogonal projection into R? of the upper faces of I. To see this informally,
consider the surfaces

Dy = {(®1,22,23) 1 13 = ((x1 — 51)? + (v9 — 52)*}

(see figure 2). Viewed as a function from R? into R, D, gives the squared distance to
site s. Furthermore, P, and D, differ only by the quadratic term x? + x2%, which is
independent of s. Hence a point & € R? is in the Voronoi cell of site ¢ iff on the vertical
line through x, D, is lowest among all surfaces {D;}. This happens exactly if on the
same line, P; is lowest among all planes {Ps}, i.e. « is in the projection of the upper
face of I formed by P;.

Combinatorial complexity In dimension 2, a Delaunay triangulation of n>3 sites
has at most 2n—>5 triangles and 3n—6 edges (and the Voronoi diagram has at most as
many vertices and edges, respectively). In dimension d>3 the Delaunay triangulation
can have @(nrd/z]) faces. For a lower bound example in dimension 3, choose n/2 distinct
point sites on each of two noncoplanar line segments [ and . Then there is an empty
sphere through each quadruple of sites (a,a’,b,b) with a,a’ adjacent on [ and b5’
adjacent on . Since there are Q(n?) such quadruples, there are as many Delaunay
tetrahedra. Exact worst-case bounds are known.

If point sites are chosen uniformly at random from inside a sphere, then the expected
number of faces 1s linear in the number of sites. In dimension 2, the expected number
of triangles is 2n; in dimension 3, the expected number of tetrahedra is ~ 6.77n; in
dimension 4, the expected number of 4-simplices is ~ 31.78n [12]. Similar bounds
probably hold for other distributions, but proofs are lacking.

3 Basic algorithms

Figure 3 lists basic algorithms that compute the Delaunay triangulation of n point
sites in R? using the Euclidean metric. Using the connection with convexity, any d+1-
dimensional convex hull algorithm can be used to compute a d-dimensional Delaunay
triangulation; in fact the divide-and-conquer, incremental, and gift-wrapping algorithms
are specialized convex hull algorithms. Running times are given both for worst-case
inputs, and for inputs chosen uniformly at random inside a sphere, with expectation
taken over input distribution. The Voronoi diagram can be obtained in linear time from
the Delaunay triangulation, using the one-one correspondence between their faces. See
[5, 13, 15, 16] for more citations.



algorithm d worst case uniform citation
flipping 2 O(n?) Chapter XXX
plane sweep 2 O(nlogn)

divide-and-conquer 2 O(nlogn) O(n) [17, 19]
randomized-incremental | 2 O(nlogn)

randomized-incremental | >3 | O(nl¥?1) | O(nlogn)

gift-wrapping > 2 | O(nl4/2141) O(n) [12]

Figure 3: Delaunay triangulation algorithms in the Euclidean metric for point sites.

The randomized-incremental algorithm The incremental algorithm adds sites
one by one, updating the Delaunay triangulation after each addition. The update
consists of discovering all Delaunay faces whose circumspheres contain the new site.
These faces are deleted and the empty region is partitioned into new faces, each of
which has the new site as a vertex. See Figure 4. An efficient algorithm requires a good
data structure for finding the faces to be deleted. Then the running time is determined
by the total number of face updates, which depends upon site insertion order. The
bounds given in figure 3 are the expected running time of an algorithm that makes a
random choice of insertion order, with each insertion permutation equally likely; the
bounds for the worst-case insertion order are about a factor of n worse. (For uniform
data there is a double expectation, over both insertion order and input distribution).
With additional algorithmic complexity, it is possible to obtain deterministic algorithms
with the same worst-case running times[9].

~/

Figure 4: The addition of site s deletes four triangles and adds six (shown dashed).

The plane sweep algorithm The plane sweep algorithm computes a planar Delau-
nay triangulation using a horizontal line that sweeps upwards across the plane. The
algorithm discovers a Delaunay triangle when the sweepline passes through the topmost
point of its circumcircle; in figure 5, the Delaunay triangles shown in black have already
been discovered. A sweepline data structure stores an ordered list of sites; the entry



for site s corresponds to an interval Iy on the sweepline where each maximal empty
circle with topmost point in I touches site s. The sweepline moves in discrete steps
only when the order changes. This happens when a new site is encountered or when a
new Delaunay triangle is discovered (at the topmost point of the circumcircle of three
sites that are consecutive on the sweepline list). A priority queue is needed to deter-
mine the next sweepline move. The running time of the algorithm is O(nlogn) since
the sweepline moves O(n) times—once per site and once per triangle-and it costs time
O(logn) per move to maintain the priority queue and sweepline data structure.

