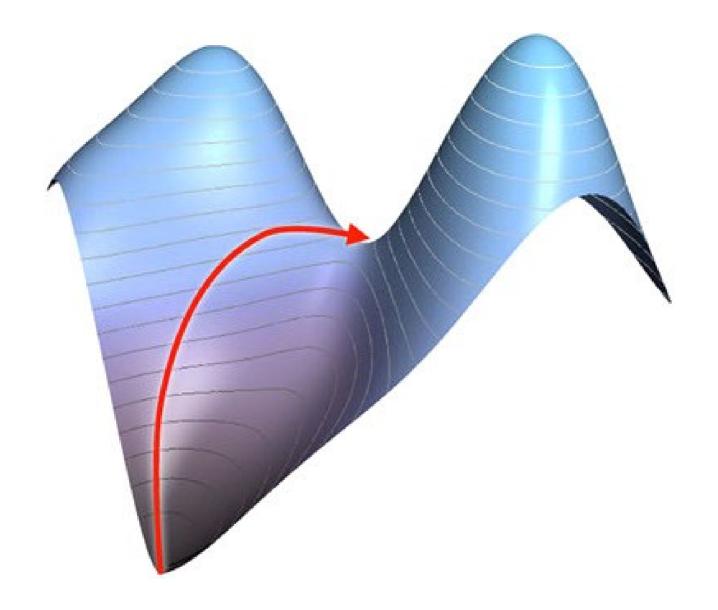
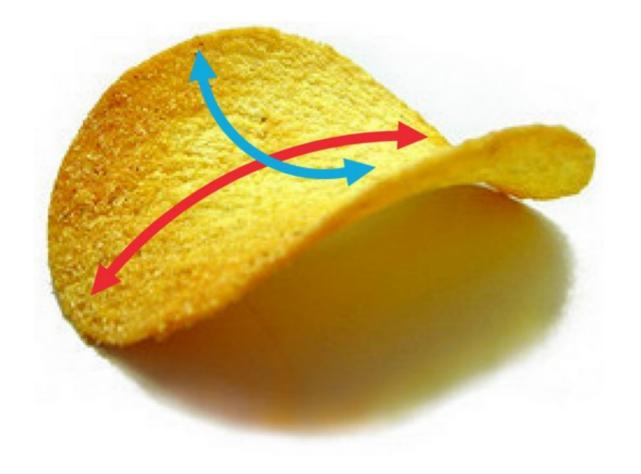


