

Meshes: Memory Formats

Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

Recap: Polygon Meshes

- A mesh is a **discrete sampling** of a surface (vertices), plus **locally linear** approximations (simple polygons)
- A mesh is a graph

Today

- How do we **store** a mesh?
 - In RAM
 - On disk

Closed/Open, Connected/Disconnected

• **Closed**: No boundary edges (adjacent to a single face)

• **Connected**: Same definition (and algorithm) as for

a graph

These shapes are individually connected, but not connected to each other

Manifold vs Non-Manifold

- A mesh is manifold if
 - 1) Every edge is adjacent to 1 or 2 faces
 - 2) The faces around every vertex form a closed or open fan

Closed fan

Open fan

Not Manifold

Orientable vs Non-Orientable

- Two adjacent faces are compatible if their vertices wind the same way (both counter-clockwise or both clockwise) around their boundaries
 - In other words, if their boundaries traverse the shared edge in opposite directions
- A mesh is orientable if all pairs of adjacent faces are compatible

Not orientable

Compatible

Storing a mesh in RAM

- What might we need?
 - Fast iteration (over vertices, faces, edges...)
 - Fast graph traversal
 - Jump from element to adjacent element, e.g. edge to neighboring faces
 - Stored **attributes** (normals, colors, texture coordinates, features...)
 - Efficient use of **space**
 - Other considerations, e.g. caching adjacent elements in nearby memory locations

A simple memory format

vertices = { $\{ 0.0, 0.0, 0.0 \},\$ $\{ 0.0, 0.0, 1.0 \},\$ $\{ 0.0, 1.0, 0.0 \},\$ $\{ 0.0, 1.0, 1.0 \},\$ $\{ 1.0, 0.0, 0.0 \},\$ $\{ 1.0, 0.0, 1.0 \},\$ $\{ 1.0, 1.0, 0.0 \},\$ $\{ 1.0, 1.0, 1.0 \},\$ }; In practice, maybe a

vector<Vec3>

A simple memory format

vertices = {

 $\{1.0, 0.0, 1.0\}, \{1, 5, 7, 3\},\$ $\{1.0, 1.0, 0.0\}, \};$ $\{ 1.0, 1.0, 1.0 \},\$

 $\{2.0, 0.5, 0.5\},\$

quads = { triangles = { $\{0.0, 0.0, 0.0\}, \{0, 2, 6, 4\}, \{7, 8, 6\},\$ $\{0.0, 0.0, 1.0\}, \{0, 1, 3, 2\}, \{5, 8, 7\},$ $\{0.0, 1.0, 0.0\}, \{2, 3, 7, 6\}, \{4, 8, 5\},$ $\{0.0, 1.0, 1.0\}, \{4, 6, 7, 5\}, \{6, 8, 4\},\$ $\{1.0, 0.0, 0.0\}, \{0, 4, 5, 1\}, \};$

};

Pros and Cons

• Fast iteration, good for rendering

```
glBegin(GL_QUADS);
  for (size_t i = 0; i < quads.size(); ++i)
    for (size_t j = 0; j < 4; ++j) {
        Vec3 const & v = vertices[quads[i][j]];
        glVertex3f(v.x, v.y, v.z);
        }
glEnd();</pre>
```

- Directly maps to GPU vertex and index buffer formats
- Compact use of space
 - Higher-degree polys are usually rare and can be stored in separate list
- Bad for traversal

- (such as a vector< vector<long> >)
- How would you go from a vertex to its neighbors?
- How would you go from a vertex to its adjoining faces?

Adjacencies

- Let's explicitly store the graph structure
 - Every vertex will store its incident faces and edges
 - Every edge will store its two endpoints, and its adjoining faces
 - Every face will store its vertices and edges

```
class Vertex {
                         class Edge {
                                                      class Face {
                           double length;
                                                        Vec3 normal:
 Vec3 position;
 Vec3 normal;
                           Vertex * endpoints[2];
                                                       // Invariant:
                                 // ^^^ unordered
                                                       // vertices[i] =
  list<Face *> faces;
                                                            edges[i]->endpoint[0 or 1]
  list<Edge *> edges;
                                                        11
                                                        list<Vertex *> vertices;
};
                           list<Face *> faces:
                                                        list<Edge *> edges;
                         };
                                                      };
(Constructors.
accessors and other
                     Mesh = [ list<Vertex>, list<Edge>, list<Face> ]
functions omitted)
```

