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Recap: Polygon Meshes

Vertices

Edges

Faces

● A mesh is a discrete sampling of a surface (vertices), 
plus locally linear approximations (simple polygons)

● A mesh is a graph



Today

● How do we store a mesh?
● In RAM
● On disk



Closed/Open, Connected/Disconnected

● Closed: No boundary edges (adjacent to a single 
face)

● Connected: Same definition (and algorithm) as for 
a graph

These shapes are individually connected, 
but not connected to each other

Closed Open



Manifold vs Non-Manifold

● A mesh is manifold if

1) Every edge is adjacent to 1 or 2 faces

2) The faces around every vertex
form a closed or open fan

Not 
Manifold

Open fan

Closed fan

C.-K. Shene 



Orientable vs Non-Orientable

● Two adjacent faces are compatible if their vertices 
wind the same way (both counter-clockwise or 
both clockwise) around their boundaries
● In other words, if their boundaries traverse the shared 

edge in opposite directions

● A mesh is orientable if all pairs
of adjacent faces are compatible

Compatible

Not orientable

C.-K. Shene 



Storing a mesh in RAM

● What might we need?
● Fast iteration (over vertices, faces, edges...)
● Fast graph traversal

– Jump from element to adjacent element, e.g. edge to 
neighboring faces

● Stored attributes (normals, colors, texture coordinates, 
features...)

● Efficient use of space
● Other considerations, e.g. caching adjacent elements in 

nearby memory locations



A simple memory format
vertices = {

  { 0.0, 0.0, 0.0 },

  { 0.0, 0.0, 1.0 },

  { 0.0, 1.0, 0.0 },

  { 0.0, 1.0, 1.0 },

  { 1.0, 0.0, 0.0 },

  { 1.0, 0.0, 1.0 },

  { 1.0, 1.0, 0.0 },

  { 1.0, 1.0, 1.0 },

};

quads = {

  { 0, 2, 6, 4 },

  { 0, 1, 3, 2 },

  { 2, 3, 7, 6 },

  { 4, 6, 7, 5 },

  { 0, 4, 5, 1 },

  { 1, 5, 7, 3 },

};

References to 
vertex list
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4In practice, maybe a  
vector<Vec3>

In practice,  maybe a  
vector<
  array<long, 4> >



A simple memory format
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vertices = {

  { 0.0, 0.0, 0.0 },

  { 0.0, 0.0, 1.0 },

  { 0.0, 1.0, 0.0 },

  { 0.0, 1.0, 1.0 },

  { 1.0, 0.0, 0.0 },

  { 1.0, 0.0, 1.0 },

  { 1.0, 1.0, 0.0 },

  { 1.0, 1.0, 1.0 },

  { 2.0, 0.5, 0.5 },

};

quads = {

  { 0, 2, 6, 4 },

  { 0, 1, 3, 2 },

  { 2, 3, 7, 6 },

  { 4, 6, 7, 5 },

  { 0, 4, 5, 1 },

  { 1, 5, 7, 3 },

};

triangles = {

  { 7, 8, 6 },

  { 5, 8, 7 },

  { 4, 8, 5 },

  { 6, 8, 4 },

};



Pros and Cons
● Fast iteration, good for rendering

glBegin(GL_QUADS);
  for (size_t i = 0; i < quads.size(); ++i)
    for (size_t j = 0; j < 4; ++j) {
      Vec3 const & v = vertices[quads[i][j]];
      glVertex3f(v.x, v.y, v.z);
    }
glEnd();

● Directly maps to GPU vertex and index buffer formats

● Compact use of space
● Higher-degree polys are usually rare and can be stored in separate list

● Bad for traversal
● How would you go from a vertex to its neighbors?

● How would you go from a vertex to its adjoining faces?

(such as a vector< vector<long> >)



Adjacencies
● Let's explicitly store the graph structure

● Every vertex will store its incident faces and edges
● Every edge will store its two endpoints, and its 

adjoining faces
● Every face will store its vertices and edges

class Vertex {
  Vec3 position;
  Vec3 normal;

  list<Face *> faces;
  list<Edge *> edges;
};

class Edge {
  double length;

  Vertex * endpoints[2];
        // ^^^ unordered

  list<Face *> faces;
};

class Face {
  Vec3 normal;

  // Invariant:
  // vertices[i] = 
  //   edges[i]->endpoint[0 or 1]
  list<Vertex *> vertices;
  list<Edge *> edges;
};(Constructors, 

accessors and other 
functions omitted) Mesh = [ list<Vertex>, list<Edge>, list<Face> ]



Pros and Cons
● Fast iteration

● … over any standard subset of elements (all vertices, or 
vertices around a face, or edges at a vertex...)

