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‘3D Shapes

Large repositories of 3D data are becoming available

Medicine Cultural Heritage Buildings




‘ Applications

[Wiley et al.05] [Cooper et al.10] [Huang et al.06]
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‘Shape Analysis Tasks

* Design algorithms to extract semantic information from one
or a collection of shapes

[van Kaick et al. ] [Funkhouser et al. 05]
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Segmentation Classification & Clustering




‘ Importance of Shape Segmentation

"How can we decompose a 3D model into parts?"

Psychological research indicates that
recognition and shape understanding
are based on structural decomposition
of the shape into smaller parts
[Hoffmann et al. 84,97]

Applications in other shape
analysis tasks such as shape
matching and shape
recognition




Outline



‘Outline

* Single-shape segmentations
— Primitive fitting
— Hierarchical mesh decomposition
— Princeton segmentation benchmark
* Data-driven shape segmentations
— Supervised segmentation

— Joint-shape segmentation

* Conclusion and future directions




Primitive Fitting




‘ Problem Statement

* Given a mesh M = {V,E,F}, find a disjoint partitioning
of M into M,,...,M, and a set of (K?) primitives P,,...,P,
such that a distance between each primitive P, to M.
be minimized.




‘ Primitives

* Planes or Cylinders

[Cohen-Steiner et al. 04] [Raab et al. 04]




Primitives

* Spheres, Hybrid,...

[Wu et al. 05] [Attene et al. 06]




‘ Effects of Different Metrics

L2(Ri, P;) = // |z — I (x)]|*da. L R, B) :f In(z) — n:||*da.

TeR; rzeR;

Cohen-Steiner D., Alliez P., Desbrun M.: Variational shape approxiimattiion. ACM Trans.. Graph.. 23,, 3 (2004),, 905-914..



Iterative Lloyd

e RANSAC based initialization

e Alternate between
— Fitting parameters of each primitive
— Assigning points to closest patches

* Insert patches

[Yan et al. 06]




Primitive Fitting + Global Relations
ge=n,—mn, ~0 [Slide from Li et al. 11]

near parallel
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Point Cloud Initial Primitives

GlobFit: Consistently Fitting Primitives by Discovering Global Relations. Yangyan Li, X. Wu, Y. Chrysanthou, A. Sharf, D. Cohen-Or
and Niloy Mitra. Siggraph 2011.



Comparison

[Slide from Li et al. 11]
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GlobFit: Consistently Fitting Primitives by Discovering Global Relations. Yangyan Li, X. Wu, Y. Chrysanthou, A. Sharf, D. Cohen-Or
and Niloy Mitra. Siggraph 2011.



Primitive Fitting in Embedded Spaces

Gradient

Easy to incorporate
user Inputs

Helmut Pottmann, Qi-Xing Huang, Bai-Lin Deng, Alexander Schiftner, Martin Kilian, Leonidas J. Guibas, and Johannes Wallner.
Geodesic patterns. ACM Trans. Graphics 29/4 (2010), #43,1-10, Proc. SIGGRAPH.






Primitive Fitting

* Based on the assumption that patches can
approximately described by simple primitives

— CAD
— Man-made objects

* lterative Lloyd for optimization
 Advanced primitive fitting

— Structural constraints
— In embedded space




Hierarchical mesh decomposition
[Karz et al. 03]




‘ Algorithm Overview (2-Way Case)

* Criterion: faces on the same patch should be close to
each other

1. Find distances between all pairs of faces in mesh

2. Calculate probability of face belonging to each patch
3. Refine probability values using iterative clustering

4. Construct exact boundaries between components




Distance Between Faces

* Shortest path along the dual graph of the input mesh

Simplex Mesh 2D Dual Mesh

 Edge weight

Geodesic Distance Angular Distance

d eo(fi,f’) dan (fz:f)
5ag(/e(dgei) + (1 - 5)avé(dan;)

Reflects concave paths




‘ Selecting Seed Faces

e Farthest point sampling

— stay far away from existing seeds




‘ Calculate Probabilities

* Probability of face f, belonging to patch S depends on
relative proximity of S compared to other patches

DiSt(fiaSseedface)

prObab”Ity(f’L € S) — DiSt(_fi,Sseedface)+DiSt(fiaTseedface)




‘ Fuzzy Clustering

* Generating fuzzy decomposition
— Goal: cluster faces by minimizing the function

F =Y. 5 probability(f € patch(p)) - Dist(f, p)
P f

— Algorithm
 Compute the probabilities of faces belonging to each patch
* Re-compute the seed faces to minimize F by

Sseedface — mjin > probability(f; € S) - Dist(f, f;)
fi

Tseedface — mfin >_ probability(f; € T') - Dist(f, f;)
i

* |terate if the seed faces are changed




Exact Boundary

* Partition faces if probability of belonging to patch
exceeds threshold (€); remaining patches stay fuzzy

S - Fuzzy T
e Perform min-cut to find the boundary

— |t passes through edges with small capacities, e.g., highly
concave dihedral angles.




