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Point Clouds
● Sample points from a shape
● Simple and “raw” representation
● Can be acquired from real or virtual data
● We discussed how to sample efficiently (both time 

and space), for accurate coverage



Today

Extracting structure from point clouds



The geometry of a point cloud

● How large is it?
● What region does it cover?
● How many components does it have?
● What is the local shape?
● What is the global shape?
● …



How large is it?

● A simple measure:
Axis-Aligned
Bounding Box
(AABB)

class AABB {
  private:
    bool empty;
    Vec3 lo, hi;

  public:
    AABB() : empty(true) {}
    AABB(Vec3 l, Vec3 h)
      : empty(false), lo(l), hi(h) {}

    bool isEmpty() { return empty; }
    Vec3 const & low() const { return lo; }
    Vec3 const & high() const { return hi; }

    void merge(Vec3 const & v) {
      if (empty) {
        lo = hi = v;
        empty = false;
      } else {
        lo = lo.min(v);
        hi = hi.max(v);
      } 
    }
};

class Vec3 {
  public:
    double x, y, z;

    // constructors...
    // operators...
};



How large is it?

● A simple measure:
Axis-Aligned
Bounding Box
(AABB)

AABB box;
for (size_t i = 0;
     i < points.size();
     ++i)
{
  box.merge(points[i]);
}



How large is it?

● A simple measure:
Axis-Aligned
Bounding Box
(AABB)

AABB box;
for (size_t i = 0;
     i < points.size();
     ++i)
{
  box.merge(points[i]);
}

(Video: Progressive
construction of AABB)



How large is it?

class OBB {
  private:
    AABB aabb;
    CoordinateFrame aabb;

  public:
    AABB const &
    getLocalAABB() const
    { return aabb; }

    CoordinateFrame const &
    getLocalFrame() const
    { return frame; }
};

● A better measure: Oriented Bounding Box (OBB)



How large is it?

● A better measure: Oriented Bounding Box (OBB)

class OBB {
  private:
    AABB aabb;
    CoordinateFrame aabb;

  public:
    AABB const &
    getLocalAABB() const
    { return aabb; }

    CoordinateFrame const &
    getLocalFrame() const
    { return frame; }
};

(Video: Random sampling of
candidate OBB frames)



How large is it?

class OBB {
  private:
    AABB aabb;
    CoordinateFrame aabb;

  public:
    AABB const &
    getLocalAABB() const
    { return aabb; }

    CoordinateFrame const &
    getLocalFrame() const
    { return frame; }
};

Box with minimum volume
(63.48 units)

● A better measure: Oriented Bounding Box (OBB)



How large is it?

● Instead of bounding dimensions (sensitive to 
outliers), find the degrees of largest variance in the 
data
● Principal Component Analysis (PCA)

– Data is a set X = {x1, x2, … xn} of d-dimensional points 
(here d = 3)

– Assume the points have mean zero (if not, subtract the 
centroid x̅ of the points first)

– Find unit vector w1 such that X has the largest variance when 
projected onto w1, then unit vector w2 such that the 
remaining dimensions of X have the largest variance when 
projected onto w2, and so on until wd



Principal Component Analysis
● First principal component: unit vector w1 such that X 

has the largest variance when projected onto w1

● Maximized when w1 is the eigenvector for the largest 
eigenvalue of
● This eigenvalue (divided by n) gives the variance

● Subsequent eigenvalues yield remaining principal 
components

Note: The actual variance is Σ
i
(x

i 
.w)2 / (n - 1), but for the

maximization we can drop the n - 1 for convenience

Dividing this by n – 1 gives the covariance
matrix of the (zero-mean) data



Maximizing quadratic form

● Claim:                     is maximized, for ||w|| = 1, when 

w is the eigenvector for the largest eigenvalue of
A =

● Proof:
● A is a real symmetric matrix, so can be diagonalized as 

A = UDUT, where U is an orthonormal matrix of 
eigenvectors, and D is a diagonal matrix of real 
eigenvalues

● wTAw  =  wTUDUTw  =  uTDu, where u = UTw

● Also, ||u|| = uTu = wTUUTw = wTw = ||w||

– So ||w|| = 1  iff  ||u|| = 1



Maximizing quadratic form
● Claim:                        is maximized, for ||w|| = 1, when w is the 

eigenvector for the largest eigenvalue of A =

● Proof (contd):

                                              (writing zi = ui
2)

● Convex combination of real numbers, whose maximum is 
largest eigenvalue Dkk, and minimum is smallest eigenvalue Dhh

● At the maximum, zk = 1, all other zi's = 0. Plugging this into Uu = w 
(remember U -1 = UT) directly gives the eigenvector



How large is it?
● Faster OBB approximation: Consider only boxes parallel 

to the plane of the largest two principal components



How large is it?
● Faster OBB approximation: Consider only boxes parallel 

to the plane of the largest two principal components

Box with minimum volume
(65.31 units)

(Video: 1D search over
candidate OBBs in principal

plane of points)



Thought for the Day #1

Find a distribution of points whose OBB is not 
aligned with all the PCA directions



What region does it cover?