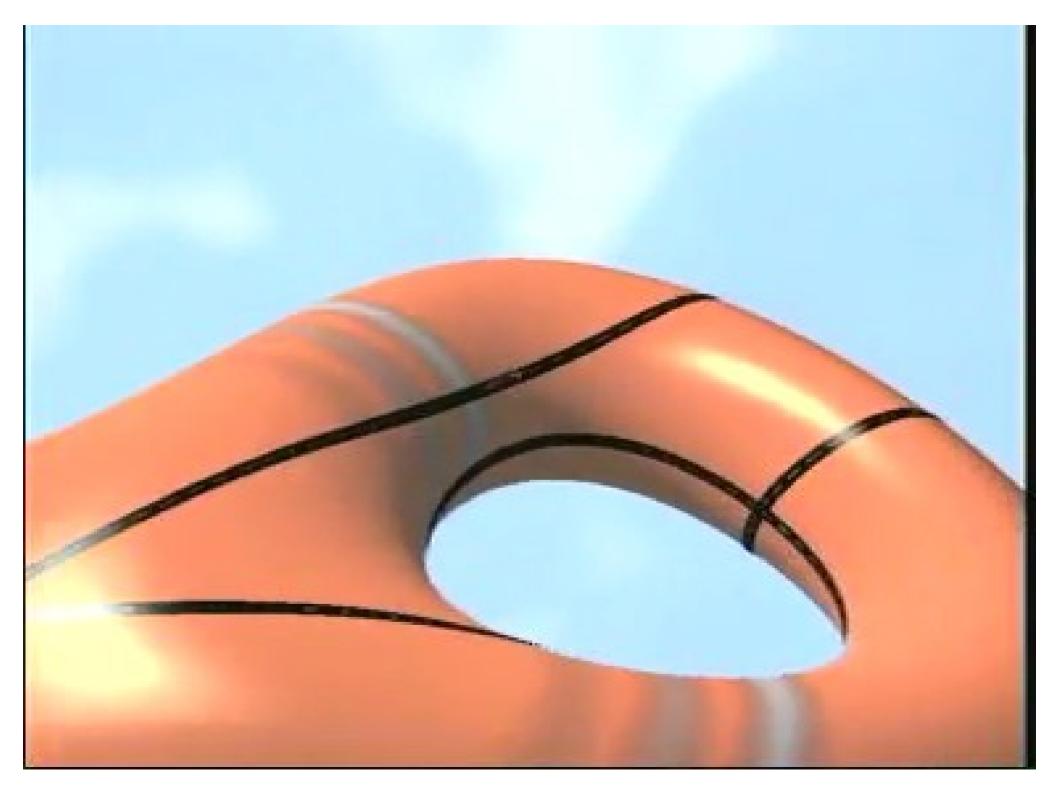
Distances on Surfaces

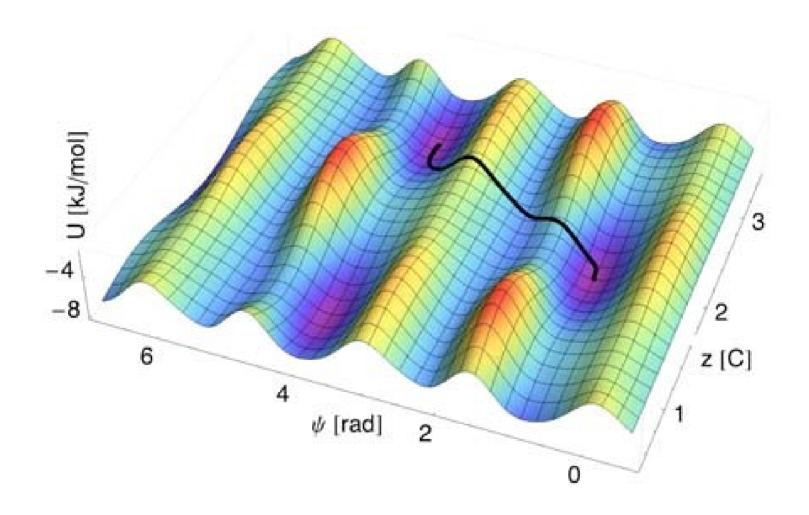
Siddhartha Chaudhuri

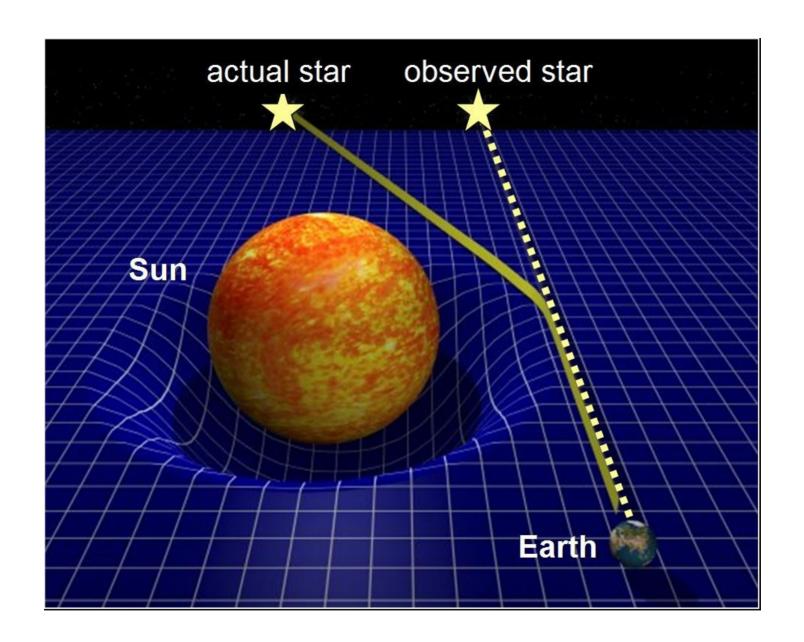
http://www.cse.iitb.ac.in/~cs749





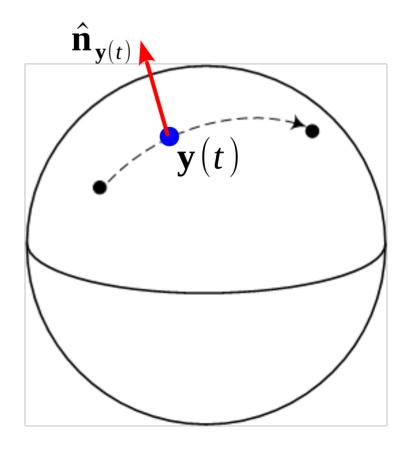






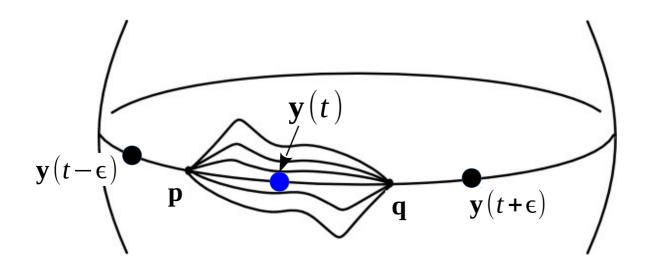
Geodesic Curve

- A geodesic curve on a surface (technically, a Riemannian manifold) is a curve $\mathbf{y}(t)$ such that:
 - **Definition 1:** It describes the motion of a particle with acceleration along the surface normal $\ddot{\mathbf{y}}(t) = \mathbf{c} \, \hat{\mathbf{n}}_{\mathbf{y}(t)}$
 - Implies that geodesics have constant speed: $\|\dot{\mathbf{y}}(t)\| = s$



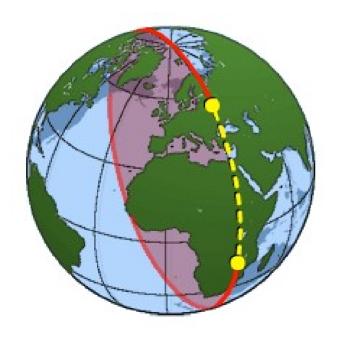
Geodesic Curve

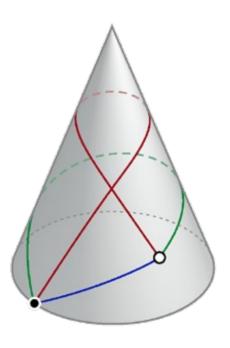
- A geodesic curve on a surface (technically, a Riemannian manifold) is a curve $\mathbf{y}(t)$ such that:
 - Definition 2: It is locally length-minimizing:
 - Around any point $\mathbf{y}(t)$, there is a neighborhood $B_t = (t \varepsilon, t \varepsilon)$ such that the curve is the shortest path between any two points \mathbf{p} , \mathbf{q} in $\mathbf{y}(t \in B_t)$