‘Stopping Conditions

* Recursively decompose until either:
— Distance between representatives < threshold

— max(aij) — min(aij) < threshold (faces have similar dihedral
angles — patch has fairly constant curvature)

— averageDist(Patch)/averageDist(Object) < threshold




‘ Hierarchical Mesh Decomposition

 Represent meshes as dual graphs
* Find a meaningful graph distance metric
* Points on the same patch are close to each other

— Fuzzy clustering

* Min-cut for extract boundaries




Other approaches



‘General Formulation

* Given a mesh M ={V,E,F}, find a disjoint partitioning
of M into M,,...,M, such that a criterion function

J=J(M17M27"'7Mk)

is minimized under a set of constraints C.




‘Types of Attributes Used

* Distance and Geodesic distance
* Planarity, normal direction

* Smoothness, curvature

e Distance to complex proxies

e Slippage

* Symmetry

 Medial Axis, Shape diameter...

Segmentation Algorithms for 3D Boundary Meshes. Ariel Shamir. Eurographics 2006 State-of-Art Report.



‘ Types of Constraints

e Cardinality

— Not too small and not too large or a given number (of segment
or elements)

— Overall balanced partition

* Geometry
— Size: area, diameter, radius
— Convexity, Roundness
— Boundary smoothness

* Topology
— Connectivity (single component)

— Disk topology
— a given number (of segment or elements)

Segmentation Algorithms for 3D Boundary Meshes. Ariel Shamir. Eurographics 2006 State-of-Art Report.



'Randomized Cuts [Golovinskiy and
Funkhouser 08]

[Slide from Golovinskiy and Funkhouser 08]

Partition Function




Princeton Segmentation Benchmark [Chen et al. 09]

* 380 shapes in 19 categories
 Manual segmentations for each shape (4300 in total)




‘ Single-Shape Segmentation

»r 8.

[Shalfman et al. 2002] [Katz et al. 05] [Attene et. al 2006] [Lai et al. 08]

K-Means Core Extraction Fitting Primitives Random Walks

M
M~

[Golovinskiy and Funkhouser 08] [Shapira et al. 08] [Golovinskiy and Funkhouser 08]

Normalized Cuts Shape Diameter Function Randomized Cuts




Princeton Segmentation Benchmark [Chen et al. 09]

 Evaluation metrics

— Rand index

The likelihood that a pair of faces are either in the same segment in two
segmentations, or in different segments in both segmentations [Rand 71]
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— Averaged over all human segmentations




Princeton Segmentation Benchmark [Chen et al. 09]

* No algorithm is best for all object categories
* Human

— Averaged rand index of all human segmentations
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'Randomized Cuts [Golovinskiy and
Funkhouser 08]

Inconsistent across
different poses




Supervised Segmentation



Goal: mesh segmentation and labeling

~
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[Slide from Kalo et al. 11]



‘ Labeling problem statement

c,,C,,C, eC
C = { head, neck, torso, leg, tail, ear }

[Slide from Kalo et al. 11]



Conditional Random Field for Labeling

Labeled Mesh

c*=argmin< > B, (%) + > LE,(C.C.iy;)
C ! 1]

[Slide from Kalo et al. 11]



Conditional Random Field for Labeling

Labeled Mesh

c*=argmin{ > «E,(c ; + > LE,(C,CiiY;)
C ! 1 ]

Face features

[Slide from Kalo et al. 11]



Conditional Random Field for Labeling

Labeled Mesh

cx=argmin{ > ok, (%) + D LE, (€, ;)

1 l, ]

Face Area

[Slide from Kalo et al. 11]



Conditional Random Field for Labeling

s
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[Slide from Kalo et al. 11]



Conditional Random Field for Labeling

Labeled Mesh

c*=argmin ZaiEl(Ci;Xi) T ZlijEz(Ci’Cj ;
c , ]

Edge Features

[Slide from Kalo et al. 11]



