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Geodesics are the curves in a surface that make turns just to stay on the surface and never
move sideways. A bug living in the surface and following such a curve would perceive it to be
straight. We will begin with a definition of geodesics, present various method for finding geodesics
on surfaces, and reveal their relationships to shortest paths.

The term geodesic comes from the science of geodesy, which is concerned with measurements of
the earth’s surface [1, p. 163]. F. W. Bessel (1784–1846) was involved with determining the shape
of the earth as an ellipsoid of rotation. C. G. Jacobi (1804–1851) studied the “shortest curves” on
an ellipsoid of rotation which he referred to as “geodesic curves”. The term “shortest curves” had
earlier been used by Johannes Bernoulli (1667–1748) and Carl-Friedrich Gauss (1777–1855).

1 Definition

A curve γ(t) on a surface S is called a geodesic if at every point γ(t) the acceleration γ̈(t) is either
zero or parallel to its unit normal n̂.

Example 1. Strictly following the definition, a straight line γ(t) = at + b is a geodesic since γ̈(t) = 0.

However, a reparametrization of the line as δ(u) = a tanu + b over u ∈ (−π
2
, π

2
) is not a geodesic since

δ̈(u) = (a/ cos2 u)′ = −(2 sinu/ cos3 u)a 6= 0 unless u = 0. The fact is that every line can be parametrized

so that it is a geodesic.

Here is an interesting interpretation of geodesics from mechanics. Suppose a particle is moving
on the surface under a force perpendicular to the surface to maintain contact. Its trajectory would
be a geodesic, because Newton’s second law states that the particle’s acceleration γ̈ is parallel to
the force, hence always perpendicular to the surface.

Proposition 1 A geodesic γ(t) on a surface S has constant speed.

Proof We have
d

dt
‖γ̇‖2 =

d

dt
(γ̇ · γ̇) = 2γ̈ · γ̇.

Since γ is geodesic, γ̈ is perpendicular to the tangent plane which contains γ̇. Hence γ̈ · γ̇ = 0.
Subsequently, d‖γ̇‖2/dt = 0. Therefore, the speed ‖γ̇‖ is constant.

∗The material is adapted from the book Elementary Differential Geometry by Andrew Pressley, Springer-Verlag,
2001.
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Proposition 1 suggests that the unit-speed parametrization of a geodesic is still a geodesic, since
the acceleration is just scaled by a non-zero constant factor. So we can always consider unit-speed
geodesics only if needed.

Proposition 2 A curve on a surface is a geodesic if and only if its geodesic curvature is zero

everywhere.

Proof Let γ be a unit-speed geodesic in a patch σ of the surface, and N the unit normal of σ.
The geodesic curvature is

κg = γ̈ · (N × γ̇).

If γ̈ is zero, then the above implies that κg = 0. Otherwise, by definition γ̈ is parallel to N . It is
thus perpendicular to N × γ̇, thereby κg = 0.

Conversely, suppose κg = 0. Then γ̈ ⊥ N × γ̇ if γ̈ 6= 0. Meanwhile, from γ̇ × γ̇ = 1 we obtain
that γ̈ ⊥ γ̇. Therefore, γ̈ is parallel to γ̇ × (N × γ̇); in other words, it is parallel to N .

By Proposition 2, we can claim that all straight lines are geodesics. Other simple geodesics
include the rulings of any ruled surface, such as the generators of a (generalized) cylinder or cone.

Suppose a curve on a surface is its intersection with a plane that happens to be perpendicular to
the tangent plane at every point on the curve. Since the curve lies in a normal plane, its curvature κ

equals the normal curvature κn everywhere. From κ =
√

κ2
n

+ κ2
g
, we infer that κg = 0 everywhere.

Example 2. A great circle on a sphere is its intersection with a plane Π passing through the center O of

the sphere. Every point p on the great circle defines a vector with Op which is perpendicular to the tangent

plane at p. Thus, the great circle is a geodesic.

Example 3. The intersection of a generalized cylinder with a plane Π perpendicular to the rulings of the

cylinder is a geodesic. Clearly, the unit normal at such an intersection point is perpendicular to the rulings,

and hence contained in Π. So, Π is perpendicular to the tangent plane at the point.