Geodesics ≠ Shortest Paths

- A geodesic is not necessarily the shortest path between two points
- ... but the shortest path is always a geodesic

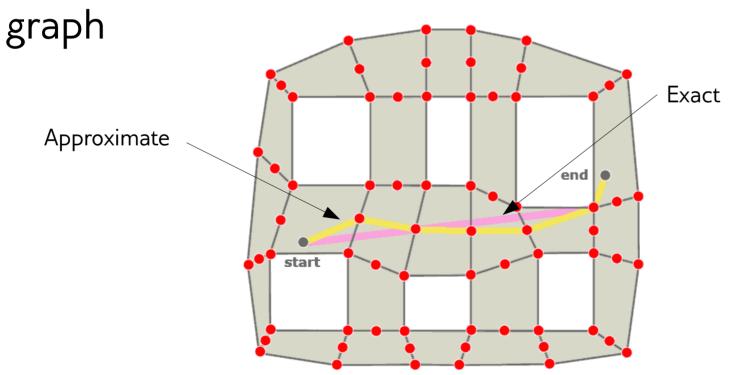




But in common usage...

 ... we often use "geodesic" and "shortest path" interchangeably (and hence inaccurately)

 The shortest path between two points on a mesh is approximated by the distance along the edge



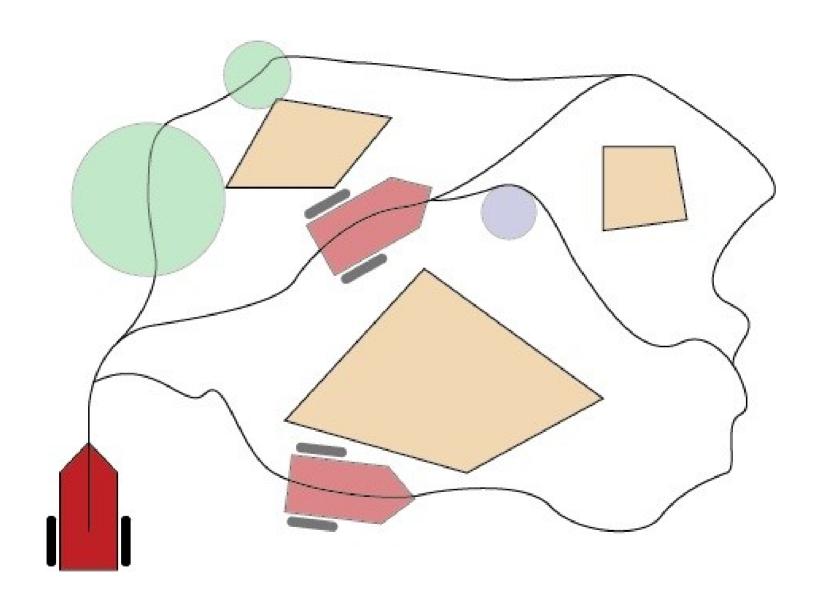
Existence and Uniqueness

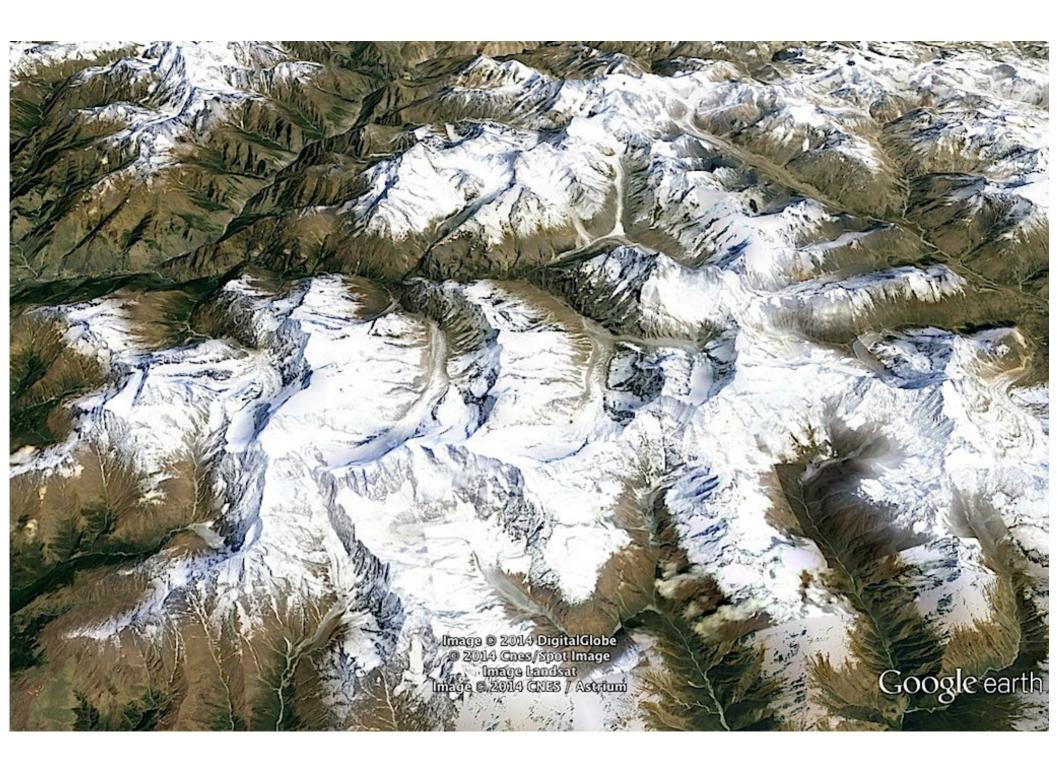
• (Roughly) On a smooth manifold surface, if we're given a point \mathbf{p} and a vector \mathbf{v} in the tangent plane at \mathbf{p} , then there is exactly one geodesic through \mathbf{p} , with direction (tangent) \mathbf{v}

