
Meshes: Memory Formats
Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

flipcode

http://www.cse.iitb.ac.in/~cs749

Recap: Polygon Meshes

Vertices

Edges

Faces

● A mesh is a discrete sampling of a surface (vertices),
plus locally linear approximations (simple polygons)

● A mesh is a graph

Today

● How do we store a mesh?
● In RAM
● On disk

Closed/Open, Connected/Disconnected

● Closed: No boundary edges (adjacent to a single
face)

● Connected: Same definition (and algorithm) as for
a graph

These shapes are individually connected,
but not connected to each other

Closed Open

Manifold vs Non-Manifold

● A mesh is manifold if

1) Every edge is adjacent to 1 or 2 faces

2) The faces around every vertex
form a closed or open fan

Not
Manifold

Open fan

Closed fan

C.-K. Shene

Orientable vs Non-Orientable

● Two adjacent faces are compatible if their vertices
wind the same way (both counter-clockwise or
both clockwise) around their boundaries
● In other words, if their boundaries traverse the shared

edge in opposite directions

● A mesh is orientable if all pairs
of adjacent faces are compatible

Compatible

Not orientable

C.-K. Shene

Storing a mesh in RAM

● What might we need?
● Fast iteration (over vertices, faces, edges...)
● Fast graph traversal

– Jump from element to adjacent element, e.g. edge to
neighboring faces

● Stored attributes (normals, colors, texture coordinates,
features...)

● Efficient use of space
● Other considerations, e.g. caching adjacent elements in

nearby memory locations

A simple memory format
vertices = {

 { 0.0, 0.0, 0.0 },

 { 0.0, 0.0, 1.0 },

 { 0.0, 1.0, 0.0 },

 { 0.0, 1.0, 1.0 },

 { 1.0, 0.0, 0.0 },

 { 1.0, 0.0, 1.0 },

 { 1.0, 1.0, 0.0 },

 { 1.0, 1.0, 1.0 },

};

quads = {

 { 0, 2, 6, 4 },

 { 0, 1, 3, 2 },

 { 2, 3, 7, 6 },

 { 4, 6, 7, 5 },

 { 0, 4, 5, 1 },

 { 1, 5, 7, 3 },

};

References to
vertex list

1

3
2

7

6

5

4In practice, maybe a
vector<Vec3>

In practice, maybe a
vector<
 array<long, 4> >

A simple memory format

1

3
2

7

6

5
8

vertices = {

 { 0.0, 0.0, 0.0 },

 { 0.0, 0.0, 1.0 },

 { 0.0, 1.0, 0.0 },

 { 0.0, 1.0, 1.0 },

 { 1.0, 0.0, 0.0 },

 { 1.0, 0.0, 1.0 },

 { 1.0, 1.0, 0.0 },

 { 1.0, 1.0, 1.0 },

 { 2.0, 0.5, 0.5 },

};

quads = {

 { 0, 2, 6, 4 },

 { 0, 1, 3, 2 },

 { 2, 3, 7, 6 },

 { 4, 6, 7, 5 },

 { 0, 4, 5, 1 },

 { 1, 5, 7, 3 },

};

triangles = {

 { 7, 8, 6 },

 { 5, 8, 7 },

 { 4, 8, 5 },

 { 6, 8, 4 },

};

Pros and Cons
● Fast iteration, good for rendering

glBegin(GL_QUADS);
 for (size_t i = 0; i < quads.size(); ++i)
 for (size_t j = 0; j < 4; ++j) {
 Vec3 const & v = vertices[quads[i][j]];
 glVertex3f(v.x, v.y, v.z);
 }
glEnd();

● Directly maps to GPU vertex and index buffer formats

● Compact use of space
● Higher-degree polys are usually rare and can be stored in separate list

● Bad for traversal
● How would you go from a vertex to its neighbors?

● How would you go from a vertex to its adjoining faces?

(such as a vector< vector<long> >)

Adjacencies
● Let's explicitly store the graph structure

● Every vertex will store its incident faces and edges
● Every edge will store its two endpoints, and its

adjoining faces
● Every face will store its vertices and edges

class Vertex {
 Vec3 position;
 Vec3 normal;

 list<Face *> faces;
 list<Edge *> edges;
};

class Edge {
 double length;

 Vertex * endpoints[2];
 // ^^^ unordered

 list<Face *> faces;
};

class Face {
 Vec3 normal;

 // Invariant:
 // vertices[i] =
 // edges[i]->endpoint[0 or 1]
 list<Vertex *> vertices;
 list<Edge *> edges;
};(Constructors,

accessors and other
functions omitted) Mesh = [list<Vertex>, list<Edge>, list<Face>]

Pros and Cons
● Fast iteration

● … over any standard subset of elements (all vertices, or
vertices around a face, or edges at a vertex...)