Π

N

2 Geodesic Equations

We have seen two examples of geodesics. To determine all the geodesics on a given surface, we need
to solve differential equations stated in the following theorem.
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Theorem 3 A curve γ on a surface S is a geodesic if and only if for any part γ(t) = σ(u(t), v(t))
contained in a surface patch σ of S, the following two equations are satisfied:

d

dt
(Eu̇ + F v̇) =

1

2
(Euu̇2 + 2Fuu̇v̇ + Guv̇2), (1)

d

dt
(Fu̇ + Gv̇) =

1

2
(Evu̇

2 + 2Fvu̇v̇ + Gv v̇
2), (2)

where Edu2 + 2Fdudv + Gdv2 is the first fundamental form of σ.

Proof The tangent plane is spanned by σu and σv. By definition the curve γ is a geodesic if
and only if γ̈ · σu = γ̈ · σv = 0. Since γ̇ = u̇σu + v̇σv, γ̈ · σu = 0 becomes

(

d

dt
(u̇σu + v̇σv)

)

· σu = 0.

We rewrite the left hand side of the above equation:

(

d

dt
(u̇σu + v̇σv)

)

· σu =
d

dt
((u̇σu + v̇σv) · σu) − (u̇σu + v̇σv) ·

dσu

dt

=
d

dt
(Eu̇ + F v̇) − (u̇σu + v̇σv) · (u̇σuu + v̇σuv)

=
d

dt
(Eu̇ + F v̇) −

(

u̇2(σu · σuu) + u̇v̇(σu · σuv + σv · σuu)

+ v̇2(σv · σuv)
)

. (3)

We have that

σu · σuu =
1

2

∂

∂u
(σu · σu) =

1

2
Eu,

σv · σuv =
1

2
Gu,

σu · σuv + σv · σuu = Fu.

Substituting them into (3), we obtain

(

d

dt
(u̇σu + v̇σv)

)

· σu =
d

dt
(Eu̇ + F v̇) − 1

2
(Euu̇2 + 2Fuu̇v̇ + Guv̇2).

This establishes the first differential equation (1). Similarly, equation (2) can be established from

(

d

dt
(u̇σu + v̇σv)

)

· σv = 0.

The two equations in Theorem 3 are called the geodesic equations. They are nonlinear and
solvable analytically on rare occasions only. The following is an example where a close-form solution
can be found.
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Example 4. Let us find the geodesics on the unit sphere S2 by solving equations (1) and (2). Consider the
patch under the parametrization

σ(θ, φ) = (cos θ cosφ, cos θ sin φ, sin θ).

In Example 9 of the notes titled Surfaces, the first fundamental form is found to be dθ2 + cos2 θ dφ2, with
E = 1, F = 0, and G = cos2 θ. We restrict to unit-speed curves γ(t) = σ(θ(t), φ(t)) so that

Eθ̇2 + 2F θ̇φ̇ + Gφ̇2 = θ̇2 + φ̇2 cos2 θ = 1. (4)

If γ is a geodesic, equation (2) is satisfied. Here, the equation reduces to

d

dt
(φ̇ cos2 θ) = 0, (5)

is satisfied. Hence
φ̇ cos2 θ = C, (6)

for some constant C. There are two cases.

• C = 0 Then φ̇ = 0. In this case, φ is constant and γ is part of a meridian.

• C 6= 0 Substituting (6) into the unit-speed condition (4), we have

θ̇2 = 1 − C2

cos2 θ
.

Combining the above with (6), along the geodesic it holds that

(

dφ

dθ

)2

=
φ̇2

θ̇2
=

1

cos2 θ( cos2 θ
C2 − 1)

.

Integrate the derivative dφ/dθ:

φ − φ0 = ±
∫

dθ

cos θ
√

cos2 θ
C2 − 1

,

where φ0 is a constant. The substitution u = tan θ yields

φ − φ0 = ±
∫

du√
C−2 − 1 − u2

= sin−1

(

u√
C−2 − 1

)

,

which leads to
tan θ = ±

√

C−2 − 1 · sin(φ − φ0).