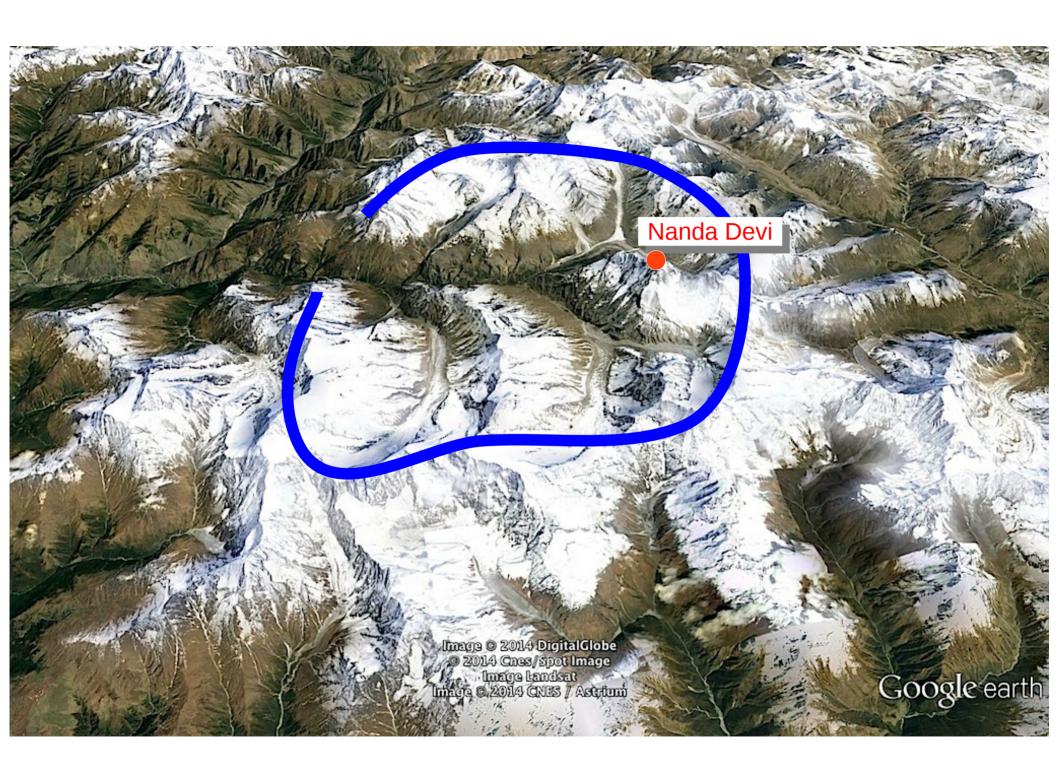
There can be multiple geodesics through the same

