Shape Segmentation

Qixing Huang

3D Shapes

Large repositories of 3D data are becoming available

Shape Modeling

Medicine

Mechanical CAD

Cultural Heritage

Molecular Biology

Buildings

Applications

[Wiley et al.05]

Paleontology

[Cooper et al.10]

Protein folding

[Huang et al.06]

Solving puzzles

[Funkhouser et al.04]

[Gal et al.09]

Modeling & Editing

[Funkhouser et al.05]

Product search

Shape Analysis Tasks

 Design algorithms to extract semantic information from one or a collection of shapes

Matching

Retrieval

[Mitra et al. 06]

Classification & Clustering

Importance of Shape Segmentation

"How can we decompose a 3D model into parts?"

Psychological research indicates that recognition and shape understanding are based on structural decomposition of the shape into smaller parts
[Hoffmann et al. 84,97]

Applications in other shape analysis tasks such as shape matching and shape recognition

Outline

Outline

- Single-shape segmentations
 - Primitive fitting
 - Hierarchical mesh decomposition
 - Princeton segmentation benchmark
- Data-driven shape segmentations
 - Supervised segmentation
 - Joint-shape segmentation
- Conclusion and future directions

Primitive Fitting

Problem Statement

• Given a mesh $M = \{V,E,F\}$, find a disjoint partitioning of M into $M_1,...,M_k$ and a set of (K?) *primitives* $P_1,...,P_k$ such that a *distance* between each primitive P_i to M_i be minimized.

Primitives

Planes or Cylinders

[Cohen-Steiner et al. 04]

[Raab et al. 04]

Primitives

• Spheres, Hybrid,...

[Wu et al. 05]

[Attene et al. 06]

Effects of Different Metrics

$$\mathcal{L}^{2}(\mathcal{R}_{i}, P_{i}) = \iint_{x \in \mathcal{R}_{i}} \|x - \Pi_{i}(x)\|^{2} dx. \qquad \mathcal{L}^{2,1}(\mathcal{R}_{i}, P_{i}) = \iint_{x \in \mathcal{R}_{i}} \|\mathbf{n}(x) - \mathbf{n}_{i}\|^{2} dx.$$

$$\mathcal{L}^{2,1}(\mathcal{R}_i, P_i) = \iint_{x \in \mathcal{R}_i} \|\mathbf{n}(x) - \mathbf{n}_i\|^2 dx.$$

Iterative Lloyd

- RANSAC based initialization
- Alternate between
 - Fitting parameters of each primitive
 - Assigning points to closest patches
- Insert patches

[Yan et al. 06]

Primitive Fitting + Global Relations

GlobFit: Consistently Fitting Primitives by Discovering Global Relations. Yangyan Li, X. Wu, Y. Chrysanthou, A. Sharf, D. Cohen-Or and Niloy Mitra. Siggraph 2011.

Initial Primitives

Point Cloud

Comparison

[Slide from Li et al. 11]

Primitive Fitting in Embedded Spaces

Easy to incorporate user Inputs

Cont-

Primitive Fitting

- Based on the assumption that patches can approximately described by simple primitives
 - CAD
 - Man-made objects
- Iterative Lloyd for optimization
- Advanced primitive fitting
 - Structural constraints
 - In embedded space

Hierarchical mesh decomposition

[Karz et al. 03]

Algorithm Overview (2-Way Case)

- Criterion: faces on the same patch should be close to each other
- 1. Find distances between all pairs of faces in mesh
- 2. Calculate probability of face belonging to each patch
- 3. Refine probability values using iterative clustering
- 4. Construct exact boundaries between components

Distance Between Faces

Shortest path along the dual graph of the input mesh

Dual Mesh

Edge weight

$$\delta \frac{d_{geo}(f_i, f_j)}{\operatorname{ave}(d_{geo})} + (1 - \delta) \frac{d_{ang}(f_i, f_j)}{\operatorname{ave}(d_{ang})}$$

Reflects concave paths

Selecting Seed Faces

- Farthest point sampling
 - stay far away from existing seeds

Calculate Probabilities

• Probability of face f_i belonging to patch S depends on relative proximity of S compared to other patches

$$\mathsf{probability}(f_i \in S) = \frac{\mathsf{Dist}(f_i, S_{seedface})}{\mathsf{Dist}(f_i, S_{seedface}) + \mathsf{Dist}(f_i, T_{seedface})}$$

