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Recap: Implicit Function Approach

● Define a function with 
positive values inside the 
model and negative 
values outside
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Recap: Key Idea

● Reconstruct the surface of the model by solving 
for the indicator function of the shape

χM ( p )={1 if p∈M
0 if p∉M

M

Indicator function

0 0

0
0

0

1

1

1
In practice, we define the indicator function

to be -1/2 outside the shape and 1/2 inside, so
that the surface is the zero level set. We also
smooth the function a little, so that the zero

set is well defined.
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Recap: Challenge

● How to construct the indicator function?

M

Indicator functionOriented points
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Recap: Gradient Relationship
● There is a relationship between the normal field at 

the shape boundary, and the gradient of the 
(smoothed) indicator function

Oriented points

M
Indicator gradient

0 0

0

0

0

0
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Operators

● Let's look at a 1D function f : ℝ → ℝ
● It has a first derivative given by

● … a second derivative,                and a third...

●      is a general operation mapping functions to 
functions: it's called an operator
● In fact, it's a linear operator: 

df
dx

 =  limh→0

f (x+h)−f (x)
h

d2 f
dx2  =  

d
dx

d
dx

f

d
dx

d3 f
dx3  =  

d
dx

d
dx

d
dx

f

d
dx

( f +g)  =  
d
dx

f  +  
d
dx

g



Variational Calculus

● Imagine we didn't know f, but we did know its 
derivative g =

● Solving for f is, obviously, integration

● But what if g is not analytically integrable?
● Then we can look for approximate solutions, drawn 

from some parametrized family of candidate functions

df
dx

f  =  ∫ df
dx

dx  =  ∫ g dx



Variational Calculus

● Assume we have a family of functions F
● Let's minimize the mean squared approximation 

error over some interval Ω and functions f  ∈ F

minimize  ∫Ω|df
dx

−g|
2

dx



Euler-Lagrange Formulation

● Euler-Lagrange equation: Stationary points 
(minima, maxima etc) of a functional of the form

are obtained as solutions f to the PDE

∫
Ω

L(x , f (x) , f ' (x ))dx

∂ L
∂ f

 − 
d
dx

∂ L
∂ f '

 = 0

f ' (x)=
df
dx



Euler-Lagrange Formulation

● Euler-Lagrange equation:
● In our case, L = (f '(x) – g(x))2, so

● Substituting, we get (a case of) the 1D Poisson 
equation:

or

∂ L
∂ f

 −  
d

dx
∂ L
∂ f '

 =  0

∂ L
∂ f

 =  0 ∂ L
∂ f '

 =  2(f ' (x)−g (x ))

d
dx

∂ L
∂ f '

 =  2( f ' ' (x )−g '(x ))

f ' '  =  g'
d2 f
dx2  =  

dg
dx



Link to Linear Least Squares

● Here, we want to minimize                            and 
end up having to solve

i.e. the two sides are equal at all points x
● Let's try to discretize this!

● Sample n consecutive points {xi} from Ω
– Assume (for simplicity) they're evenly spaced, so xi + 1 – xi = h

● We want to minimize Σi (f '(xi) - g(xi))2

d
dx

d
dx

f  =  
d
dx

g

∫Ω
( f ' (x)−g (x))2 dx



Link to Linear Least Squares

● The derivative at xi can be approximated as

where fi is shorthand for f (xi)

Continuous 
function

Discrete 
approximation

0 1

  1     2     3    4     5    6     7     8    9    10    11    12    13    14

f ' (xi)  ≈  
f i+1−f i

h
 =  

1
h

[−1 1 ] [ f i

f i+1
]



Link to Linear Least Squares

● … and all the derivatives can be listed in one big matrix 
multiplication: A f = g, where

● f and g are discrete approximations of continuous 
functions f and g, and A is a discrete approximation for 
the continuous derivative operator     !

f=[
f 1

f 2

f 3

⋮
⋮
f n

] g=[
g1

g2

g3

⋮
⋮
gn

]
d
dx

A  =  
1
h [

−1 1 0 ⋯ 0 0
0 −1 1 ⋯ 0 0

 0 −1 ⋯ 0 0
⋮   ⋱  ⋮
0 0   −1 1
0 0 ⋯  0 −1

]