● Typical spatial queries:
● Nearest Neighbor

– Find the closest point to x
– k-Nearest Neighbors: Find the k points closest to x

● Range Query
– Find all points lying within a box, or sphere, or other range

● Brute force is very slow (linear in #points)
● Both queries can be answered efficiently with a 

bounding volume hierarchy, or other acceleration 
structure



Bounding Volume Hierarchy (BVH)

● Recursive grouping of objects
● Each group is bounded by a simple shape, typically 

a box or a sphere

devblogs.nvidia.com



Bounding Volume Hierarchy (BVH)

● Nearest Neighbor:
● Recurse into subtree only if distance to BV is less than 

distance to current nearest neighbor
● When processing the children of a node, start with the 

one whose BV is closest to the query

● Range Query:
● Recurse into subtree only if range intersects its BV

● With careful recursion, the query can itself be a 
BVH → efficient distance between two shapes



k-d Tree
● Recursively split points along coordinate axes

● Classical strategy: Go through the coordinate axes in 
sequence and repeat

● A good practical strategy: Split the longest/most variant 
dimension each time

● Where to split?
– The mean coordinate is quick to

compute
– The median coordinate gives a

perfectly balanced partition

● A k-d tree is essentially just a
bounding box hierarchy



Thought for the Day #2

Why doesn't a kd-tree work well for nearest neighbor 
queries in very high dimensions?



What is the local geometry?

● Estimating the normals of the shape

The normal is orthogonal to the 
local tangent plane

The normals define a vector field 
over the surface

(positions, colors etc define other 
vector fields)



Estimating normals

● Plane-fitting: Approximate the tangent plane at a 
point by the plane best fitting the local 
neighborhood
● Assumes surface is locally linear, if you look closely 

enough



Orthogonal Regression

● Minimize sum of perpendicular distances to plane

λ 1

λ 
3

λ 
2

minimize  Σ λ
i
2

x 1

x 2

x 3



Orthogonal Regression

● λi = |n.(xi – a)|, where n is the unit normal to the 
plane, and a is some fixed point on the plane

● Minimize Σ λi2 = Σi ||n.(xi – a)||2 = Σi yi
T n nT yi

                                                       = Σi nT yi yi
T n

                                                       = nT Σi(yi yi
T) n

                                                              for ||n|| = 1

● Looks like the PCA problem! Given a, the yi 's are 
fully defined and hence n is the eigenvector for 
the smallest eigenvalue of Σi(yi yi

T)



Orthogonal Regression

● How to find a fixed point a on the optimal plane?
● Recall: we're minimizing E = Σ λi

2 = Σi yi
T (n nT) yi

● Take the gradient w.r.t. a

● The derivative is zero when                    ,
i.e. a is the centroid of the
points. This completes the definition of the plane.



RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Least-squares fit



RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Sample d points 
at random



RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Fit model to sample



RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Check how much data 
supports current 
hypothesis (in this 
case, very little)



RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Repeat for a new 
sample (again no luck)



RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Third time lucky!

Challenge: 
Setting the 
acceptance 
threshold 
correctly



RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers
● Popular for detecting planar regions in 3D scans
● Can be used for non-planar fitting as well (any 

low-dimensional parametric model)



The Hough Transform

● “Fitting by voting”
● Each data point (or small sample of points) votes for all 

models (here, planes) that it supports
● The vote is cast in the space of model parameters
● At the end, look for the (discretized) sets of model 

parameters with large numbers of votes



The Hough Transform

● Example: Vote for all lines supported by a simple 
dataset of 3 points



The Hough Transform

● The plot of all the votes in the space of lines 
(parametrized by angle and distance from origin)



The Hough Transform

● A more complex example



The Hough Transform

● “Fitting by voting”
● Each data point (or small sample of points) votes for all 

models (here, planes) that it supports
● The vote is cast in the space of model parameters
● At the end, look for the (discretized) sets of model 

parameters with large numbers of votes

● Possible optimization for point clouds: at each 
point, vote only for planes that are roughly aligned 
with the estimated local normal



Thought for the Day #3

Why do techniques like RANSAC or the Hough 
Transform not work well for models with a large 

number of parameters?
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