
More Point Clouds
Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

Kyle McDonald

http://www.cse.iitb.ac.in/~cs749

Point Clouds
● Sample points from a shape
● Simple and “raw” representation
● Can be acquired from real or virtual data
● We discussed how to sample efficiently (both time

and space), for accurate coverage

Today

Extracting structure from point clouds

The geometry of a point cloud

● How large is it?
● What region does it cover?
● How many components does it have?
● What is the local shape?
● What is the global shape?
● …

How large is it?

● A simple measure:
Axis-Aligned
Bounding Box
(AABB)

class AABB {
 private:
 bool empty;
 Vec3 lo, hi;

 public:
 AABB() : empty(true) {}
 AABB(Vec3 l, Vec3 h)
 : empty(false), lo(l), hi(h) {}

 bool isEmpty() { return empty; }
 Vec3 const & low() const { return lo; }
 Vec3 const & high() const { return hi; }

 void merge(Vec3 const & v) {
 if (empty) {
 lo = hi = v;
 empty = false;
 } else {
 lo = lo.min(v);
 hi = hi.max(v);
 }
 }
};

class Vec3 {
 public:
 double x, y, z;

 // constructors...
 // operators...
};

How large is it?

● A simple measure:
Axis-Aligned
Bounding Box
(AABB)

AABB box;
for (size_t i = 0;
 i < points.size();
 ++i)
{
 box.merge(points[i]);
}

How large is it?

● A simple measure:
Axis-Aligned
Bounding Box
(AABB)

AABB box;
for (size_t i = 0;
 i < points.size();
 ++i)
{
 box.merge(points[i]);
}

(Video: Progressive
construction of AABB)

How large is it?

class OBB {
 private:
 AABB aabb;
 CoordinateFrame aabb;

 public:
 AABB const &
 getLocalAABB() const
 { return aabb; }

 CoordinateFrame const &
 getLocalFrame() const
 { return frame; }
};

● A better measure: Oriented Bounding Box (OBB)

How large is it?

● A better measure: Oriented Bounding Box (OBB)

class OBB {
 private:
 AABB aabb;
 CoordinateFrame aabb;

 public:
 AABB const &
 getLocalAABB() const
 { return aabb; }

 CoordinateFrame const &
 getLocalFrame() const
 { return frame; }
};

(Video: Random sampling of
candidate OBB frames)

How large is it?

class OBB {
 private:
 AABB aabb;
 CoordinateFrame aabb;

 public:
 AABB const &
 getLocalAABB() const
 { return aabb; }

 CoordinateFrame const &
 getLocalFrame() const
 { return frame; }
};

Box with minimum volume
(63.48 units)

● A better measure: Oriented Bounding Box (OBB)

How large is it?

● Instead of bounding dimensions (sensitive to
outliers), find the degrees of largest variance in the
data
● Principal Component Analysis (PCA)

– Data is a set X = {x1, x2, … xn} of d-dimensional points
(here d = 3)

– Assume the points have mean zero (if not, subtract the
centroid x̅ of the points first)

– Find unit vector w1 such that X has the largest variance when
projected onto w1, then unit vector w2 such that the
remaining dimensions of X have the largest variance when
projected onto w2, and so on until wd

Principal Component Analysis
● First principal component: unit vector w1 such that X

has the largest variance when projected onto w1

● Maximized when w1 is the eigenvector for the largest
eigenvalue of
● This eigenvalue (divided by n) gives the variance

● Subsequent eigenvalues yield remaining principal
components

Note: The actual variance is Σ
i
(x

i
.w)2 / (n - 1), but for the

maximization we can drop the n - 1 for convenience

Dividing this by n – 1 gives the covariance
matrix of the (zero-mean) data

Maximizing quadratic form

● Claim: is maximized, for ||w|| = 1, when

w is the eigenvector for the largest eigenvalue of
A =

● Proof:
● A is a real symmetric matrix, so can be diagonalized as

A = UDUT, where U is an orthonormal matrix of
eigenvectors, and D is a diagonal matrix of real
eigenvalues

● wTAw = wTUDUTw = uTDu, where u = UTw

● Also, ||u|| = uTu = wTUUTw = wTw = ||w||

– So ||w|| = 1 iff ||u|| = 1

Maximizing quadratic form
● Claim: is maximized, for ||w|| = 1, when w is the

eigenvector for the largest eigenvalue of A =

● Proof (contd):

 (writing zi = ui
2)

● Convex combination of real numbers, whose maximum is
largest eigenvalue Dkk, and minimum is smallest eigenvalue Dhh

● At the maximum, zk = 1, all other zi's = 0. Plugging this into Uu = w
(remember U -1 = UT) directly gives the eigenvector

How large is it?
● Faster OBB approximation: Consider only boxes parallel

to the plane of the largest two principal components

How large is it?
● Faster OBB approximation: Consider only boxes parallel

to the plane of the largest two principal components

Box with minimum volume
(65.31 units)

(Video: 1D search over
candidate OBBs in principal

plane of points)

Thought for the Day #1

Find a distribution of points whose OBB is not
aligned with all the PCA directions

What region does it cover?