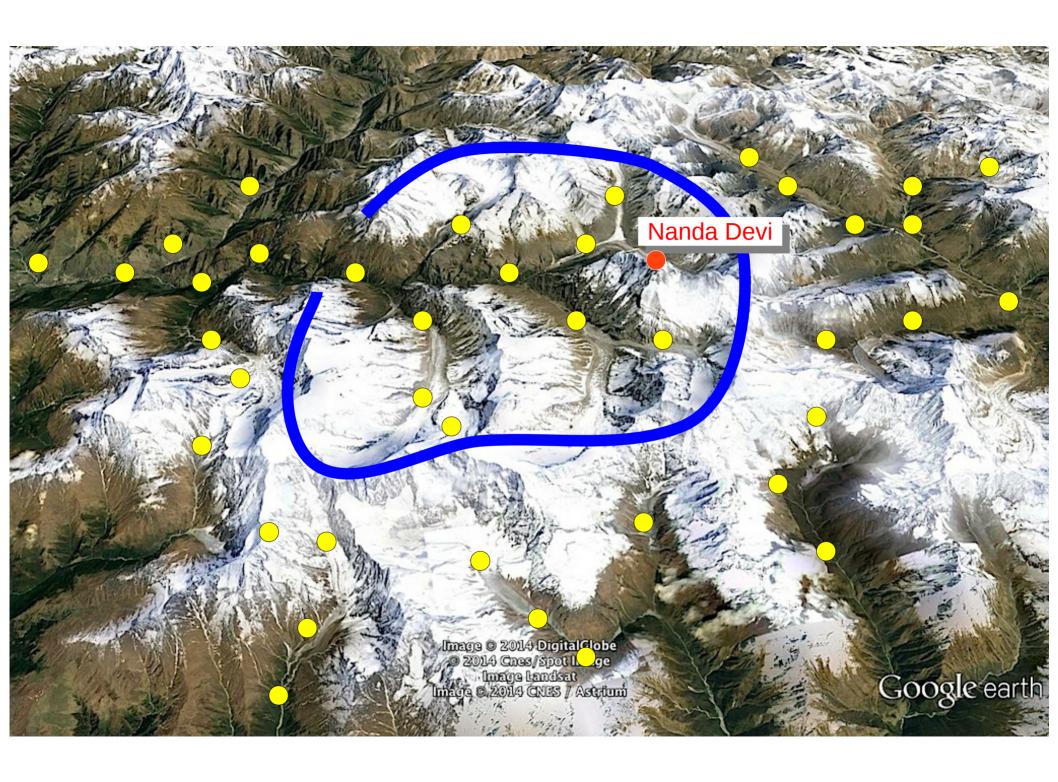
point, for different **v**

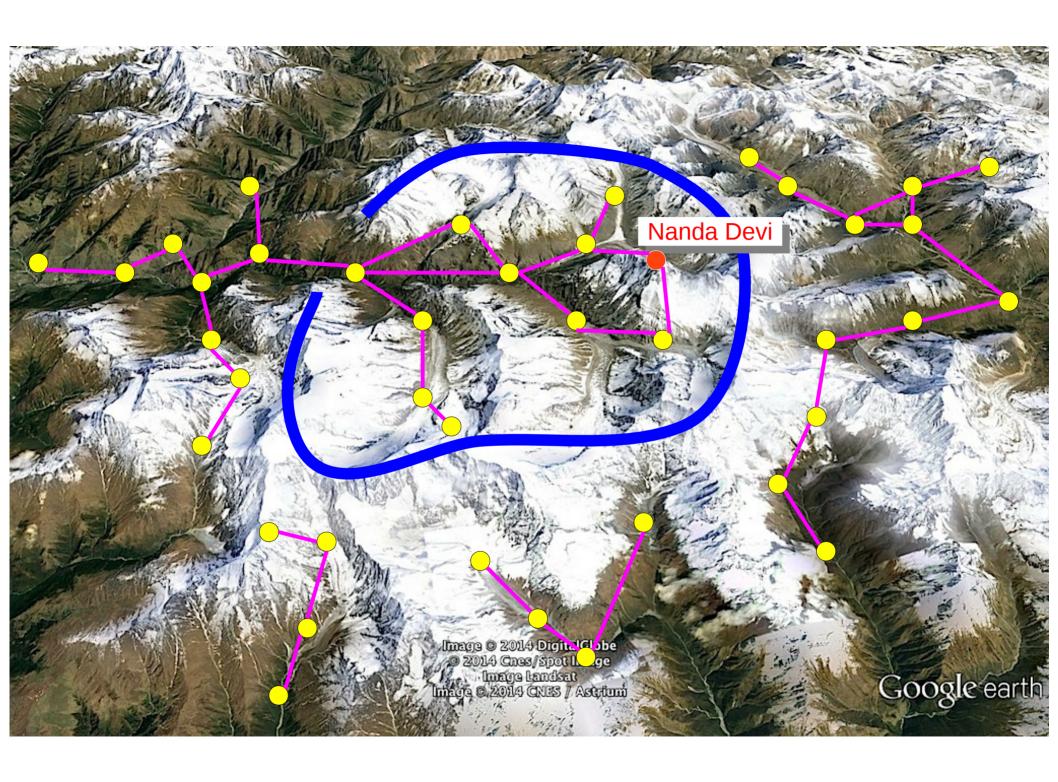
GREAT CIRCLES

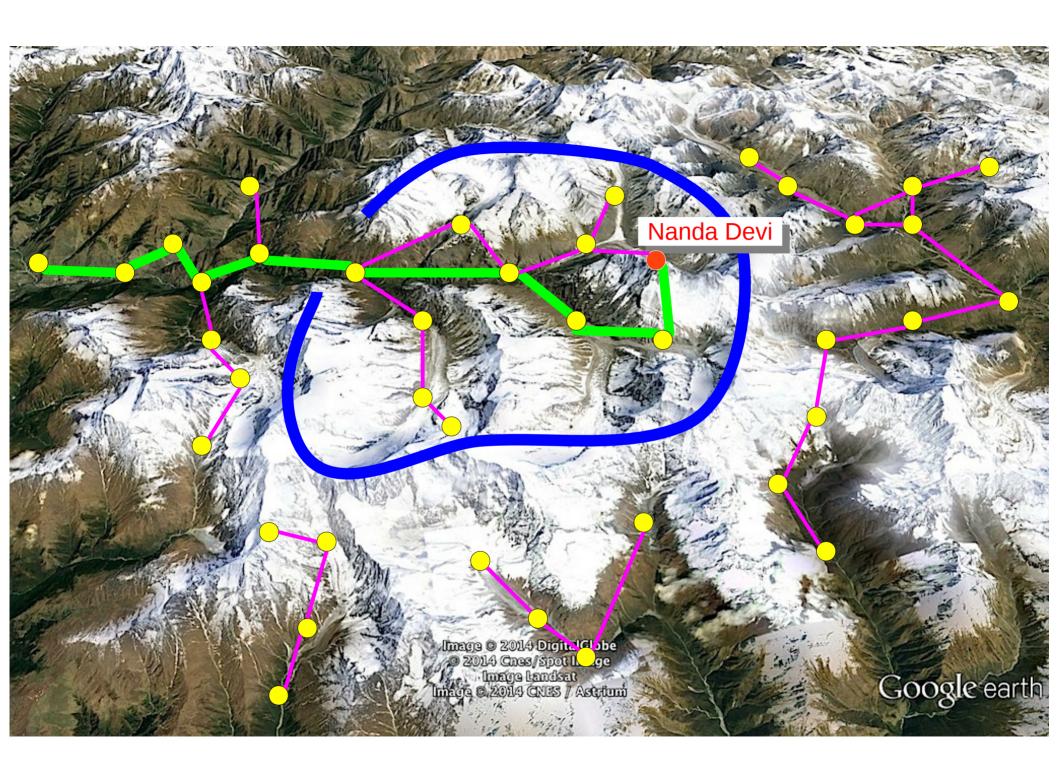


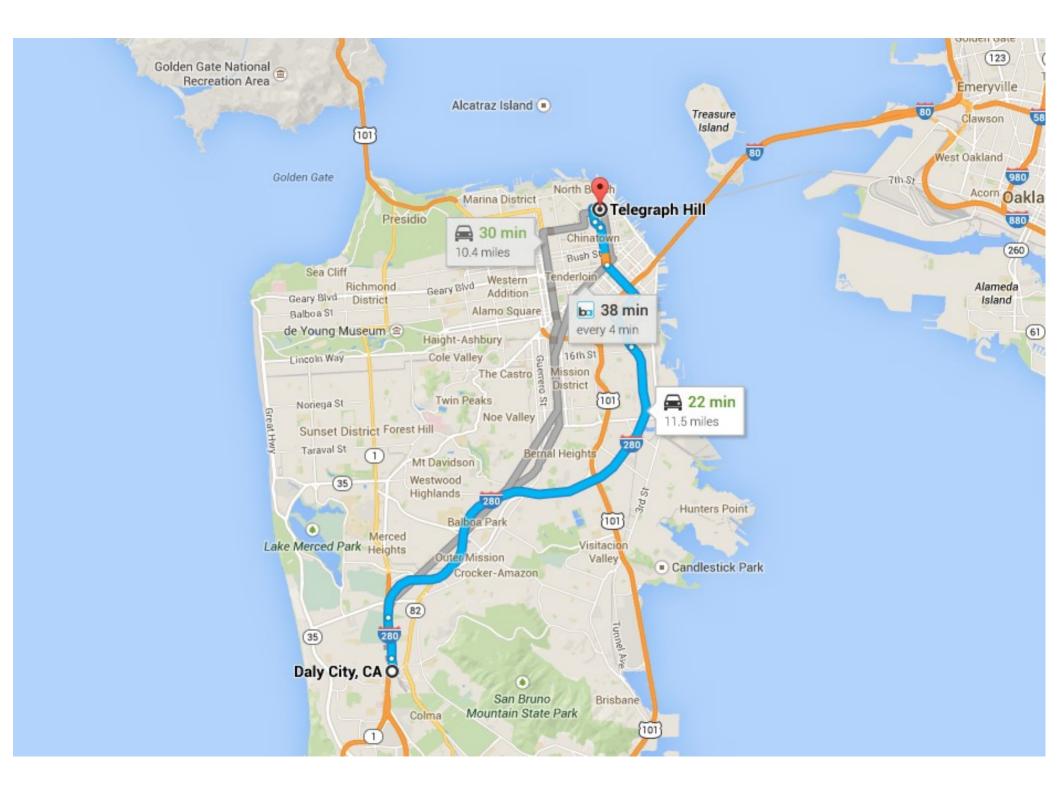


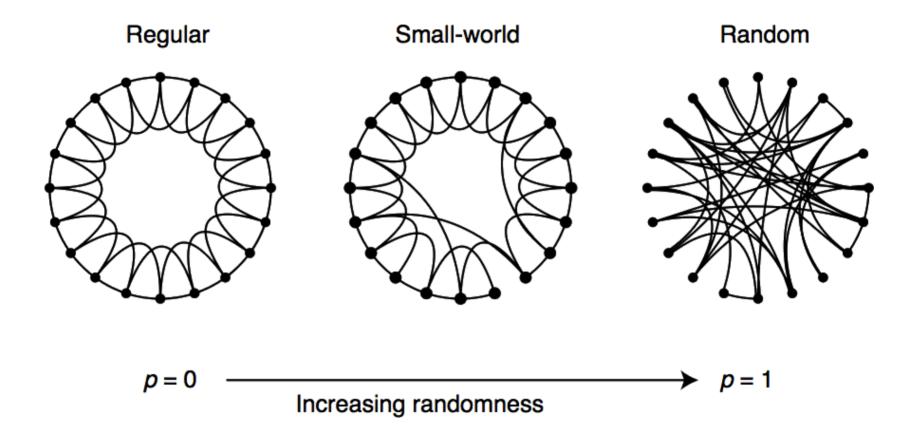








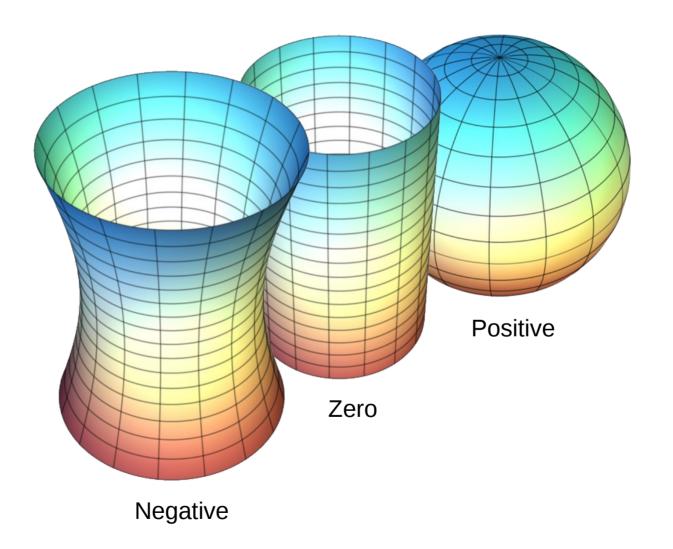


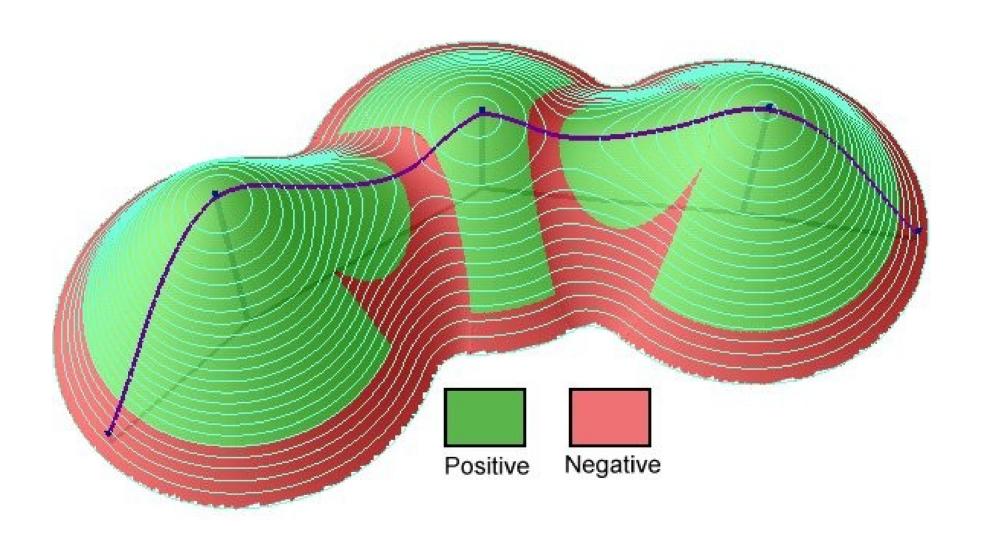