Flashback
● Need to solve set of equations Af = g in a least squares 

sense

minimize ||r||2 = ||g – Af||2

● The directional derivative in direction δf is

∇||r||2 . δf = 2δfT(ATg – ATAf)

● The minimum is achieved when all directional derivatives 
are zero, giving the normal equations

ATAf = ATg

● Thought for the (Previous) Day: Compare this equation 
to the Poisson equation



Link to Linear Least Squares

● Linear Least Squares: The f that minimizes
||Af - g||2 is the solution of ATAf = ATg

● Euler-Lagrange: The f that minimizes

                          is a solution of

● Knowing that A is the discrete version of     , 
everything lines up except for the transpose bit
● How do we reconcile this?

∫
Ω ( df

dx
(x )−g(x))

2

dx
d
dx

d
dx

f  =  
d
dx

g

d
dx



Link to Linear Least Squares

● The derivative at xi can also be approximated as

… and derivatives at all xi as B f, where

… which is just –AT !
● Can rewrite normal equations as (–AT)Af = (–AT)g 

B  =  
1
h [

1 0 0 ⋯ 0 0
−1 1 0 ⋯ 0 0
 −1 1 ⋯ 0 0
⋮   ⋱  ⋮
0 0   1 0
0 0 ⋯  −1 1

]

f ' (xi)  ≈  
f i−f i−1

h
 =  

1
h

[−1 1 ] [ f i−1

f i
]



Uniqueness of Solutions
● The discrete operator A we constructed is full-rank 

(invertible), and gives a unique solution A-1g for f
● But the corresponding continuous problem has multiple 

solutions (e.g. if f is a solution, (f + constant) is also a 
solution)

● Explanation: Af = g implicitly imposes the boundary 
condition fn = –gn  (see the last row of the matrix)
● In higher dimensions, the operator matrix A is non-square 

(maps scalar field to vector field) and not invertible. The 
system is overdetermined and we seek least-squares solutions



Discrete Second Derivative

● Multiplying the matrices, we get the discrete 
second derivative operator (the 1D Laplacian)

… which is the same as the Taylor series 
approximation for the second derivative

d2

dx2  =  
d
dx

d
dx

    discretized to    (−AT
) A  =  

1

h2 [
−2 1 0 ⋯ 0 0
1 −2 1 ⋯ 0 0

 1 −2 ⋯ 0 0
⋮   ⋱  ⋮
0 0   −2 1
0 0 ⋯  1 −2

]
If you actually do the multiplication, this term is -1 
and not -2. This is because our discretization does 
not correctly model the derivative at the end of the 
range. If you swap the matrices, the discrepancy 
occurs in the last element of the product instead.



In higher dimensions

● We have a function f : ℝp → ℝq

● Differential operators (in 3D):

● Gradient (of scalar-valued function):

● Divergence (of vector-valued function):

● Laplacian (of scalar-valued function): 

∇ f =( ∂ f
∂ x

,
∂ f
∂ y

,
∂ f
∂ z )

∇⋅V=
∂V x

∂ x
+

∂V y

∂ y
+

∂V z

∂ z

Δ f =∇⋅∇ f =
∂

2 f
∂ x2 +

∂
2 f

∂ y2 +
∂

2 f
∂ z2



In higher dimensions
● We have a function f : ℝp → ℝq

● We can discretize the domain as before, and obtain 
discrete analogues of the gradient ∇ (A), divergence ∇· 
(-AT) and Laplacian ∆ = (∇·)∇  (-ATA)

● Note that the gradient and divergence matrices are no 
longer square (more on this next class)

Misha Kazhdan



Takeaway

● A continuous variational problem can be approximated 
by a discrete one
● Continuous function  Discrete → vector of values
● Continuous operator  Discrete → matrix
● Function composition  Matrix → multiplication
● Euler-Lagrange solution  → Linear Least Squares

● Rest of this class: Overview of the pipeline of Poisson 
surface reconstruction

● Next class: The Galerkin approximation for recovering 
a continuous function from the discrete setup



Given the Points:
● Set octree
● Compute vector field
● Compute indicator function
● Extract iso-surface

Implementation
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Given the Points:
● Set octree
● Compute vector field
● Compute indicator function
● Extract iso-surface
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