● Typical spatial queries:
● Nearest Neighbor

– Find the closest point to x
– k-Nearest Neighbors: Find the k points closest to x

● Range Query
– Find all points lying within a box, or sphere, or other range

● Brute force is very slow (linear in #points)
● Both queries can be answered efficiently with a

bounding volume hierarchy, or other acceleration
structure

Bounding Volume Hierarchy (BVH)

● Recursive grouping of objects
● Each group is bounded by a simple shape, typically

a box or a sphere

devblogs.nvidia.com

Bounding Volume Hierarchy (BVH)

● Nearest Neighbor:
● Recurse into subtree only if distance to BV is less than

distance to current nearest neighbor
● When processing the children of a node, start with the

one whose BV is closest to the query

● Range Query:
● Recurse into subtree only if range intersects its BV

● With careful recursion, the query can itself be a
BVH → efficient distance between two shapes

k-d Tree
● Recursively split points along coordinate axes

● Classical strategy: Go through the coordinate axes in
sequence and repeat

● A good practical strategy: Split the longest/most variant
dimension each time

● Where to split?
– The mean coordinate is quick to

compute
– The median coordinate gives a

perfectly balanced partition

● A k-d tree is essentially just a
bounding box hierarchy

Thought for the Day #2

Why doesn't a kd-tree work well for nearest neighbor
queries in very high dimensions?

What is the local geometry?

● Estimating the normals of the shape

The normal is orthogonal to the
local tangent plane

The normals define a vector field
over the surface

(positions, colors etc define other
vector fields)

Estimating normals

● Plane-fitting: Approximate the tangent plane at a
point by the plane best fitting the local
neighborhood
● Assumes surface is locally linear, if you look closely

enough

Orthogonal Regression

● Minimize sum of perpendicular distances to plane

λ 1

λ
3

λ
2

minimize Σ λ
i
2

x 1

x 2

x 3

Orthogonal Regression

● λi = |n.(xi – a)|, where n is the unit normal to the
plane, and a is some fixed point on the plane

● Minimize Σ λi2 = Σi ||n.(xi – a)||2 = Σi yi
T n nT yi

 = Σi nT yi yi
T n

 = nT Σi(yi yi
T) n

 for ||n|| = 1

● Looks like the PCA problem! Given a, the yi 's are
fully defined and hence n is the eigenvector for
the smallest eigenvalue of Σi(yi yi

T)

Orthogonal Regression

● How to find a fixed point a on the optimal plane?
● Recall: we're minimizing E = Σ λi

2 = Σi yi
T (n nT) yi

● Take the gradient w.r.t. a

● The derivative is zero when ,
i.e. a is the centroid of the
points. This completes the definition of the plane.

RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Least-squares fit

RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Sample d points
at random

RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Fit model to sample

RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Check how much data
supports current
hypothesis (in this
case, very little)

RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Repeat for a new
sample (again no luck)

RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers

Third time lucky!

Challenge:
Setting the
acceptance
threshold
correctly

RANSAC
● RANdomized SAmple Consensus
● Advantage: Robust to outliers
● Popular for detecting planar regions in 3D scans
● Can be used for non-planar fitting as well (any

low-dimensional parametric model)

The Hough Transform

● “Fitting by voting”
● Each data point (or small sample of points) votes for all

models (here, planes) that it supports
● The vote is cast in the space of model parameters
● At the end, look for the (discretized) sets of model

parameters with large numbers of votes

The Hough Transform

● Example: Vote for all lines supported by a simple
dataset of 3 points

The Hough Transform

● The plot of all the votes in the space of lines
(parametrized by angle and distance from origin)

The Hough Transform

● A more complex example

The Hough Transform

● “Fitting by voting”
● Each data point (or small sample of points) votes for all

models (here, planes) that it supports
● The vote is cast in the space of model parameters
● At the end, look for the (discretized) sets of model

parameters with large numbers of votes

● Possible optimization for point clouds: at each
point, vote only for planes that are roughly aligned
with the estimated local normal

Thought for the Day #3

Why do techniques like RANSAC or the Hough
Transform not work well for models with a large

number of parameters?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