Average path lengths

- 225k Film actors: 3.65
- 5k nodes on US power grid: 18.7
- 282 neurons of C. elegans: 2.65
- 721m Facebook users: 4.74

If geometry tells us about distances, what do distances tell us about geometry?





Can a 2D ant on a 2D surface tell if it lives in a space of positive, negative or zero curvature?

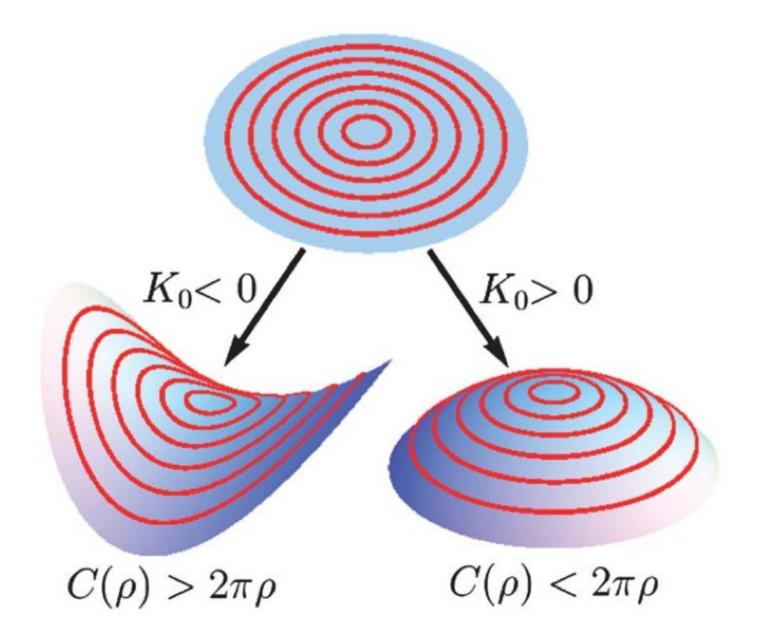
