
1

University of
British Columbia

Parameterization – Free Boundary

University of
British Columbia

Free Boundary Methods

 Direct energy minimization
 Example: Least Squares Conformal Map

(LSCM)....
 Indirect

 Example: Angle Based Flattening (ABF)....

Free vs Fixed

2

University of
British Columbia

 Algebraic Interpretation:
 Minimize conformal energy

 Geometric Interpretation:
 Use triangle similarity
 Given angles 1, 2, 3 of a triangle P1P2P3

in 2D we have

LSCM – Geometric Interpretation

























cossin

sincos

),(
sin

sin
12

3

2
13 1

R

PPRPP

1 2

3

P1

P2

P3

University of
British Columbia

LSCM

 In map from 3D to 2D might be impossible to
keep angles exactly
 Use least-squares

 To solve need to fix two vertices
 Obtain linear system
 Choice of vertices affects solution

 Can have flips

 
i

ii
i

i
ii PPRPP i

2
12

3

2
13))(

sin

sin
(min

1


3

University of
British Columbia

Examples

University of
British Columbia

ABF: Angle Based Flattening

 Triangular 2D mesh is defined by its angles
 Formulate parameterization as problem in

angle space
 Angle based formulation:

 Distortion as function of angles (conformality)
 Validity: set of angle constraints
 Convert solution to UV

4

University of
British Columbia

ABF Formulation

 Distortion:
 2D/3D angle difference

  2

2

3..1,

1,
t
j

t
j

jTt

t
j

t
j

t
j ww


 



University of
British Columbia

ABF Formulation

 Distortion:
 Constraints:

 Triangle validity:

 Planarity:

 Reconstruction

 Positivity
 Solve - constrained

optimization
(Lagrange multipliers)

  2

2

3..1,

1,
t
j

t
j

jTt

t
j

t
j

t
j ww


 



0t
j

5

University of
British Columbia

Angle to UV Conversion

 Alternative 1: Use computed angles as input
to LSCM

 Alternative 2: Unfolding
 Choose one edge & place in 2D (keep length)
 Based on computed angles place third vertex

of triangles sharing this edge in 2D
 Intersection of two rays

 Repeat recursively

University of
British Columbia

Examples

6

University of
British Columbia

Examples

University of
British Columbia

2D Parameterization Summary

 Needed for many processing operations
 Distortion/Bijectivity important
 Trade-of quality/efficiency (as always…)
 Very popular topic (100+ major

publications in last 10 years, less
recently)

 More Issues
 Segmentation/Cutting
 Constraints

7

University of
British Columbia

Numerical Issues

University of
British Columbia

Minimization with Constraints

 Need to
 Find x such that F(x) minimal
 WHEN constraints c(x) = 0 satisfied

 Achieved when
 F’(x)=c’(x)

 for unknown 
 General formulation

 F*(x,)=F(x)+c(x)

 Find x, which extremize F*

 Known as min-max
 min on x
 max on 

8

University of
British Columbia

Solution

 Use Lagrange Multipliers

 Solve the min-max problem (minimum on ,
maximum on )

 Reached when all derivatives are zero

 Have non-linear system of equations

 Use Newton method to solve

University of
British Columbia

Minimization (Unconstrained)

 To find x that minimizes F(x) – find x such
that F’(x)=0
 Check if got minimum/maximum/saddle point
 Note: finds LOCAL minimum

 Typically no need for explicit check (assume
function does not have maxima/saddles

 Translate problem into: find x such that f(x)=0

9

University of
British Columbia

Solving Non-Linear Equations - Newton Method

 Consider Taylor expansion

 Neglect terms > 1

 In 1D
 Set x0 – initial guess
 While f(xi) not 0

 dx = -f(xi)/f’(xi)

 xi+1 = xi + dx

University of
British Columbia

Newton Method in nD

 f(x) vector

 f(x) – matrix

 Set x1 – initial guess
 While ||f(xi)|| > 0

 Solve f(xi) dx = -f(xi)
 Solve linear system

 xi+1 = xi + dx

10

University of
British Columbia

Solving Linear System

 Solve Ax=B (A nn matrix)
 Choice I: Compute A-1 O(n3) TERRIBLY

expensive
 Choice II: Iterative (Gauss/Gauss-Seidel)

 Set x to initial guess
 Solve one equation at a time

 Aix=Bi - consider all xj (j i) as constant and
compute xi

 xi = (bi-ajxj)/ai

 Repeat (for all i) till convergence

 Works only for a very small set of matrices

University of
British Columbia

Solving Linear System

 Choice III: LU (or LDLT) decomposition
 Compute matrices L & U such that

 LU=A

 L – lower matrix (has 1’s on diagonal & 0’s above)
 U – upper matrix (has 0’s below diagonal
 Use off-the-shelf algorithm/code

 Take advantage of sparsity (if applicable)

 Solve:
 Solve Ly=B (use Gauss iterations)

 Works (at each point add ONE variable)
 Solve Ux=y (use Gauss iterations)

 Start from i=n-1 and go “up”
 Works (at each point add ONE variable)

