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Recap: Implicit Function Approach

e Define a function with
positive values inside the
model and negative
values outside
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Recap: Implicit Function Approach

e Define a function with
positive values inside the
model and negative
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e Extract the zero-set
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Recap: Key |ldea

e Reconstruct the surface of the model by solving
for the indicator function of the shape

f

1 if peM

In practice, we define the indicator function
to be -1/2 outside the shape and 1/2 inside, so
that the surface Is the zero level set. We also
smooth the function a little, so that the zero Aum

set Is well defined.

Indicator function
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Recap: Challenge

e How to construct the indicator function?

Oriented points Indicator function
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Recap: Gradient Relationship

* There is a relationship between the normal field at
the shape boundary, and the gradient of the
(smoothed) indicator function
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Operators

e Let'slook at a 1D function f: R - R

It has a first derivative given by

d , fix+h)—f(x
U, L
e ... a second derivative, and a third...
ﬂ — iif ﬁ _dd df
dx’ dx dx dx’ dx dx dx

d . . . .
* 7. Is a general operation mapping functions to

functions: it's called an operator

d

* In fact, it's a linear operator: Y
X

d
d_x(f+g> = af +



Variational Calculus

* Imagine we didn't know f, but we did know its

derivative g = Z—i

* Solving for f is, obviously, integration

f=JLax = [ gax

» But what if g Is not analytically integrable?

 Then we can look for approximate solutions, drawn
from some parametrized family of candidate functions



Variational Calculus

e Assume we have a family of functions F

e Let's minimize the mean squared approximation
error over some interval Q and functions f € F

minimize fQ

ar
dx

2

dx



Euler-Lagrange Formulation

* Euler-Lagrange equation: Stationary points
(minima, maxima etc) of a functional of the form

J o LOx,f(x),f(x))dx

— (x)=d

dx

are obtained as solutions f to the PDE

0L d OL — 0
of dx Of "'




Euler-Lagrange Formulation

e Euler-Lagrange equation: or " axap O

* In our case, L = (f '(x) — g(x))*, so
oL 0L

Loo 2L a(9gle)
d OL o ,
e = )=g'n)

» Substituting, we get (a case of) the 1D Poisson

equation:
fri= g d°f _ dg
- 9 or I dx



Link to Linear Least Squares

e Here, we want to minimize fg(f'(x)—g(x))zdx and
end up having to solve

d d d

dxax! T X9

l.e. the two sides are equal at all points x

» Let's try to discretize this!

« Sample n consecutive points {x;} from Q
— Assume (for simplicity) they're evenly spaced, so x;,;,—x;,=h

* We want to minimize X, (f '(x,) - g(x,))’



Link to Linear Least Squares

function

0

e -
1

Discrete
approximation NS

1 2 3 4 5 6 7 8 9 10 N 12 13 14

* The derivative at x; can be approximated as

' y fi+1_fi _l_ fl
frlx) ~ =5 — = h{ 1 ﬂfm_

where f; I1s shorthand for f (x))




Link to Linear Least Squares

e ... and all the derivatives can be listed in one big matrix
multiplication: A f =g, where

1 1 0 - 0 0 f, g,
0 -1 1 - 0 0 f, 7,
A = % S0 100 gy, e=|9.
0 0 1 1 ; E
0 o -- 0 -1 f, d.

e f and g are discrete approximations of continuous
functions f and g, and A Is a discrete approximation for

: L d
the continuous derivative operator E!



Flashback

* Need to solve set of equations Af = g in a least squares
sense

minimize ||r|]? = ||g — Af]|?
 The directional derivative in direction 6f is
V||r||? . of = 26f'(A'g — A'Af)

e The minimum i1s achieved when all directional derivatives
are zero, giving the normal equations

A'Af=A'g
* Thought for the (Previous) Day: Compare this equation
to the Poisson equation



Link to Linear Least Squares

 Linear Least Squares: The f that minimizes
|Af - g||* is the solution of A'Af=A'g

e Euler-Lagrange: The f that minimizes

S . d d d
f df(x)— dx 1s a solution of ——f = —¢
Q\ dx

g(x) dx dx dx

. . . . d
* Knowing that A Is the discrete version of —-,

everything lines up except for the transpose bit

e How do we reconcile this?



