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14.6. Principal Curvatures, Gaussian Cur-

vature, Mean Curvature

We will now study how the normal curvature at a point varies
when a unit tangent vector varies.

In general, we will see that the normal curvature has a max-
imum value κ1 and a minimum value κ2, and that the corre-
sponding directions are orthogonal. This was shown by Euler
in 1760.

The quantity K = κ1κ2 called the Gaussian curvature and the
quantity H = (κ1 + κ2)/2 called the mean curvature, play a
very important role in the theory of surfaces.

We will compute H and K in terms of the first and the sec-
ond fundamental form. We also classify points on a surface
according to the value and sign of the Gaussian curvature.
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Recall that given a surface X and some point p on X, the
vectors Xu, Xv form a basis of the tangent space Tp(X).

Given a unit vector
−→
t = Xux + Xvy, the normal curvature is

given by

κN(
−→
t ) = Lx2 + 2Mxy + Ny2,

since Ex2 + 2Fxy + Gy2 = 1.

Usually, (Xu, Xv) is not an orthonormal frame, and it is useful
to replace the frame (Xu, Xv) with an orthonormal frame.

One verifies easily that the frame (−→e1 ,−→e2 ) defined such that

−→e1 =
Xu√
E

, −→e2 =
EXv − FXu√
E(EG− F 2)

.

is indeed an orthonormal frame.
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With respect to this frame, every unit vector can be written

as
−→
t = cos θ−→e1 + sin θ−→e2 , and expressing (−→e1 ,−→e2 ) in terms of

Xu and Xv, we have

−→
t =

(
w cos θ − F sin θ

w
√

E

)
Xu +

√
E sin θ

w
Xv,

where w =
√

EG− F 2.

We can now compute κN(
−→
t ), and we get

κN(
−→
t ) = L

(
w cos θ − F sin θ

w
√

E

)2

+ 2M

(
(w cos θ − F sin θ) sin θ

w2

)
+ N

E sin2 θ

w2 .
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We leave as an exercise to show that the above expression can
be written as

κN(
−→
t ) = H + A cos 2θ + B sin 2θ,

where

H =
GL− 2FM + EN

2(EG− F 2)
,

A =
L(EG− 2F 2) + 2EFM − E2N

2E(EG− F 2)
,

B =
EM − FL

E
√

EG− F 2
.
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Letting C =
√

A2 + B2, unless A = B = 0, the function

f(θ) = H + A cos 2θ + B sin 2θ

has a maximum κ1 = H + C for the angles θ0 and θ0 + π, and
a minimum κ2 = H − C for the angles θ0 + π

2 and θ0 + 3π
2 ,

where cos 2θ0 = A
C and sin 2θ0 = B

C .

The curvatures κ1 and κ2 play a major role in surface theory.
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Definition 14.6.1 Given a surface X, for any point p on X,
letting A, B, H be defined as above, and C =

√
A2 + B2, un-

less A = B = 0, the normal curvature κN at p takes a max-
imum value κ1 and and a minimum value κ2 called principal
curvatures at p, where κ1 = H+C and κ2 = H−C. The direc-
tions of the corresponding unit vectors are called the principal
directions at p.

The average H = κ1+κ2

2 of the principal curvatures is called the
mean curvature, and the product K = κ1κ2 of the principal
curvatures is called the total curvature, or Gaussian curvature.
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Observe that the principal directions θ0 and θ0+
π
2 correspond-

ing to κ1 and κ2 are orthogonal. Note that

K = κ1κ2 = (H − C)(H + C) = H2 − C2 = H2 − (A2 + B2).

After some laborious calculations, we get the following (fa-
mous) formulae for the mean curvature and the Gaussian cur-
vature:

H =
GL− 2FM + EN

2(EG− F 2)
,

K =
LN −M 2

EG− F 2 .
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We showed that the normal curvature κN can be expressed as

κN(θ) = H + A cos 2θ + B sin 2θ

over the orthonormal frame (−→e1 ,−→e2 ).

We also showed that the angle θ0 such that cos 2θ0 = A
C and

sin 2θ0 = B
C , plays a special role.

Indeed, it determines one of the principal directions.

If we rotate the basis (−→e1 ,−→e2 ) and pick a frame (
−→
f1 ,
−→
f2 ) cor-

responding to the principal directions, we obtain a particu-
larly nice formula for κN . Indeed, since A = C cos 2θ0 and
B = C sin 2θ0, letting ϕ = θ − θ0, we get

κN(θ) = κ1 cos2 ϕ + κ2 sin2 ϕ.
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Thus, for any unit vector
−→
t expressed as

−→
t = cos ϕ

−→
f1 + sin ϕ

−→
f2

with respect to an orthonormal frame corresponding to the
principal directions, the normal curvature κN(ϕ) is given by
Euler’s formula (1760):

κN(ϕ) = κ1 cos2 ϕ + κ2 sin2 ϕ.