Conditional Random Field for Labeling

Labeled Mesh

c*=argmin< > B, (c;;x,) + Z(Ci’cj;yij)

N
Edge Length

[Slide from Kalo et al. 11]



Conditional Random Field for Labeling

lnput Mesh Labeled Mesh

—arg min Za+ ZL,E (C.CiiYy)
l Unary term

[Slide from Kalo et al. 11]



Feature vector

X 9%375+35|C| N P(C | X)

surface curvature

singular values from PCA
shape diameter

distances from medial surface
average geodesic distances
shape contexts

spin images

contextual label features

Use more features help

|

[Slide from Kalo et al. 11]



‘ Learning a classifier

Jointboost classifier [Torralba et al. 2007]
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[Slide from Kalo et al. 11]



‘ Unary Term

M Ear Most-likely labels

Classifier entropy

1.4
1.2

0.8

- 06
- 04
- 0.2
w—)

[Slide from Kalo et al. 11]



Conditional Random Field for Labeling

Inp Mesh Labeled Mesh M e
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[Slide from Kalo et al. 11]



Pairwise Term
E,(c.c4y.6,) =G(y)L(c.c)

Geometry-dependent term
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[Slide from Kalo et al. 11]



Pairwise Term

E,(c.¢%Y,6,) = G(Y)L(c.c)

Label compatibility term
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[Slide from Kalo et al. 11]



‘ Full CRF result

Unary term classifier Full CRF result

[Slide from Kalo et al. 11]



Supervised Segmentation [Kalogerakis et al.10]

* Significant improvements from single-shape segmentations
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* Limitations

Rand Index
Human Train. | SB19 SBI2 SB6 SB3 Rand  Shape

Data

Cuts Diam

— Prior knowledge of the category

— Shape variation within each category shall be small




Joint Shape Segmentation



\ Motivations

Structural similarity of segmentations

e Extraneous geometric clues

Single shape segmentation Joint shape segmentation
[Chen et al. 09] [Huang et al. 11]
~ | \_:‘:*-d ~ | = d




\ Motivations

Structural similarity of segmentations

* Low saliency

Single shape segmentation Joint shape segmentation
[Chen et al. 09] [Huang et al. 11]




\ Motivations

(Rigid) invariance of segments

e Articulated structures

Single shape segmentation Joint shape segmentation
[Chen et al. 09] [Huang et al. 11]




Pair-wise Joint Segmentation

Objective:

gn%x score(S7)+score(S»)+consistency(Sy,.S5)
1,22

Outline: /\

* Segmentatio rﬂ- meterization

* Segmentatiof scc

* Consistency s
* 0-1linear progg




‘ Segmentation Parameterization

P n

Shape Diameter
[Shapira et al. 08]
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[Lai et al. 08] [Golovinskiy and

Initial Segments
Funkhouser 08]




‘ Segmentation Parameterization

 Segmentations: subsets of
initial segments obtained from
randomized segmentations

| o




‘ Segmentation Parameterization

e

 Segmentations: subsets of
initial segments obtained from
randomized segmentations

* Segmentation constraints: each

Randomized Cuts

point is in exactly one segment 1
R A
lcover(p)|=1, VpeW qu L( U \! ( ﬂ
The set of initial segments l/\‘ '/ \‘ ” U J U

that cover point p

— m—— P ——

§ e 8- -

Initial Segments




‘ Segmentation Parameterization

e

 Segmentations: subsets of
initial segments obtained from
randomized segmentations

* Segmentation constraints: each
. . . Randomized Cuts
point is in exactly one segment 1

* Segmentation score T( )( U \! ( \J
!

score(S) = gs/am<8>"°< =" W UL j

— ——\

<« _

Prevent tiny segments  Repetitions g « Q_;U H_

Initial Segments




‘ Segmentation Parameterization

Patches Super-pixels A] l/ \] ” u B
[Golovinskiy and [Ren and Malik 03] -
Funkhouser 08] Q e > B 8 - B

Initial Segments




‘ Consistency Term

* Defined in terms of mappings
— Oriented
— Partial

Many-to-one correspondences Partial similarity




‘ Consistency Term

* Defined in terms of mappings

— Oriented
— Partial

* Mapping score [Anguelov et a

score(M;;) = A

2.