Fuzzy Clustering

- Generating fuzzy decomposition
 - Goal: cluster faces by minimizing the function

$$F = \sum\limits_{p}\sum\limits_{f} \operatorname{probability}(f \in \operatorname{patch}(p)) \cdot \operatorname{Dist}(f,p)$$

- Algorithm
 - Compute the probabilities of faces belonging to each patch
 - Re-compute the seed faces to minimize F by

$$S_{seedface} = \min_{f} \sum_{f_i} \operatorname{probability}(f_i \in S) \cdot \operatorname{Dist}(f, f_i)$$

$$T_{seedface} = \min_{f} \sum_{f_i} \operatorname{probability}(f_i \in T) \cdot \operatorname{Dist}(f, f_i)$$

Iterate if the seed faces are changed

Exact Boundary

• Partition faces if probability of belonging to patch exceeds threshold (ϵ); remaining patches stay fuzzy

- Perform min-cut to find the boundary
 - It passes through edges with small capacities, e.g., highly concave dihedral angles.

Stopping Conditions

- Recursively decompose until either:
 - Distance between representatives < threshold
 - max($\alpha_{i,j}$) min($\alpha_{i,j}$) < threshold (faces have similar dihedral angles → patch has fairly constant curvature)
 - averageDist(Patch)/averageDist(Object) < threshold

Hierarchical Mesh Decomposition

- Represent meshes as dual graphs
- Find a meaningful graph distance metric
- Points on the same patch are close to each other
 - Fuzzy clustering
- Min-cut for extract boundaries

Other approaches

General Formulation

• Given a mesh $M = \{V,E,F\}$, find a disjoint partitioning of M into $M_1,...,M_k$ such that a criterion function

$$J = J(M_1, M_2, \cdots, M_k)$$

is minimized under a set of constraints C.

Types of Attributes Used

- Distance and Geodesic distance
- Planarity, normal direction
- Smoothness, curvature
- Distance to complex proxies
- Slippage
- Symmetry
- Medial Axis, Shape diameter...

Types of Constraints

Cardinality

- Not too small and not too large or a given number (of segment or elements)
- Overall balanced partition

Geometry

- Size: area, diameter, radius
- Convexity, Roundness
- Boundary smoothness

Topology

- Connectivity (single component)
- Disk topology
- a given number (of segment or elements)

Randomized Cuts [Golovinskiy and

Funkhouser 08]

[Slide from Golovinskiy and Funkhouser 08]

Princeton Segmentation Benchmark [Chen et al. 09]

- 380 shapes in 19 categories
- Manual segmentations for each shape (4300 in total)

Single-Shape Segmentation

[Shalfman et al. 2002]

K-Means

[Katz et al. 05]

Core Extraction

[Attene et. al 2006]

Fitting Primitives

[Lai et al. 08]

Random Walks

[Golovinskiy and Funkhouser 08]

Normalized Cuts

[Shapira et al. 08]

Shape Diameter Function

[Golovinskiy and Funkhouser 08]

Randomized Cuts

Princeton Segmentation Benchmark [Chen et al. 09]

Evaluation metrics

Rand index

The likelihood that a pair of faces are either in the same segment in two segmentations, or in different segments in both segmentations [Rand 71]

$$1 - RI(S_1, S_2) = \binom{2}{N}^{-1} \sum_{i,j,i < j} [C_{ij}P_{ij} + (1 - C_{ij})(1 - P_{ij})]$$
Same id in S₁ Same id in S₂

Averaged over all human segmentations

Princeton Segmentation Benchmark [Chen et al. 09]

- No algorithm is best for all object categories
- Human
 - Averaged rand index of all human segmentations

Randomized Cuts [Golovinskiy and Funkhouser 08]

Inconsistent across different poses

Supervised Segmentation

Goal: mesh segmentation and labeling

Labeling problem statement

$$c_1, c_2, c_3 \in C$$

 $C = \{ head, neck, torso, leg, tail, ear \}$

Feature vector

$$\mathbf{x} \in \mathfrak{R}^{375+35|C|} \to \mathrm{P}(c \mid \mathbf{x})$$

surface curvature singular values from PCA shape diameter distances from medial surface average geodesic distances shape contexts spin images contextual label features Use more features help

Learning a classifier

Jointboost classifier [Torralba et al. 2007]