Link to Linear Least Squares

* The derivative at x; can also be approximated as

N fi—1fi_s _ l[—l 11 fios

! Xl
... and derivatives at all x; as Bf, where

1 0 0 0 0

-1 1 0 0 0

1 -1 1 0 0

B =—

; .

0 0 1 0

0 0 -1 1

... which is just —A" !

» Can rewrite normal equations as (-A")Af = (-A")g



Uniqueness of Solutions

* The discrete operator A we constructed is full-rank
(invertible), and gives a unique solution A'g for f

e But the corresponding continuous problem has multiple
solutions (e.g. if fis a solution, (f + constant) is also a
solution)

» Explanation: Af =g implicitly imposes the boundary
condition f, = —g_  (see the last row of the matrix)

* In higher dimensions, the operator matrix A is non-square
(maps scalar field to vector field) and not invertible. The
system Is overdetermined and we seek least-squares solutions



Discrete Second Derivative

e Multiplying the matrices, we get the discrete
second derivative operator (the 1D Laplacian)

If you actually do the multiplication, this term is -1
and not -2. This is because our discretization does
not correctly model the derivative at the end of the

range. If you swap the matrices, the discrepancy }|||_2 1 0 e 0
occurs in the last element of the product instead.
1 -2 1 - 0
d _ d d r 1 1 -2 0
— = ——— discretizedto (—A )A = —
dx2 dx dx ( ) h2
0O O —2
0O O 1

... which is the same as the Taylor series
approximation for the second derivative




In higher dimensions

* We have a function f: R” - R"
 Differential operators (in 3D):

e Gradient (of scalar-valued function): V=

of of of
O0x' 0y 0z

ov, 8V 6V

. D|vergence (of vector-valued function): V.V =
0 X 8y 0z

» Laplacian (of scalar-valued function): Af=V-V f= o f 0 f o'f

0% oy’ Yo



In higher dimensions
* We have a function f: R” - R"

e We can discretize the domain as before, and obtain

discrete analogues of the gradient V (A), divergence V-
(-A") and Laplacian A = (V-)V (-A'A)

* Note that the gradient and divergence matrices are no
longer square (more on this next class)

P . B

O E i

_ __(i—w/2)-(y—h/2)
F(x,y)=xy Flrl1= (w/2)-(h/2)

Misha Kazhdan



Takeaway

e A continuous variational problem can be approximated
by a discrete one

e Continuous function = Discrete vector of values
» Continuous operator = Discrete matrix
* Function composition = Matrix multiplication

o Euler-Lagrange solution = Linear Least Squares

» Rest of this class: Overview of the pipeline of Poisson
surface reconstruction

* Next class: The Galerkin approximation for recovering
a continuous function from the discrete setup



Implementation

Iven the Points:
Given the Points \.\.L\.l}gL,
e Set octree \.\>'\° .f;
e Compute vector field \ . i\.\' 'ﬁ}?:\_
e Compute indicator function e .':“
e Extract iso-surface ~ -
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Implementation: Adaptive Octree

Given the Points:

e Set octree ﬁéJr n
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Implementation: Vector Field

Given the Points:

e Compute vector field

e Define a function space
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Implementation: Vector Field

Given the Points:

e Compute vector field

e Define a function space
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Implementation: Vector Field

Given the Points:

e Compute vector field \y

e Splat the samples
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Implementation: Vector Field

Given the Points:

e Compute vector field

e Splat the samples
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Implementation: Vector Field

Given the Points:

e Compute vector field j_tt

e Splat the samples
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Implementation: Vector Field

Given the Points:

. |44 IJJ R =
e Compute vector field 3
° :“_ 5 v i[e[
» Splat the samples = I3

Slides adapted from Kazhdan, Bolitho and Hoppe



Implementation: Indicator Function

Given the Points:

e Compute indicator function

 Compute divergence
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Implementation: Indicator Function

Given the Points:

e Compute indicator function

* Solve Poisson equation




Implementation: Indicator Function

Given the Points:

e Compute indicator function

* Solve Poisson equation

»N




Implementation: Surface Extraction

Given the Points:

e Extract iso-surface
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