Pros and Cons

- Fast iteration
 - ... over any standard subset of elements (all vertices, or vertices around a face, or edges at a vertex...)
- Great for traversal
 - Can go from any element to its adjoining elements (of any type) in O(1) time
- Ok use of space
 - Typically a constant-factor overhead
- Such adjacency-heavy representations are good for geometric algorithms

Analysis of storage overhead

- For a manifold surface
 - Each edge has (at most) two adjacent faces
 - ... so #edge-face incidences $\leq 2E$
 - Number of vertices around a face = number of edges around the face

– ... so #vertex-face incidences $\leq 2E$

• Each edge has two endpoints

- ... so #edge-vertex incidences $\leq 2E$

• So total overhead of the adjacency information = O(E)

- ... = O(V + F), for small genus

Euler-Poincaré formula

• For a closed polygonal mesh with *V* vertices, *E* edges and *F* faces

$$V - E + F = \chi$$

- χ is the **Euler characteristic** of the surface
 - For a closed, connected, orientable 2-manifold, $\chi = 2(1 g)$
 - g is the **genus** of the surface
 - Number of holes/handles
 - More formally, the number of cuttings along simple closed loops on the surface that do not disconnect it

Euler Characteristic

greatlittleminds.com, Wikipedia

Euler-Poincaré formula

- For a closed polygonal mesh with V vertices, E edges and F faces, $V - E + F = \chi$
- For small genus/characteristic, gives $E \approx V + F$
- Consider a closed manifold mesh with only triangles
 - Each edge borders two faces, each face borders 3 edges
 - ... so 2E = 3F
 - ... and plugging this into the formula, $V = E/3 + \chi$
 - Hence, the vertex, edge and face counts are all (asymptotically) the same, for fixed characteristic

 $- O(\mathbf{V}) = O(E) = O(F)$

Space-efficient adjacencies

- Can we store adjacencies more efficiently?
 - Yes! For manifold, orientable surfaces, we can store the graph with a constant storage overhead *per-element* (no arbitrary-size lists)
 - ... without changing the complexity of traversal

Half-Edge Data Structure

aka Winged Edge Data Structure, aka Doubly-Connected Edge List (DCEL)

- Only for manifold, orientable surfaces
- Instead of an edge, store two opposing half-edges linked to each other
 - Every half-edge links to its twin
- For every vertex, store one half-edge exiting it
 - The half-edge also links back to this source vertex
- For every face, store one half-edge on its boundary that traverses it counter-clockwise
 - The half-edge links back to this adjacent face
 - ... and also to the next half-edge along the boundary of the same face

```
class Vertex {
    Vec3 position;
    HalfEdge * twin;
    HalfEdge * next;
    HalfEdge * half_edge;
    Vertex * source;
    Face * face;
    };

class Face {
    Class Face {
        HalfEdge * next;
        HalfEdge * next;
    };
```

Traversal Building Blocks

- The tip of a half-edge E
 - E→twin→source
- The boundary of a face
 - Follow the next pointer
- From a face F to an adjacent face
 - F→half_edge→twin→face
- All edges at a vertex V
 - Start from V→half_edge, follow twin→next

Storing a mesh on disk

- OBJ: a simple and common file format
 - Plain text, easy to hand-review and edit if needed
 - Also see: OFF, PLY, STL

Vertex positions, one per line

List of vertex indices for each face, one face per line (indices are 1-based)

cube.obj

V	0.0	0.0	0.0	
V	0.0	0.0	1.0	
V	0.0	1.0	0.0	
V	0.0	1.0	1.0	
V	1.0	0.0	0.0	
V	1.0	0.0	1.0	
V	1.0	1.0	0.0	
V	1.0	1.0	1.0	
f	1 3	7	5	
f	1 2	4	3	
f	3 4	8	7	
f	57	8	6	
f	1 5	6	2	
f	2 6	8	4	

(Many more tags not listed here, see https://en.wikipedia.org/wiki/Wavefront_.obj_file http://www.martinreddy.net/gfx/3d/OBJ.spec)