Unary Term

Pairwise Term

$$E_2(c,c';\mathbf{y},\theta_2) = G(\mathbf{y})L(c,c')$$
Geometry-dependent term

Pairwise Term

$$E_2(c, c'; \mathbf{y}, \theta_2) = G(\mathbf{y}) L(c, c')$$
Label compatibility term

Full CRF result

Supervised Segmentation [Kalogerakis et al.10]

Significant improvements from single-shape segmentations

- Limitations
 - Prior knowledge of the category
 - Shape variation within each category shall be small

Joint Shape Segmentation

Motivations

Structural similarity of segmentations

Extraneous geometric clues

Single shape segmentation [Chen et al. 09]

Joint shape segmentation [Huang et al. 11]

Motivations

Structural similarity of segmentations

Low saliency

Single shape segmentation [Chen et al. 09]

Joint shape segmentation [Huang et al. 11]

Motivations

(Rigid) invariance of segments

Articulated structures

Single shape segmentation [Chen et al. 09]

Joint shape segmentation [Huang et al. 11]

Pair-wise Joint Segmentation

Objective:

$$\max_{S_1,S_2} \mathsf{score}(S_1) + \mathsf{score}(S_2) + \mathsf{consistency}(S_1,S_2)$$

Outline:

- Segmentation parameterization
- Segmentation score
- Consistency score
- 0-1 linear programming formulation

 Segmentations: subsets of initial segments obtained from randomized segmentations

- Segmentations: subsets of initial segments obtained from randomized segmentations
- Segmentation constraints: each point is in exactly one segment

$$|\mathsf{cover}(p)| = 1, \quad \forall p \in W$$

The set of initial segments that cover point p

- Segmentations: subsets of initial segments obtained from randomized segmentations
- Segmentation constraints: each point is in exactly one segment
- Segmentation score

$$score(S) = \sum_{s \in S} \overline{area}(s) r_s = \sum_{s \in S} \overline{w}_s$$
 Prevent tiny segments Repetitions

Patches [Golovinskiy and Funkhouser 08]

Super-pixels
[Ren and Malik 03]

Consistency Term

- Defined in terms of mappings
 - Oriented
 - Partial

Many-to-one correspondences

Partial similarity

Consistency Term

- Defined in terms of mappings
 - Oriented
 - Partial
- Mapping score [Anguelov et al.05]

Consistency Term

- Defined in terms of mappings
 - Oriented
 - Partial

Mapping score [Anguelov et al.05]

$$score(\mathcal{M}_{ij}) = \lambda \sum_{c \in \mathcal{M}_{ij}} \overline{w}_c + \mu \sum_{(c,c') \in \mathcal{A}_{ij}} \overline{w}_{(c,c')}$$

Consistency score

consistency
$$(S_1, S_2) = \sum_{ij \in \{12,21\}} \max_{\mathcal{M}_{ij}} \operatorname{score}(\mathcal{M}_{ij})$$

Constrained Optimization

$$\max_{S_1,S_2,\mathcal{M}_{12},\mathcal{M}_{21}} \sum_{i=1}^2 \sum_{s \in S_i} \overline{w}_s + \sum_{ij \in \{12,21\}} (\lambda \sum_{c \in \mathcal{M}_{ij}} \overline{w}_c + \mu \sum_{(c,c') \in \mathcal{A}_{ij}} \overline{w}_{(c,c')})$$

s.t.
$$|\text{cover}(p)| = 1$$
, $\forall p \in \mathcal{P}_i$, $1 \le i \le 2$, $\mathcal{M}_{ij} \in \text{Mapping}(\mathcal{S}_i \times \mathcal{S}_j)$, $ij \in \{12, 21\}$

0-1 Linear Programming Formulation

Introduce binary indicators

Segments

$$x_s = \begin{cases} 1 & s \in S_1 \cup S_2 \\ 0 & \text{otherwise} \end{cases}$$

0-1 Linear Programming Formulation

Introduce binary indicators

Segments

Correspondences

$$x_s = \begin{cases} 1 & s \in S_1 \cup S_2 \\ 0 & \text{otherwise} \end{cases}$$
 $y_c = \begin{cases} 1 & c \in \mathcal{M}_{12} \cup \mathcal{M}_{21} \\ 0 & \text{otherwise} \end{cases}$

