

Mesh Simplification

(Slides from Tom Funkhouser, Adam Finkelstein)

Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

In a nutshell

• Problem:

- Meshes have too many polygons for storage, rendering, analysis etc
 - High-resolution scanning
 - Marching cubes running amok
 - Artist sculpted too many details in Zbrush
- Solution:
 - Simplify the mesh by reducing the poly count

Thought for the Day #1

How can we simplify a mesh?

What is Mesh Simplification?

- Mesh simplification is a class of algorithms that transform a polygonal mesh into another with fewer faces/edges/vertices
- The simplification process is controlled by userdefined criteria that try to preserve properties of the original mesh as much as possible: curvature, surface metrics, edge loops etc
- Simplification reduces the complexity of a mesh

Mesh Simplification Overview

Some algorithms

- Vertex clustering
- Mesh retiling
- Mesh optimization
- Mesh decimation

Considerations

- Speed of algorithm
- Quality of approximation
- Generality (applies to many types of meshes)
- Topology modifications
- Control of approximation quality
- Continuous levels of detail
- Smooth transitions

Vertex Clustering

- Partition vertices into clusters
- Replace all vertices in each cluster with one representative

Rossignac and Borrel, "Multi-resolution 3D approximations for rendering complex scenes", 1993

Vertex Clustering

- Algorithm [Rossignac93]:
 - Build grid containing vertices
 - Merge vertices in same grid cell
 - Select new position for representative vertex
 - Collapse degenerate edges and faces
- Pros: Fast
- Cons:
 - Collapses topology
 - Low quality
 - Hard to control

Vertex Clustering

Rossignac and Borrel, 1993

Mesh Re-tiling

• Resample mesh with "uniformly spaced" vertices

Mesh Re-tiling

- Algorithm [Turk92]:
 - Generate random points on surface
 - Use diffusion/repulsion to spread them uniformly
 - Tessellate vertices (many details here!)
- Pros:
 - Respects topology
- Cons:
 - Slow
 - Blurs sharp features

Mesh Optimization

• Apply optimization procedure to minimize an objective function *E*(*K*, *V*)

 $E(K, V) = E_{dist}(K, V) + E_{rep}(K, V) + E_{spring}(K, V)$

Mesh Optimization

- Algorithm [Hoppe92]:
 - Iterate with a decreasing spring term:
 - Randomly modify topology with edge collapse, edge swap, or edge split
 - Move vertices to minimize E(K, V)
 - Keep change if it reduces objective function

Mesh Optimization

Sample Points (6752 vertices)

 $c_{rep} = 10^{-4}$ (239 vertices)

Mesh Decimation

- Apply iterative, greedy algorithm to gradually reduce complexity of mesh
 - Measure error of possible decimation operations
 - Place operations in queue according to error
 - Perform operations in queue successively
 - After each operation, re-evaluate error metrics

Mesh Decimation Operations

- General idea:
 - Each operation simplifies mesh by small amount
 - Apply operations successively
- Types of operations:
 - Vertex remove
 - Edge collapse
 - Vertex cluster

Vertex Remove

- Method:
 - Remove vertex and adjacent faces
 - Fill hole with new triangles (2 fewer triangles)
- Properties:
 - Requires manifold surface around vertex
 - Preserves local topological structure

Edge Collapse

- Method:
 - Merge two vertices into one
 - Remove degenerate triangles
- Properties:
 - Requires manifold surface around vertex
 - Preserves local topological structure
 - Allows smooth transition

Vertex Cluster

- Method:
 - Merge vertices based on proximity
 - Triangles with repeated vertices become edges/points
- Properties:
 - General, robust
 - Topological changes possible
 - Not great quality

Operation Considerations

- Topology considerations:
 - Attention to topology promotes better appearance
 - Allowing non-manifolds increases robustness and ability to simplify
- Operation considerations:
 - Collapse-type operations allow smooth transitions
 - Vertex remove affects smaller portion of mesh than edge collapse

Mesh Decimation Error Metrics

- Motivation:
 - Promote accurate 3D shape preservation
 - Preserve screen-space silhouettes and pixel coverages
- Types:
 - Vertex-Vertex distance
 - Surface-Surface distance
 - Point-Surface distance
 - Vertex-Plane distance

