

Digital Geometry Processing, Spring 2016

Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

Shape Representations

Point cloud

Polygon mesh

Polygon Meshes

Basic Geometric Analysis

Advanced Geometric Analysis

Discrete Differential Geometry

Medial Axis Transform

Spectral Decomposition

Local Shape Features

Global Shape Features

Shape Deformation

Shape Editing

Shape Parametrization

Shape Parametrization

Shape Parametrization

Statistical Shape Models

Template

Procedure

Exemplars

TTTTT

Probabilistic Graphical Model

Grammar

Research Topics: High-level shape understanding

Structure, function, semantics, attributes, materials, human and environmental impact, local context, manufacturability, sustainability, cost...

Research Topics: Reconstruction

Research Topics: Fundamental operators

Research Topics: Evolutionary Design

Karl Sims, "Evolved Virtual Creatures", SIGGRAPH 1994, https://youtu.be/JBgG_VSP7f8

Things to keep in mind

- Class is not strictly math-oriented, nor just system-building
 - ... you will have to code!
- Attendance is not compulsory
 - ... but I expect you to come to class!
- There's no such thing as a stupid question
 - ... so please speak up
- The words "Professor" and "Sir" are outlawed
 - ... we're all on a first-name basis here

Background

- Familiarity with basic linear algebra, coordinate geometry, calculus, graph theory etc
 - If you've done 3 years of a CS undergrad, you should be prepared math-wise
 - We won't do proofs, but the algorithms will involve math.
- Familiarity with introductory graphics, image processing and/or vision
 - Ideally, you should have done CS475 (computer graphics) or CS663 (digital image processing), or an equivalent at another institution
 - If you haven't done any of these courses, please talk to me before signing up.

Assignments

- I will provide basic code frameworks (in C++)
 - I don't expect you to spend time coding stuff that's not directly related to what we're learning
- Start early!
 - They always take more time than you think
 - But no, I won't give very strenuous assignments
- Details of the final project will be announced soon
 - You will work in small groups (don't team up now)

Questions?