Figure 5: The sweepline list is z, s,¢, u, v, w, z. The next Delaunay triangle is tuv.

Other algorithms The divide-and-conquer algorithm uses a splitting line to partition
the point set into two equal halves, recursively computes the Delaunay triangulation of
each half, and then merges the two subtriangulations in linear time. The gift-wrapping
algorithm is a specialization of the convex-hull gift-wrapping algorithm (Chapter XXX)
to Delaunay triangulations.

Output-sensitive algorithms, with running time approximately proportional to the
actual number of Delaunay facets, have remained elusive. Recent progress is in [§].

If the sites form the vertices of a convex polygon, then the Voronoi diagram can be
computed in linear time[1].

Implementations Many of these algorithms have been implemented; the World Wide
Web site http://wuw.geom.umn. edu/locate/cglib has pointers to publicly available
code.

4 Extensions

Higher-order Voronoi diagrams The order-k Voronoi diagram partitions B¢ on the
basis of the first £ closest sites (without distinguishing order among them). The furthest
site Voronoi diagram partitions R? on the basis of the furthest site, or equivalently, the
closest n—1 of n sites. The order-k Voronoi diagram can be obtained as an appropriate
projection of the k-level of an arrangement of hyperplanes[13, 16]; it can also be obtained



as the orthogonal projection of an intersection polytope[7]. In dimension 2, the order-k
Voronoi diagram has O(k(n — k)) faces. In dimensions d > 3, the sum of the number of
faces of the order-j diagrams, j < k, is O(nl¥?1kL4/21+1)[11]; good bounds for fixed k
remain an open problem.

problem d time citation
furthest site 2 O(nlogn)

furthest site >3 O(nl4/21)

order-k 2 | O(k(n — k)logn + nlog®n) [2]
order-j, 1 <j<k | >3 O(nld/21 fLd/2]+1) [23]

Figure 6: Algorithms for order-k Voronoi diagrams of point sites in the Euclidean metric.

Visibility constraints Let S be a set of n point sites in R? and E a set of noncrossing
constraint edges with endpoints in S. A point p € R? is visible from a site s if the open
segment ps does not intersect any edge of F. A constrained Delaunay triangulation
(CDT) of S using F is a triangulation of S extending the edges in F so that the
circumcircle of every triangle contains no site that is visible from all three sites defining
the triangle. The CDT is as close as possible to the true Delaunay triangulation, subject
to the constraint that the edges in F must be used. See also Chapter XXX on mesh
generation.

The bounded distance from a site to a point is Euclidean distance if the point is
visible, and infinite otherwise; the bounded Voronoi: diagram of S using E is defined
using bounded distance. The bounded Voronoi diagram is dual to a subgraph of the
CDT.

Both the CDT and the bounded Voronoi diagram can be computed in time O(n logn)
using either divide-and-conquer or sweepline paradigm. If the sites and constraint edges
are the vertices and edges of a simple polygon, respectively, then the CDT can be
computed in linear time [20].

There is no obvious generalization of constrained Delaunay triangulations to dimen-
sion d>3, since there exist polyhedra in R? that cannot be triangulated, at least without
using Steiner points.

Other distance measures Figure 7 lists Voronoi diagram algorithms where ‘dis-
tance’ is altered. The distance from a site s; to a point x can be a function of the
euclidean distance e(s;, #) and a site-specific real weight w;.

The seemingly-peculiar power distance is the distance from « to the sphere of radius
y/w; about s; along a line tangent to the sphere. Many of the basic Voronoi diagram
algorithms extend immediately to the power distance, even in higher dimension.

A (polygonal) convex distance function is defined by a convex polygon C' with the
origin 1n its interior. The distance from x to y is the real r>0 so that the boundary



problem distance to x time citation
additive weights w; + e(s;, x) O(nlogn)
multiplicative weights w;e(s;, x) O(n?) [6]
Laguerre or power (e(si,)? — w;)'/? O(nlogn) [4]
I, Isi — o1l O(nlogn) | [22
convex distance function O(nlogn) [10]
abstract axiomatic O(nlogn) [21]
simple polygon geodesic O(nlog®n) [3]
crystal growth w; - SP(si,x) O(n® + nSlogS) [28]

Figure 7: Algorithms for point sites in dimension 2, varying distance measure.

of rC'+x contains y. Polygonal convex distance functions generalize the Ly and L.
metrics (C' is a diamond or square, respectively); a polygonal convex distance function
is a metric exactly if C' is symmetric about the origin.