Can a 2D ant on a 2D surface tell if it lives in a space of positive, negative or zero curvature?

Can a person, in 3D?

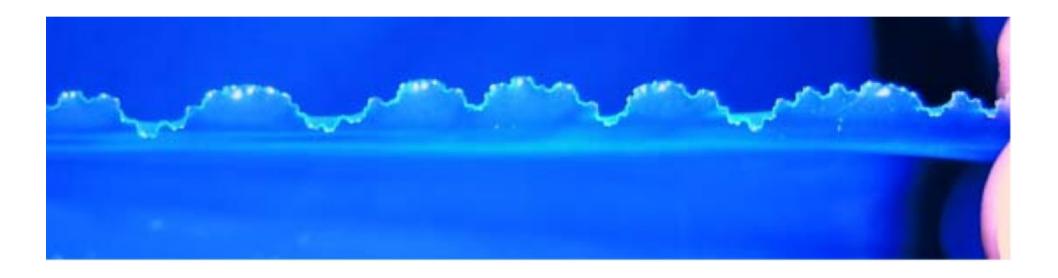
Can a 2D ant on a 2D surface tell if it lives in a space of positive, negative or zero curvature?

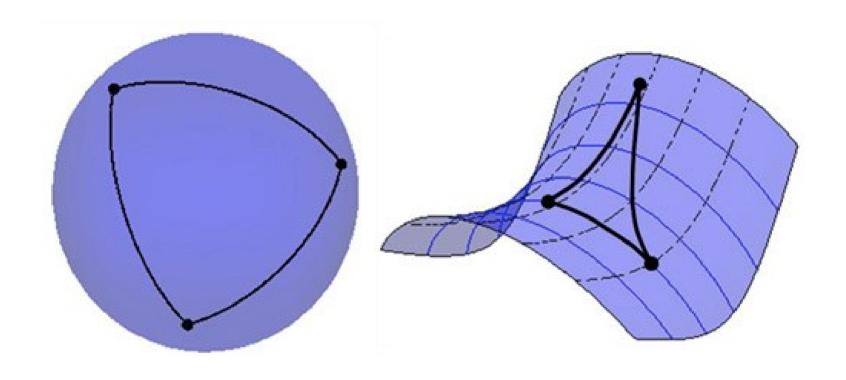
Can a person, in 3D?

Yes, by measuring distances!