CEM%'J'

We

.05]

+ u

Z w c.c!
(c,c)eA;j &)

Correspondence weight
[Osoda et al. 02]

Adjacent correspondence
pair weight




‘ Consistency Term

* Defined in terms of mappings
— Oriented
— Partial

N 'u -

score(Mz-j) =\ > We+p >, @(C’Cf)
CEMiJ‘ (C,C')EA@

* Mapping score [Anguelov et al.05]

e Consistency score

consistency(S1,92) = X maxscore(M,;)
ije{12,21} M




‘ Constrained Optimization

2
max X X ws+ > (A X Wetp Y W)
51,52,M12,M21 =1 s€S, ije{12,21] ceM;; (e, )EA;; (e,¢)

s.t. jcover(p)| =1, VvVpeP;, 1<i<?2,

M; € Mapping(S; x S;), 115 € {12,21}




‘0-1 Linear Programming Formulation

* Introduce binary indicators

Segments

— 1 s¢€ Sl J 82
7 1 0 otherwise

A coe




‘0-1 Linear Programming Formulation

* Introduce binary indicators

Segments Correspondences

o 1 seS{1uUSs _ ] 1 ce MipUM>pq
7 1 0 otherwise Ye=1o0 otherwise




‘0-1 Linear Programming Formulation

* Introduce binary indicators

Segments Correspondences Correspondence pairs

- 1 seS1US> )1 ce MipUMoy . 1 (e,c) € A1o U Anxq
71 0 otherwise 710 otherwise () =3 0 otherwise




‘0-1 Linear Programming Formulation

Linear programming relaxation

T «,S€g T...corr T..,ad]
max > X, w; o+ 3 (Ayijwij +/’injwij)

ic{1,2} ije{12,21}
S.t. A]_Xl =1 A2X2 =1
Bi2y12 < D19oxq B21y21 < Dy1x9
/ !/ / !/
B15y12 < Dq5X5 B51y21 < DyXq
E107210 < F12y12 Eo1251 < Fo1y21

and 0<z<1 Vx € X1,X2,¥12,¥21,%12,221




‘Similar Shapes

* As a by-product, pair-wise joint segmentation
determines pairs of similar shapes

Similar Less similar




‘ Multi-way joint segmentation

* |nput shapes
— Different objects
— Different categories

/ Input shapes \
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‘ Multi-way joint segmentation

* Perform all pair-wise joint segmentation to
determine pairs of similar shapes

/ Input shapes

i o

/ Pairwise joint

segmentation

A

~




‘ Multi-way joint segmentation

* Objective function

fjscore(Sz-)—k >,  consistency(S;, S;)
=1 (S;,S;)€€

p
ol
N

/ Pairwise joint \

segmentation

Multiway joint segmentation \
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Princeton Segmentation Benchmark [Chen et al. 09]

Joint  :Joint shape segmentation per each category

JointAll : Joint shape segmentation over the entire database

Rand index metric [Rand 1971] - the smaller, the better

SD | RC | Supervised || Joint | JointAll || Human
Average | 17.2 | 15.3 10.7 10.5 10.1 10.3

e Significantly better than single shape segmentations
 Competitive against supervised segmentation
* JointAll is slightly better than Joint




Rand Index Scores on PSB [Chen et.al 09]

When shape variation of the input is big

Top: Joint

Bottom: JointAll

00
SD | RC | Supervised || Joint | JointAll || Human
Armadillo | 8.9 | 9.2 8.4 7.4 7.4 8.3




Rand Index Scores on PSB [Chen et.al 09]

When shape variation of the input is small

Top: Joint Bottom: JointAll
WAL A [ | 2| 2
‘Q ' 3&' C}\K oA g P ‘é /;
_ XX
A PSPPI AR
SD | RC | Supervised || Joint | JointAll || Human
Airplane | 9.3 | 134 8.2 12.9 10.2 9.2




Versus Supervised Method [Kalogerakis et al.10]

Supervised segmentation Joint shape segmentation




‘Summary

* Single-shape segmentations are limited
— No algorithm is suitable for any shape categories

e Data-driven shape segmentations can improve
segmentation quality

* The behavior of supervised method and
unsupervised method is different

— Supervised method requires shapes to be similar to each

other
— Unsupervised method requires variation in shapes




‘ Future directions

e Hierarchical segmentation
* Man-made objects




‘ Single-Level Versus Hierarchical

Single level Hierarchical

[Chen et al. 09, Kalogerkis et al. 11, [Martinet 2007, Wang et al. 11]

Huang et al.11, Sidi et al.11,...]
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* Hierarchical representations
— Less ambiguous than single level representation
— Discrete scale-space representation




Architectural Models
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