Vertex-Vertex Distance

$$E = \max(|| v_3 - v_1 ||, || v_2 - v_1 ||)$$

- Rossignac and Borrel 1993
- Luebke and Erikson 1997

Not very discriminative, e.g. does not distinguish between these two cases

Surface-Surface Distance

- Error is maximum distance between original and simplified surface
 - Tolerance volumes [Gueziéc 1996]
 - Simplification envelopes [Cohen/Varshney 1996]
 - Hausdorff distance [Klein 1996]
 - Mapping distance [Bajaj/Shikore 1996, Cohen et al. 1997]

Point-Surface Distance

- Error is sum of squared distances from original vertices to closest points on simplified surface
 - Hoppe et al. 1992

Vertex-Plane Distance

- Error is based on distances of original vertices from planes of faces in simplified surface
 - Max distance to plane
 - Maintain set of planes for each vertex [Ronfard/Rossignac 1996]
 - Sum of squared distances
 - Approximated by quadric at each vertex [Garland/Heckbert 1997]

- Error is sum of squared distances of original vertices from planes of faces in simplified surface
 - How to compute the error?
 - How to perform the atomic decimation operation?

• Sum of squared distances from vertex to planes

- Common mathematical trick:
 - Quadratic form = symmetric matrix Q multiplied twice
 by a vector v

$$\Delta = \sum_{\mathbf{p}} (\mathbf{p}^{\mathrm{T}} \mathbf{v})^{2}$$

$$= \sum_{\mathbf{p}} \mathbf{v}^{\mathrm{T}} \mathbf{p} \mathbf{p}^{\mathrm{T}} \mathbf{v}$$

$$Q = \begin{bmatrix} a^{2} & ab & ac & ad \\ ab & b^{2} & bc & bd \\ ac & bc & c^{2} & cd \\ ad & bd & cd & d^{2} \end{bmatrix}$$

$$= \mathbf{v}^{\mathrm{T}} \left(\sum_{\mathbf{p}} \mathbf{p} \mathbf{p}^{\mathrm{T}} \right) \mathbf{v}$$

- Approximate error of edge collapses
 - Each vertex \mathbf{v}_i has associated quadric Q_i
 - Error of collapsing \mathbf{v}_1 and \mathbf{v}_2 to \mathbf{v}' is $\mathbf{v}'^{\mathrm{T}} Q_1 \mathbf{v}' + \mathbf{v}'^{\mathrm{T}} Q_2 \mathbf{v}'$
 - Quadric for new vertex **v**' is $Q' = Q_1 + Q_2$

• Find optimal location v' after collapse

$$\mathbf{Q'} = \begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} \\ q_{12} & q_{22} & q_{23} & q_{24} \\ q_{13} & q_{23} & q_{33} & q_{34} \\ q_{14} & q_{24} & q_{34} & q_{44} \end{bmatrix}$$
$$\min_{\mathbf{v'}} \mathbf{v'}^{\mathrm{T}} \mathbf{Q'v'}: \quad \frac{\partial}{\partial x} = \frac{\partial}{\partial y} = \frac{\partial}{\partial z} = 0$$

• Find optimal location \mathbf{v}' after collapse

$$\mathbf{v'} = \begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} \\ q_{12} & q_{22} & q_{23} & q_{24} \\ q_{13} & q_{23} & q_{33} & q_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
$$\mathbf{v'} = \begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} \\ q_{12} & q_{22} & q_{23} & q_{24} \\ q_{13} & q_{23} & q_{33} & q_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Quadric Error Visualization

- Ellipsoids: iso-error surfaces
 - Smaller ellipsoids represent greater error for a given vertex motion
 - Lower error for motion parallel to surface
 - Lower error in flat regions than corners
 - Elongated in "cylindrical" regions near ridges

Quadric Error Visualization

- Ellipsoids: iso-error surfaces
 - Smaller ellipsoids represent greater error for a given vertex motion
 - Lower error for motion parallel to surface
 - Lower error in flat regions than corners
 - Elongated in "cylindrical" regions near ridges

Quadric Error Metric Results

Quadric Error Metric Results

Original

Quadrics

250 tris

250 tris, edge collapses only

Quadric Error Metric Details

- Boundary preservation: add planes perpendicular to boundary edges
- Prevent foldovers: check for normal flipping
- Merging nearby vertices: Create virtual edges between vertices closer than some threshold