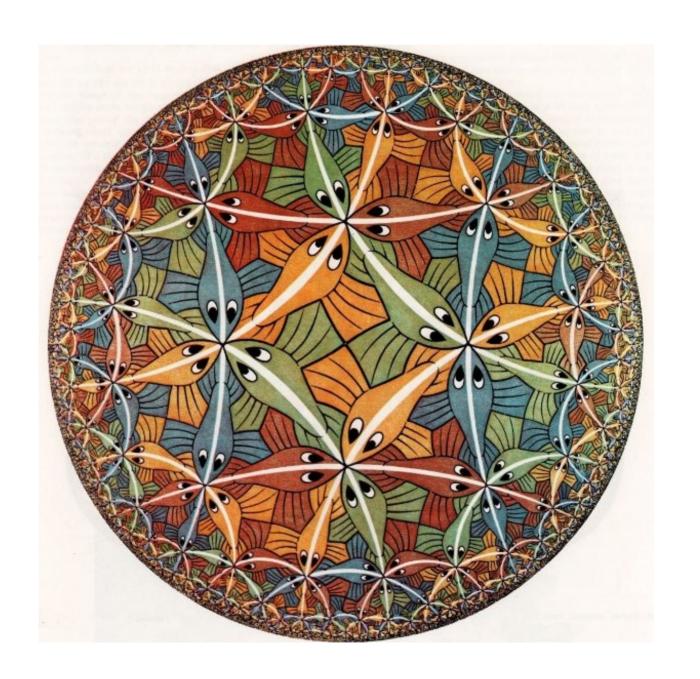
Sharon et al. 2004





Sum of angles $> 180^{\circ}$

Sum of angles < 180°

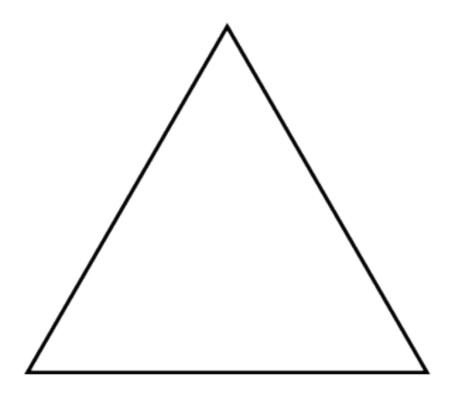


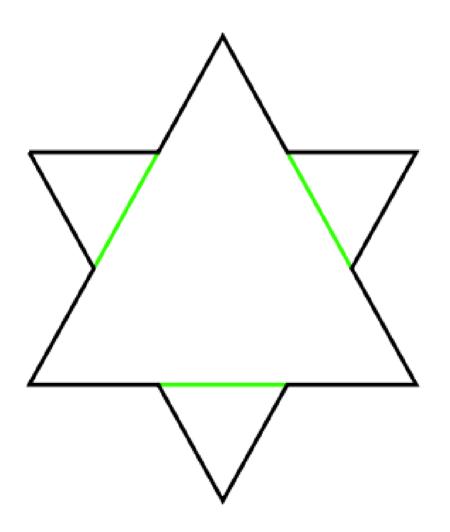
How long is the coastline?

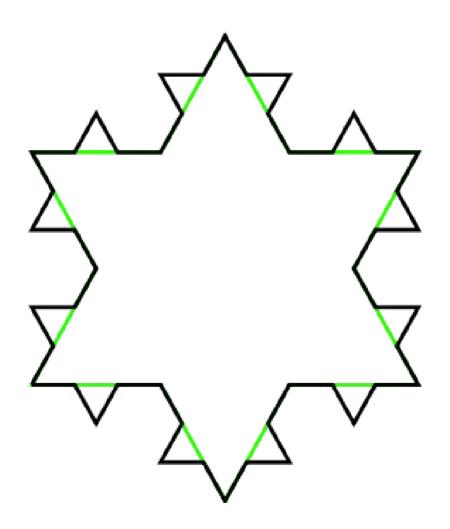
2400km

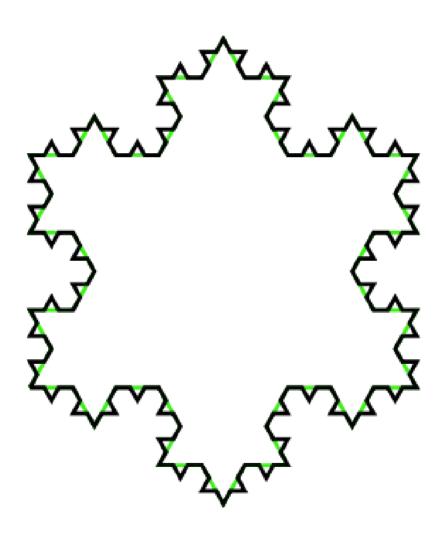
2800km

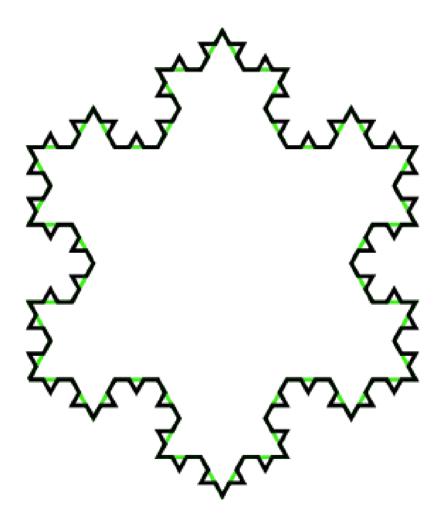
3450km











In the limit: bounded area, unbounded perimeter