Multiply both sides of the above equation with cos θ:

sin θ = ±
√

C−2 − 1(cosφ0 cos θ sin φ − sin φ0 cos θ cosφ).

Since σ(θ, φ) = (xy, z), we have

z = ∓(sin φ0

√

C−2 − 1)x ± (cosφ0

√

C−2 − 1)y.

Clearly, z = 0 when x = y = 0. Therefore, γ is contained in the intersection of S2 with a plane
through the center of the sphere. Hence it is part of a great circle.
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In both cases, γ is part of a great circle.

The following theorem states that a unique geodesic exists on a surface that passes through any
of its point in any given tangent direction.1

Theorem 4 Let p be a point on a surface S, and t̂ a unit tangent vector at p. There exists a

unique unit-speed geodesic γ on S which passes through p with velocity γ′ = t̂.

A trivial example would be straight lines in a plane. At any point, in any direction, there is a
unique straight line through the point. Theorem 4 says that there are no other geodesics. On a
sphere, the great circles are the only geodesics. This is because, in any tangent direction at a point
on the sphere, there is a great circle through the point which is the intersection of the sphere with
the plane determined by the tangent line in that direction and the sphere’s center.

Theorem 4 provides four initial values needed to solve the geodesic equations (1) and (2) for
u and v as functions of the curve parameter. Suppose we need to construct a geodesic passing
through a point p on a surface patch σ(u, v) in the unit tangent direction t̂, with p = σ(u0, v0).
We consider a unit-speed parametrization γ(t) = σ(u(t), v(t)) such that

u(0) = u0,

v(0) = v0.

The unit tangent at p is σu(u0, v0)u̇(0) + σv(u0, v0)v̇(0). Because σu and σv span the tangent
plane at p, the values of the two derivatives u̇(0) and v̇(0) can be determined from the equation

t̂ = σu(u0, v0)u̇(0) + σv(u0, v0)v̇(0).

One of the three scalar equations in the above equation is redundant since t̂, σu(u0, v0), and
σv(u0, v0) are co-planar. To eliminate the redundancy, we take the dot products of the equation
with σu(u0, v0) and σv(u0, v0) separately, obtaining

(

E F
F G

)(

u̇(0)
v̇(0)

)(

t̂ · σu(u0, v0)

t̂ · σv(u0, v0)

)

.

This gives us
(

u̇(0)
v̇(0)

)

= F−1

1

(

t̂ · σu(u0, v0)

t̂ · σv(u0, v0)

)

,

where the first fundamental form matrix F1 is evaluated at (u0, v0). The four initial values
u(0), v(0), u̇(0), v̇(0) uniquely specify a solution curve to the geodesic equations. In fact, this is
the idea behind the proof of Theorem 4.

3 Preservation of Geodesics under Isometry

Let S1 and S2 be two surfaces. A map f : S1 → S2 is called a diffeomorphism if it is smooth
and bijective and its inverse map f−1 : S2 → S1 is also smooth. A diffeomorphism f is called
an isometry if it maps curves in S1 to curves of the same length in S2. If an isometry exists,
then S1 and S2 are isometric. A sufficient and necessary condition for f to be an isometry is any

1For a proof of the theorem, we refer to [3, p. 178].
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surface patch σ1 of S1 and its image patch f ◦ σ1 of S2 have the same first fundamental form.
The proof is in [3, p. 102] which relies on the fact that the length of a curve on a surface patch is

γ(t) = σ(u(t), v(t)) is
∫

√

E(̇u)2 + 2Fu̇v̇ + Gv̇2 dt.

Example 5. Let S1 be the infinite strip in the xy-plane given by 0 < x < 2π, and S2 be the circular cylinder

x2 + y2 = 1 with the ruling x = 1, y = 0 removed. Then S1 is covered by a single patch σ1(u, v) = (u, v, 0),

and S2 by the patch σ2(u, v) = (cosu, sinu, v), where 0 < u < 2π for both cases. Consider the map

f : (u, v, 0) 7→ (cosu, sinu, v) from S1 to S2. We can verify that both patches have the same first fundamental

form du2 + dv2. Therefore f is an isometry, and S1 and S2 are isometric.

