Kazhdan, Bolitho and Hoppe

Poisson Surface Reconstruction 3/3
Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

http://www.cse.iitb.ac.in/~cs749

Recap of differential operators (in 3D)

* Gradient (of scalar-valued function): V= 6f,8f ,61‘
I Ox 0y 0z
* In operator form: V= ox’ 3y’ 0z

* Maps scalar field to vector field

Scalar fields (black: high, white: low) and their gradients (blue arrows)

|

Wikipedia

Recap of differential operators (in 3D)

e Divergence (of vector-valued function):

ov, ov,6 dV,
= + +
ox 0y 0z

Vv

e Maps vector field to scalar field

AN % / / N
N/ /TN
—— =] i1
/1\. N,/

/ | N\ N 7

Has divergence Divergence-free

Recap of differential operators (in 3D)

e Curl (of vector-valued function):

0 0 O
0x 0y 0z

VXV= x(V,,V,,V,)

e Maps vector field to vector field

(a) T () -—

Not LSS N
N/ TN
—— = 1| 1

/1\. N,/
/1\

Curl-free Has curl

Recap of differential operators (in 3D)

* Laplacian (of scalar-valued function): A= V-VI =

O, &'f, &f

* In operator form: ox’ 0y° 07"
A=| O O &
ox> 0y 0z’

* Maps scalar field to scalar field

Original function After applying Laplacian

Recap

* The boundary of a shape is a level set of its
Indicator function y

* The gradient Vy of y Is the normal field V at the
boundary (after some smoothing which we won't go into here)

* We can solve for y by integrating the normal field

e ... but in general, we can't get an exact solution
since an arbitrary vector field need not be the
gradient of a function (field needs to be curl-free)

* So we find a least-squares fit, minimizing ||[Vy — V|]?

Recap

* 5o we find a least-squares fit, minimizing ||Vy — V]|?
* This reduces to solving the Poisson Equation
ViVxI=VV o Ax=V-V
* We can discretize the system by representing the
functions as vectors of values at sample points

» Gradient, divergence and Laplacian operators become
matrices

* Solving the resulting linear system gives a least
squares fit at the sample positions

Why can't we solve It exactly?

* Over a non-loop 1D range (which we studied closely),
this isn't very useful - the gradient% Is invertible by

Integration and we can solve the system Z—X:V exactly
X

* We can also do this in the discrete setting - the
corresponding operator matrix Is invertible

* Butin 2 and higher dimensions, the gradient is not
invertible, and neither Is its operator matrix

» Gradient maps scalar field to vector field: intuitively,
“lower-dimensional” to “higher-dimensional”

e |n 1D, scalars and vectors are the same

Non-invertibility of k-D continuous operators

* A vector field (over a simply-connected region) Is the
gradient of a scalar function if and only If it Is
curl-free (has no circulation about any point)

* |n other words, we can solve Vy = IV (over a simply-
connected region) If and only If VxJ'=0
4

 If the region is not simply-
connected, even this may
not be enough

Curl-free

Not curl-free

Non-invertibility of k-D discrete operators

kn rows

\.

\%

(k-D discrete
gradient)

n columns

/

n rows

A\

Overdetermined

kn rows

(1 row for each
coordinate of
each point)

Non-invertibility of k-D discrete operators

-) (\ kn rows
V' (1 row for each
1 rows coordinate of r N\
(k-D discrete each point)
divergence)
~ a4 — O | 1rows
kn columns
\. J

\ } Underdetermined

Thought for the Day #1

What about the Laplacian? Is it invertible?

n rows

N

V-V

(k-D discrete
Laplacian)

n columns

|s this over- or under-determined?

/

n rows

n rows

What we have so far

* Transform continuous variational problems to
discrete linear algebra problems

* Solve In a least squares sense, since the problem
Is overdetermined in higher dimensions

e BUT: the results are also discrete: the values of
the function fat the sampled points

e Solution: A different type of discretization

Galerkin Approximation

e Restrict the solution space F to weighted sums of
basis functions, 1.e. F= { >, w, B, }, for some set
of functions B,, B,... B,

 Why? Allows us to discretize the problem in terms
of the m-D vector of weights

* We will choose functions that are locally supported

e ... l.e. each f;1s non-zero only around some local region
of space

* This keeps the resulting linear system sparse

Basis Functions with Local Support

e A finite element mode

e Discretize space into cells, then define a basis
function centered around each cell

X. X.

1 j+1

Instead of values at points, we now have values locally around points

Basis Functions with Local Support

:1‘/_
L\ ’(%

s
.___
e
pod
s
4
|

77?'/'7;-.?

.f?,o.

®

il

7
o '411%
.\

A potential grid of cells.

Basis Functions with Local Support

A single basis function, centered at a grid
cell but overlapping adjacent cells

Basis Functions with Local Support

'\li I

e

e &

SN Y
o
e S
Sty ST e &

=8 =]

B AN

A potential grid of cells.
Problem: Not enough detail where it's needed (boundary), too much
detail where it's not (empty space or interior)

Basis Functions with Local Support

|| I
e T T AT iy
N 'Illlu'lrllllll

|
A H
|

W THA

A hierarchical, adaptive grid (octree).

Puts resolution where it matters. One basis function per octree cell.

Projecting to the Finite Basis

e Assume we want to reconstruct the function over
range Q (e.g. [0, 1] in 1D, or [0, 1]3 in 3D)

* The original Poisson problem is Ay=V-1

e BUT: since we've now restricted our solutions to
the space spanned by {B,}, this equation may not
have an exact solution!

* Solution: Least squares to the rescue again!

Projecting to the Finite Basis

e Solve: Ay=V'V for yeF

* To find the best solution within the space spanned
by the basis, we minimize the sum of squared
projections onto the basis functions

Z:n—l <AX_V'V’Bi>§z

where (f,B)=J_f(x)B(x)doc measures the
projection of function f onto basis function B,

Projecting to the Finite Basis

* Minimize: 3" (Ax-V-v,B}
= > | ax.B)~V-V,B [

o (skipping some algebra) This amounts to
minimizing ||[Lw — v||?, where

O)
2 2 2 Wl
0’B 0°B. &*B.
Li' — ,B. |+ ,B. |+ ,B. W2
J J 2 J 2 J
0X oy 0z W =
A4
Mostly zero, since most
Vi = <V -V, Bi> pairs of basis functions \Wm/
don't overlap

Assignment 1: Point Clouds

e Given:

* Point cloud class + display functions

 Utility toolkit with lots of useful code
* Todo:

e Estimate the normal at each point

— Construct a kd-tree for range queries

— Apply regression or any other suitable method over local
neighborhoods

— Extra credit: Ensure they are consistently oriented
— Extra credit: Handle sharp edges correctly

— Extra credit: Adaptively downsample the point cloud: reduce #points in
flat regions with similar normals

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