● Great for traversal
● Can go from any element to its adjoining elements (of any

type) in O(1) time

● Ok use of space
● Typically a constant-factor overhead

● Such adjacency-heavy representations are good for
geometric algorithms

Analysis of storage overhead
● For a manifold surface

● Each edge has (at most) two adjacent faces
– … so #edge-face incidences ≤ 2E

● Number of vertices around a face = number of edges
around the face
– … so #vertex-face incidences ≤ 2E

● Each edge has two endpoints
– … so #edge-vertex incidences ≤ 2E

● So total overhead of the adjacency information = O(E)

– … = O(V + F), for small genus

Euler-Poincaré formula
● For a closed polygonal mesh with V vertices, E

edges and F faces

V – E + F = χ
● χ is the Euler characteristic of the surface

● For a closed, connected, orientable 2-manifold,
χ = 2(1 – g)

● g is the genus of the surface
– Number of holes/handles
– More formally, the number of cuttings along simple closed

loops on the surface that do not disconnect it

Euler Characteristic

greatlittleminds.com, Wikipedia

Platonic solids (and other convex
polyhedra): g = 0, χ = 2

Torus: g = 1, χ = 0

Triple torus: g = 3, χ = -4

Möbius strip: χ = 0

Klein bottle: χ = 0
Sphere: g = 0, χ = 2

Two spheres: χ = 4

Double torus: g = 2, χ =
-2

g = 0, χ = 2 (if you don't model the
alimentary canal)

Euler-Poincaré formula
● For a closed polygonal mesh with V vertices, E edges

and F faces, V – E + F = χ

● For small genus/characteristic, gives E ≈ V + F

● Consider a closed manifold mesh with only triangles
● Each edge borders two faces, each face borders 3 edges

– … so 2E = 3F

– … and plugging this into the formula, V = E/3 + χ

● Hence, the vertex, edge and face counts are all
(asymptotically) the same, for fixed characteristic
– O(V) = O(E) = O(F)

Space-efficient adjacencies

● Can we store adjacencies more efficiently?
● Yes! For manifold, orientable surfaces, we can store the

graph with a constant storage overhead per-element
(no arbitrary-size lists)

● … without changing the complexity of traversal

Half-Edge Data Structure
aka Winged Edge Data Structure, aka Doubly-Connected Edge List (DCEL)

● Only for manifold, orientable surfaces
● Instead of an edge, store two opposing half-edges linked to each other

● Every half-edge links to its twin

● For every vertex, store one half-edge exiting it
● The half-edge also links back to this source vertex

● For every face, store one half-edge on its boundary that traverses it
counter-clockwise
● The half-edge links back to this adjacent face
● … and also to the next half-edge along the boundary of the same face

class Vertex {
 Vec3 position;

 HalfEdge * half_edge;
};

class HalfEdge {
 HalfEdge * twin;
 HalfEdge * next;
 Vertex * source;
 Face * face;
};

class Face {
 HalfEdge * half_edge;
};

Traversal Building Blocks

● The tip of a half-edge E
● E→twin→source

● The boundary of a face
● Follow the next pointer

● From a face F to an adjacent face
● F→half_edge→twin→face

● All edges at a vertex V
● Start from V→half_edge, follow twin→next

● ...

Storing a mesh on disk

● OBJ: a simple and common file format
● Plain text, easy to hand-review and edit if needed
● Also see: OFF, PLY, STL

v 0.0 0.0 0.0
v 0.0 0.0 1.0
v 0.0 1.0 0.0
v 0.0 1.0 1.0
v 1.0 0.0 0.0
v 1.0 0.0 1.0
v 1.0 1.0 0.0
v 1.0 1.0 1.0

f 1 3 7 5
f 1 2 4 3
f 3 4 8 7
f 5 7 8 6
f 1 5 6 2
f 2 6 8 4

Vertex positions,
one per line

List of vertex indices for
each face, one face per line

(indices are 1-based)
(Many more tags not listed here, see
https://en.wikipedia.org/wiki/Wavefront_.obj_file
http://www.martinreddy.net/gfx/3d/OBJ.spec)

cube.obj

https://en.wikipedia.org/wiki/Wavefront_.obj_file
http://www.martinreddy.net/gfx/3d/OBJ.spec

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

