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Recap of differential operators (in 3D)

* Gradient (of scalar-valued function): V= 6f,8f ,61‘
I Ox 0y 0z
* In operator form: V= ox’ 3y’ 0z

* Maps scalar field to vector field

Scalar fields (black: high, white: low) and their gradients (blue arrows)

|

Wikipedia



Recap of differential operators (in 3D)

e Divergence (of vector-valued function):

ov, ov,6 dV,
= + +
ox 0y 0z

Vv

e Maps vector field to scalar field
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Recap of differential operators (in 3D)

e Curl (of vector-valued function):

0 0 O
0x 0y 0z

VXV= x(V,,V,,V,)

e Maps vector field to vector field
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Curl-free Has curl



Recap of differential operators (in 3D)

* Laplacian (of scalar-valued function): A= V-VI =

O, &'f, &f

* In operator form: ox’ 0y° 07"
A=| O O &
ox> 0y 0z’

* Maps scalar field to scalar field

Original function After applying Laplacian



Recap

* The boundary of a shape is a level set of its
Indicator function y

* The gradient Vy of y Is the normal field V at the
boundary (after some smoothing which we won't go into here)

* We can solve for y by integrating the normal field

e ... but in general, we can't get an exact solution
since an arbitrary vector field need not be the
gradient of a function (field needs to be curl-free)

* So we find a least-squares fit, minimizing ||[Vy — V|]?



Recap

* 5o we find a least-squares fit, minimizing ||Vy — V]|?
* This reduces to solving the Poisson Equation
ViVxI=VV o Ax=V-V
* We can discretize the system by representing the
functions as vectors of values at sample points

» Gradient, divergence and Laplacian operators become
matrices

* Solving the resulting linear system gives a least
squares fit at the sample positions



Why can't we solve It exactly?

* Over a non-loop 1D range (which we studied closely),
this isn't very useful - the gradient% Is invertible by

Integration and we can solve the system Z—X:V exactly
X

* We can also do this in the discrete setting - the
corresponding operator matrix Is invertible

* Butin 2 and higher dimensions, the gradient is not
invertible, and neither Is its operator matrix

» Gradient maps scalar field to vector field: intuitively,
“lower-dimensional” to “higher-dimensional”

e |n 1D, scalars and vectors are the same



Non-invertibility of k-D continuous operators

* A vector field (over a simply-connected region) Is the
gradient of a scalar function if and only If it Is
curl-free (has no circulation about any point)

* |n other words, we can solve Vy = IV (over a simply-
connected region) If and only If VxJ'=0
4

 If the region is not simply-
connected, even this may
not be enough

Curl-free

Not curl-free




Non-invertibility of k-D discrete operators
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Overdetermined

kn rows

(1 row for each
coordinate of
each point)



Non-invertibility of k-D discrete operators
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Thought for the Day #1

What about the Laplacian? Is it invertible?

n rows
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V-V

(k-D discrete
Laplacian)
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|s this over- or under-determined?
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What we have so far

* Transform continuous variational problems to
discrete linear algebra problems

* Solve In a least squares sense, since the problem
Is overdetermined in higher dimensions

e BUT: the results are also discrete: the values of
the function fat the sampled points

e Solution: A different type of discretization



Galerkin Approximation

e Restrict the solution space F to weighted sums of
basis functions, 1.e. F= { >, w, B, }, for some set
of functions B,, B,... B,

 Why? Allows us to discretize the problem in terms
of the m-D vector of weights

* We will choose functions that are locally supported

e ... l.e. each f;1s non-zero only around some local region
of space

* This keeps the resulting linear system sparse



Basis Functions with Local Support

e A finite element mode

e Discretize space into cells, then define a basis
function centered around each cell

X. X.

1 j+1

Instead of values at points, we now have values locally around points



Basis Functions with Local Support
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A potential grid of cells.



Basis Functions with Local Support

A single basis function, centered at a grid
cell but overlapping adjacent cells



Basis Functions with Local Support
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A potential grid of cells.
Problem: Not enough detail where it's needed (boundary), too much
detail where it's not (empty space or interior)



Basis Functions with Local Support
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A hierarchical, adaptive grid (octree).

Puts resolution where it matters. One basis function per octree cell.



Projecting to the Finite Basis

e Assume we want to reconstruct the function over
range Q (e.g. [0, 1] in 1D, or [0, 1]3 in 3D)

* The original Poisson problem is Ay=V-1

e BUT: since we've now restricted our solutions to
the space spanned by {B,}, this equation may not
have an exact solution!

* Solution: Least squares to the rescue again!



Projecting to the Finite Basis

e Solve: Ay=V'V for yeF

* To find the best solution within the space spanned
by the basis, we minimize the sum of squared
projections onto the basis functions

Z:n—l <AX_V'V’Bi>§z

where (f,B)=J_f(x)B(x)doc measures the
projection of function f onto basis function B,



Projecting to the Finite Basis

* Minimize: 3" (Ax-V-v,B}
= > | ax.B)~V-V,B [

o (skipping some algebra) This amounts to
minimizing ||[Lw — v||?, where

O )
2 2 2 Wl
0’B 0°B. &*B.
Li' — ,B. |+ ,B. |+ ,B. W2
J J 2 J 2 J
0X oy 0z W =
A4
Mostly zero, since most
Vi = <V -V, Bi> pairs of basis functions \Wm/
don't overlap




Assignment 1: Point Clouds

e Given:

* Point cloud class + display functions

 Utility toolkit with lots of useful code
* Todo:

e Estimate the normal at each point

— Construct a kd-tree for range queries

— Apply regression or any other suitable method over local
neighborhoods

— Extra credit: Ensure they are consistently oriented
— Extra credit: Handle sharp edges correctly

— Extra credit: Adaptively downsample the point cloud: reduce #points in
flat regions with similar normals
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