An abstract Voronoi diagram is defined by the ‘bisectors’ between pairs of sites,
which must satisfy special properties.

The geodesic distance inside an environment of polygonal obstacles is the length
of the shortest path that avoids obstacle interiors. Recent progress using the geodesic
metric appears in [18].

The erystal growth Voronoi diagram models crystal growth where each crystal has a
different growth rate. The distance from a site s; to a point # in the Voronoi face of s;
is w; - SP(s;, x), where w; is a weight and SP(s;, #) is the shortest path distance lying
entirely within the Voronoi face of s;. The parameter S in the running time measures
the time to approximate bisectors numerically.

Other sites The Voronoi diagram of a set of n line segment sites can be computed
in time O(nlogn) using the sweepline method or the divide-and-conquer method; the
medial axis of a polygon or polygonal region can be obtained from the Voronoi diagram
of its constituent line segments. The divide-and-conquer algorithm extends to circular-
arc segments as well. The Voronoi diagram of a set of circles can be computed using an
additively-weighted point-site algorithm.

Motion planning The motion planning problem is to find a collision-free path for a
robot in an environment filled with obstacles. The Voronoi diagram of the obstacles is
quite useful, since it gives a lower-dimensional skeleton of maximal clearance from the
obstacles. In many cases the shape of the robot can be used to define an appropriate
metric for the Voronoi diagram. See Chapter XXX on motion planning.



5 Important properties

Roundness The Delaunay triangulation is “round”, that is, skinny simplices are
avoided. This can be formalized in two dimensions by Lawson’s classic result: over
all possible triangulations, the Delaunay triangulation maximizes the minimum angle
of any triangle. No generalization using angles is known in higher dimension. However,
define the enclosing radius of a simplex as the minimum radius of an enclosing sphere.
In any dimension and over all possible triangulations of a point set, the Delaunay trian-
gulation minimizes the maximum enclosing radius of any simplex[26]. Also see Chapter
XXX on mesh generation.

Visibility depth ordering Choose a viewpoint v and a family of disjoint convex
objects in RY. Object A is in front of object B from v if there is a ray starting at
v that intersects A and then B in that order. Though an arbitrary family can have
cycles in the “in front of” relation, the relation is acyclic for the faces of the Delaunay
triangulation, for any viewpoint and any dimension[14].

An application comes from computer graphics. The “painter’s algorithm” renders
three-dimensional objects in back to front order, with later objects simply overpainting
the image space occupied by earlier objects. A valid rendering order always exists if the
“in front of” relation is acyclic, as i1s the case if the objects are Delaunay tetrahedra, or
a subset of a set of Delaunay tetrahedra.

Subgraph relationships The edges of a Delaunay triangulation form a graph whose
vertices are the set of sites. In any dimension, the following subgraph relations hold:

EMST C RNG C GG C DT

where EMST is the Euclidean minimum spanning tree, RNG is the relative neighbor-
hood graph, and GG is the Gabriel graph. See also Chapter XXX on pattern recognition.

Dilation A geometrically embedded graph G has dilation c if for any two vertices, the
shortest path distance along the edges of GG is at most ¢ times the Euclidean distance
between the vertices. In R?, the edge set of the Delaunay triangulation has dilation
at most ~ 2.42; with an equilateral-triangle convex distance function, the dilation is at
most 2.

Interpolation Suppose each point site s; € S C R? has an associated function value
fi. For p € R? define X\;(p) as the proportion of the area of s;’s Voronoi cell that
would be removed if p were added as a site. Then the natural neighbor interpolant
F(p) =3 Xi(p)fi is C°, and C* except at sites. A more complex C! interpolant can be
obtained as well[29].

Alternatively, for a triangulation of S in R?, consider the piecewise linear surface
defined by linear interpolation over each triangle. Over all possible triangulations,
the Delaunay triangulation minimizes the roughness of the resulting surface, where



roughness 1s the Ls norm squared of the gradient of the surface, integrated over the
triangulation[27].

6

Further reading

Survey papers by Aurenhammer[5] and Fortune[l5] cover many aspects of Delaunay
triangulations and Voronoi diagrams. The book by Okabe, Boots, and Sugihara[24] is
entirely devoted to Voronoi diagrams, and has an extensive discussion of applications.
Basic reference for geometric algorithms are [13, 25].
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