0 12π

geodesic geodesic
isometric

ruling
removed

Theorem 5 An isometry f : S1 → S2 maps the geodesics of S1 to the geodesics of S2.

Proof Let γ(t) be a geodesic in S1. Suppose a part of γ lies in the patch σ(u, v) in S1 so that
γ(t) = σ(u(t), v(t). Then, u and v satisfy the geodesic equations (1) and (2). Now, consider the
patch f ◦ σ of S2 as the image of σ under the isometry. Because both patches have the same first
fundamental form, the curve f(σ(u(t), v(t))) on S2 must also satisfy the geodesic equations. Thus
f ◦ γ is a geodesic on S2 by Theorem 3.

Example 6. We know that on the circular cylinder x2+y2 = 1, geodesics include cross sections where planes
parallel to the xy-plane intersect the cylinder, as well as straight lines parallel to the z-axis. To find the
missing geodesics, we make use of the isometry given in Example 5 which maps (u, v, 0) to (cosu, sinu, v).
In the isometric strip in the xy-plane given by 0 < x < 2π, any line not parallel to the y-axis has a
parametrization (u, mu + c). Its image on the cylinder is the curve

γ(u) = (cosu, sinu, mu + c).

This curve is a geodesic on the cylinder by Theorem 5. In the previous figure, a diagonal in the strip is

drawn, along with its image geodesic curve on the isometric cylinder.

4 Geodesics vs. Shortest Paths

We all know that the shortest path between two points p and q in the plane is the line segment
pq. It is almost as well known that great circles are the shortest paths on a sphere. The following
can be established.
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Theorem 6 Let γ be a shortest path on a surface S connecting two points p and q. Then the part

of γ contained in any surface patch σ of S must be a geodesic.

The converse of the statement in the theorem is not necessarily true, however. If γ is a geodesic
on σ connecting p and q. Then γ need not be a shortest path between the two points. As an
example, the great circle connecting two points p and q on a sphere is split into two circular arcs
by the points. Both arcs are geodesics. Only the shorter one of the two is the shortest path joining
p and q.

qp

p q0

In general, a shortest path joining two points on a surface may not exist. For example, consider
the surface P which is the xy-plane with its origin removed. There is no shortest path from the
point p = (−1, 0) to the point q = (1, 0). Such a path would be the line segment, except it passes
through the origin and does not lie entirely on the surface. Any short path in P from p to q would
walk in a straight line as long as possible, and then move around the origin, and continue in a
straight line. It can always be improved on by moving a little closer to the origin before circling
around it. Therefore, there is no shortest path connecting the two points.

If a surface S is a closed subset2 of R
3, and if there is some path in S joining any two points p

and q, then there always exists a shortest path joining the two points. For instance, a sphere is a
closed subset of R

3, and the short great circle arc joining two points on the sphere is their shortest
path. The surface P , the xy-plane with its origin removed, is not a closed subset of R

3 because
any open ball containing the origin must contain points of P (so the set of points not in P is not
open).

5 Geodesic Coordinates

β
v

γ ′(v)

σ(u, v) = β
v
(u)β′

v
(0)p = γ(0)

γ(v)

γ

The existence of geodesics on a surface S gives a
way to construct a useful atlas for S in practice. Let
p be a point in S, and γ(v) a unit-speed geodesic
on S with γ(0) = p. For any value of v, there
exists a unique unit-speed geodesic β

v
(u) such that

β
v
(0) = γ(v) and β′

v
(0) ⊥ γ′(v). We define a patch

σ(u, v) = β
v
(u) and call it a geodesic patch, and u

and v geodesic coordinates.

Example 7. Consider a point p on the equator of
the unit sphere S2. Let the equator be parametrized

2In other words, the set R
3
− S is open.

7



with the longitude φ as γ(φ). Let βφ be the meridian
parametrized by the latitude θ and passing through the point on the equator with longitude φ. The cor-
responding geodesic patch is the usual one in latitude and longitude, for which the first fundamental form
is

dθ2 + cos2 θdφ2.
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