● Great for traversal
● Can go from any element to its adjoining elements (of any 

type) in O(1) time

● Ok use of space
● Typically a constant-factor overhead

● Such adjacency-heavy representations are good for 
geometric algorithms



Analysis of storage overhead
● For a manifold surface

● Each edge has (at most) two adjacent faces
– … so #edge-face incidences ≤ 2E

● Number of vertices around a face = number of edges 
around the face
– … so #vertex-face incidences ≤ 2E

● Each edge has two endpoints
– … so #edge-vertex incidences ≤ 2E

● So total overhead of the adjacency information = O(E)

– … = O(V + F), for small genus



Euler-Poincaré formula
● For a closed polygonal mesh with V vertices, E 

edges and F faces

V – E + F = χ
● χ is the Euler characteristic of the surface

● For a closed, connected, orientable 2-manifold, 
χ = 2(1 – g)

● g is the genus of the surface
– Number of holes/handles
– More formally, the number of cuttings along simple closed 

loops on the surface that do not disconnect it



Euler Characteristic

greatlittleminds.com, Wikipedia

Platonic solids (and other convex 
polyhedra): g = 0, χ = 2

Torus: g = 1, χ = 0

Triple torus: g = 3, χ = -4

Möbius strip: χ = 0

Klein bottle: χ = 0
Sphere: g = 0, χ = 2

Two spheres: χ = 4

Double torus: g = 2, χ = 
-2

g = 0, χ = 2 (if you don't model the 
alimentary canal)



Euler-Poincaré formula
● For a closed polygonal mesh with V vertices, E edges 

and F faces, V – E + F = χ

● For small genus/characteristic, gives E ≈ V + F

● Consider a closed manifold mesh with only triangles
● Each edge borders two faces, each face borders 3 edges

– … so 2E = 3F

– … and plugging this into the formula, V = E/3 + χ

● Hence, the vertex, edge and face counts are all 
(asymptotically) the same, for fixed characteristic
– O(V) = O(E) = O(F)



Space-efficient adjacencies

● Can we store adjacencies more efficiently?
● Yes! For manifold, orientable surfaces, we can store the 

graph with a constant storage overhead per-element 
(no arbitrary-size lists)

● … without changing the complexity of traversal



Half-Edge Data Structure
aka Winged Edge Data Structure, aka Doubly-Connected Edge List (DCEL)

● Only for manifold, orientable surfaces
● Instead of an edge, store two opposing half-edges linked to each other

● Every half-edge links to its twin

● For every vertex, store one half-edge exiting it
● The half-edge also links back to this source vertex

● For every face, store one half-edge on its boundary that traverses it 
counter-clockwise
● The half-edge links back to this adjacent face
● … and also to the next half-edge along the boundary of the same face

class Vertex {
  Vec3 position;

  HalfEdge * half_edge;
};

class HalfEdge {
  HalfEdge * twin;
  HalfEdge * next;
  Vertex * source;
  Face * face;
};

class Face {
  HalfEdge * half_edge;
};



Traversal Building Blocks

● The tip of a half-edge E
● E→twin→source

● The boundary of a face
● Follow the next pointer

● From a face F to an adjacent face
● F→half_edge→twin→face

● All edges at a vertex V
● Start from V→half_edge, follow twin→next

● ...



Storing a mesh on disk

● OBJ: a simple and common file format
● Plain text, easy to hand-review and edit if needed
● Also see: OFF, PLY, STL

v  0.0  0.0  0.0
v  0.0  0.0  1.0
v  0.0  1.0  0.0
v  0.0  1.0  1.0
v  1.0  0.0  0.0
v  1.0  0.0  1.0
v  1.0  1.0  0.0
v  1.0  1.0  1.0

f  1  3  7  5
f  1  2  4  3 
f  3  4  8  7 
f  5  7  8  6
f  1  5  6  2
f  2  6  8  4

Vertex positions, 
one per line

List of vertex indices for 
each face, one face per line

(indices are 1-based)
(Many more tags not listed here, see
https://en.wikipedia.org/wiki/Wavefront_.obj_file
http://www.martinreddy.net/gfx/3d/OBJ.spec )

cube.obj

https://en.wikipedia.org/wiki/Wavefront_.obj_file
http://www.martinreddy.net/gfx/3d/OBJ.spec
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