Recalling that EG − F 2 is always strictly positive, we can
classify the points on the surface depending on the value of
the Gaussian curvature K, and on the values of the principal
curvatures κ1 and κ2 (or H).
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Definition 14.6.2 Given a surface X, a point p on X belongs
to one of the following categories:

(1) Elliptic if LN −M 2 > 0, or equivalently K > 0.

(2) Hyperbolic if LN −M 2 < 0, or equivalently K < 0.

(3) Parabolic if LN −M 2 = 0 and L2 + M 2 + N 2 > 0, or
equivalently K = κ1κ2 = 0 but either κ1 6= 0 or κ2 6= 0.

(4) Planar if L = M = N = 0, or equivalently κ1 = κ2 = 0.

Furthermore, a point p is an umbilical point (or umbilic) if
K > 0 and κ1 = κ2.
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Note that some authors allow a planar point to be an umbilical
point, but we don’t.

At an elliptic point, both principal curvatures are nonnull and
have the same sign. For example, most points on an ellipsoid
are elliptic.

At a hyperbolic point, the principal curvatures have opposite
signs. For example, all points on the catenoid are hyperbolic.

At a parabolic point, one of the two principal curvatures is
zero, but not both. This is equivalent to K = 0 and H 6= 0.
Points on a cylinder are parabolic.

At a planar point, κ1 = κ2 = 0. This is equivalent to K =
H = 0. Points on a plane are all planar points! On a monkey
saddle, there is a planar point. The principal directions at
that point are undefined.
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Figure 14.3: A monkey saddle

For an umbilical point, we have κ1 = κ2 6= 0.
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This can only happen when H − C = H + C, which implies
that C = 0, and since C =

√
A2 + B2, we have A = B = 0.

Thus, for an umbilical point, K = H2.

In this case, the function κN is constant, and the principal
directions are undefined. All points on a sphere are umbilics.
A general ellipsoid (a, b, c pairwise distinct) has four umbilics.

It can be shown that a connected surface consisting only of
umbilical points is contained in a sphere.

It can also be shown that a connected surface consisting only
of planar points is contained in a plane.
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A surface can contain at the same time elliptic points, parabolic
points, and hyperbolic points. This is the case of a torus.

The parabolic points are on two circles also contained in two
tangent planes to the torus (the two horizontal planes touching
the top and the bottom of the torus on the following picture).

The elliptic points are on the outside part of the torus (with
normal facing outward), delimited by the two parabolic circles.

The hyperbolic points are on the inside part of the torus (with
normal facing inward).
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Figure 14.4: Portion of torus
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The normal curvature

κN(Xux + Xvy) = Lx2 + 2Mxy + Ny2

will vanish for some tangent vector (x, y) 6= (0, 0) iff
M 2 − LN ≥ 0.

Since

K =
LN −M 2

EG− F 2 ,

this can only happen if K ≤ 0.

If L = N = 0, then there are two directions corresponding to
Xu and Xv for which the normal curvature is zero.
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If L 6= 0 or N 6= 0, say L 6= 0 (the other case being similar),

then the equation L
(

x
y

)2
+ 2M x

y + N = 0 has two distinct

roots iff K < 0.

The directions corresponding to the vectors Xux + Xvy asso-
ciated with these roots are called the asymptotic directions at
p.

These are the directions for which the normal curvature is null
at p.
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There are surfaces of constant Gaussian curvature. For exam-
ple, a cylinder or a cone is a surface of Gaussian curvature
K = 0.

A sphere of radius R has positive constant Gaussian curvature
K = 1

R2 .

Perhaps surprisingly, there are other surfaces of constant pos-
itive curvature besides the sphere.

There are surfaces of constant negative curvature, say K =
−1. A famous one is the pseudosphere, also known as Bel-
trami’s pseudosphere.
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This is the surface of revolution obtained by rotating a curve
known as a tractrix around its asymptote. One possible pa-
rameterization is given by:

x =
2 cos v

eu + e−u
,

y =
2 sin v

eu + e−u
,

z = u− eu − e−u

eu + e−u
,

over ]0, 2π[×R.

The pseudosphere has a circle of singular points (for u = 0).
The figure below shows a portion of pseudosphere.
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Figure 14.5: A pseudosphere

Again, perhaps surprisingly, there are other surfaces of con-
stant negative curvature.
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The Gaussian curvature at a point (x, y, x) of an ellipsoid of
equation

x2

a2 +
y2

b2 +
z2

c2 = 1

has the beautiful expression

K =
p4

a2b2c2 ,

where p is the distance from the origin (0, 0, 0) to the tangent
plane at the point (x, y, z).

There are also surfaces for which H = 0. Such surfaces are
called minimal surfaces , and they show up in physics quite a
bit.

It can be verified that both the helicoid and the catenoid are
minimal surfaces.
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The Enneper surface is also a minimal surface.

We will see shortly how the classification of points on a surface
can be explained in terms of the Dupin indicatrix.

The idea is to dip the surface in water, and to watch the
shorlines formed in the water by the surface in a small region
around a chosen point, as we move the surface up and down
very gently.

But first, we introduce the Gauss map, i.e. we study the
variations of the normal Np as the point p varies on the surface.
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