0-1 Linear Programming Formulation

Introduce binary indicators

Segments

Correspondences

Correspondence pairs

$$x_s = \begin{cases} 1 & s \in S_1 \cup S_2 \\ 0 & \text{otherwise} \end{cases}$$

$$y_c = \left\{ egin{array}{ll} 1 & c \in \mathcal{M}_{12} \cup \mathcal{M}_2 \\ 0 & ext{otherwise} \end{array}
ight.$$

$$x_s = \begin{cases} 1 & s \in S_1 \cup S_2 \\ 0 & \text{otherwise} \end{cases} \quad y_c = \begin{cases} 1 & c \in \mathcal{M}_{12} \cup \mathcal{M}_{21} \\ 0 & \text{otherwise} \end{cases} \quad z_{(c,c')} = \begin{cases} 1 & (c,c') \in \mathcal{A}_{12} \cup \mathcal{A}_{21} \\ 0 & \text{otherwise} \end{cases}$$

0-1 Linear Programming Formulation

Linear programming relaxation

$$\max \sum_{i \in \{1,2\}} \mathbf{x}_i^\mathsf{T} \mathbf{w}_i^\mathsf{seg} + \sum_{ij \in \{12,21\}} (\lambda \mathbf{y}_{ij}^\mathsf{T} \mathbf{w}_{ij}^\mathsf{corr} + \mu \mathbf{z}_{ij}^\mathsf{T} \mathbf{w}_{ij}^\mathsf{adj})$$

s.t.
$$A_1 \mathbf{x}_1 = 1$$
 $A_2 \mathbf{x}_2 = 1$ $B_{12} \mathbf{y}_{12} \le D_{12} \mathbf{x}_1$ $B_{21} \mathbf{y}_{21} \le D_{21} \mathbf{x}_2$ $B'_{12} \mathbf{y}_{12} \le D'_{12} \mathbf{x}_2$ $B'_{21} \mathbf{y}_{21} \le D'_{21} \mathbf{x}_1$ $E_{12} \mathbf{z}_{12} \le F_{12} \mathbf{y}_{12}$ $E_{21} \mathbf{z}_{21} \le F_{21} \mathbf{y}_{21}$

and
$$0 \le x \le 1$$
 $\forall x \in \mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_{12}, \mathbf{y}_{21}, \mathbf{z}_{12}, \mathbf{z}_{21}$

Similar Shapes

 As a by-product, pair-wise joint segmentation determines pairs of similar shapes

Multi-way joint segmentation

- Input shapes
 - Different objects
 - Different categories

Multi-way joint segmentation

 Perform all pair-wise joint segmentation to determine pairs of similar shapes

Multi-way joint segmentation

Objective function

$$\sum_{i=1}^{n} \operatorname{score}(S_i) + \sum_{(S_i, S_j) \in \mathcal{E}} \operatorname{consistency}(S_i, S_j)$$

Princeton Segmentation Benchmark [Chen et al. 09]

Joint : Joint shape segmentation per each category

JointAll: Joint shape segmentation over the entire database

Rand index metric [Rand 1971] - the smaller, the better

	SD	RC	Supervised	Joint	JointAll	Human
Average	17.2	15.3	10.7	10.5	10.1	10.3

- Significantly better than single shape segmentations
- Competitive against supervised segmentation
- JointAll is slightly better than Joint

Rand Index Scores on PSB [Chen et.al 09]

When shape variation of the input is big

Top: Joint Bottom: JointAll

	SD	RC	Supervised	Joint	JointAll	Human
Armadillo	8.9	9.2	8.4	7.4	7.4	8.3

Rand Index Scores on PSB [Chen et.al 09]

When shape variation of the input is small

Top: Joint Bottom: JointAll

	SD	RC	Supervised	Joint	JointAll	Human
Airplane	9.3	13.4	8.2	12.9	10.2	9.2

Versus Supervised Method [Kalogerakis et al.10]

Supervised segmentation

Joint shape segmentation

Summary

- Single-shape segmentations are limited
 - No algorithm is suitable for any shape categories
- Data-driven shape segmentations can improve segmentation quality
- The behavior of supervised method and unsupervised method is different
 - Supervised method requires shapes to be similar to each other
 - Unsupervised method requires variation in shapes

Future directions

- Hierarchical segmentation
- Man-made objects

Single-Level Versus Hierarchical

Single level

[Chen et al. 09, Kalogerkis et al. 11, Huang et al.11, Sidi et al.11,...]

Hierarchical

[Martinet 2007, Wang et al. 11]

- Hierarchical representations
 - Less ambiguous than single level representation
 - Discrete scale-space representation

• • •

Architectural Models

