

Exact and Approximate Shortest Paths

Siddhartha Chaudhuri http

http://www.cse.iitb.ac.in/~cs749

Overview

- Last class:
 - Distances on surfaces: applications and complications
 - Definition of geodesics
 - ≠ shortest paths, but often conflated!
- Today:
 - An algorithm for finding exact shortest paths on a mesh
 - Can be modified to quickly give approximately shortest paths

Challenge

- The shortest path traverses interiors of triangles
 - Where does the path cross edges?
 - Continuous optimization problem, much harder than shortest paths on discrete graphs

A historical perspective

- Exact:
 - Single source, all destinations
 - Mitchell/Mount/Papadimitriou [1987]: O(n² log n)
 - Chen/Han [1996]: O(n²)
 - Single source, single destination
 - Kapoor [1999]: O(n log² n)
- Approximate:
 - Insert extra edges: Lanthier [1997]
 - Iterative optimization: Kanai/Suzuki [2001], Martinez et al. [2004]
 - Fast-marching: Kimmel/Sethian [1998, $O(n \log n)$]
 - Fast-sweeping: Zhao [2005, O(n)]
 - Window merging: Surazhsky et al. [2005, $O(n \log n)$]
 - Heat flow: Crane et al. [2013]

n = number of triangles in the mesh

Note that asymptotic behavior ≠ real-world performance

Edge Insertion

- Problem: Edges crudely model surface connectivity
- Solution: Add more edges!
 - Finer-grained discrete problem
 - Produces better approximations with more edges, at the cost of runtime complexity
 - But typically converges at around 6 points per edge

A crucial observation 1/2

• A mesh can be unfolded

A crucial observation 2/2

- Shortest paths can be visualized as rays emanating from point in all directions
 - Interior to triangle: shortest
 path must be straight line
 - Crossing edge: shortest path corresponds to straight line when two triangles are unfolded into common plane.

Unfolding the shortest path

Surazhsky et al. 2005

Source vertex unfolded to triangle plane

Windows

- A window is a segment of an edge over which all shortest paths to the source traverse the same sequence of faces
- Within a window, distance computations can be performed *atomically* (no need to worry about routing in the mesh)

Unfolded layout

Window specified by 5-tuple

- *b*₀, *b*₁: local xcoordinates of endpoints on edge
- d_0, d_1 : distances from endpoints to source *s*
- τ : direction to source
 (side of edge where S
 lies)

Unfolded layout

Source reconstruction

- Given two distances d_0 , d_1 , recover the source s = (x, y)
- Computation is simple via local coordinate system

$$(x - b_0)^2 + y^2 = d_0^2$$

$$(x - b_1)^2 + y^2 = d_1^2$$

$$x = \frac{d_0^2 - d_1^2 - b_0^2 + b_1^2}{2(b_1 - b_0)}$$

$$y = +\sqrt{d_0^2 - (x - b_0)^2}$$

Basic Idea: Window Propagation

- Step from triangle to adjacent triangle
- Windows on an edge create new windows on other edges of new triangle
 - The cone "sees" new edges as we enter the new triangle
- Can create one, two or three new windows

Overlapping Windows

- Find equidistant point on edge
- Cut off overlapping parts that define larger distances
- Distance function is continuous on edge

Hyperbolic (saddle) vertices

- If the sum of face angles at a vertex is > 2π , it is called a hyperbolic/saddle vertex
- It cannot be unfolded onto a plane without foldovers (overlapping faces)
- The shortest path can pass through boundary, hyperbolic (> 2π) and parabolic (= 2π) vertices

- Hyperbolic vertices need special handling

Hyperbolic (saddle) vertices

Unflattened region near saddle vertex s. Part of the upper triangle is not visible by rays from source vertex v_s

Unfolding to plane of upper triangle reveals two different images of v_s , neither of which is visible from red region. All shortest paths to w pass through saddle vertex.

Hyperbolic (saddle) vertices

- Solution: Treat saddle (or boundary) vertex as pseudo-source
 - All shortest paths route through pseudosource
 - ... so we can originate our visibility cones from the pseudo-source, and add its distance from the actual source
- Window as 6-tuple: { b_0 , b_1 , d_0 , d_1 , σ , τ }
 - σ : distance from **pseudo-source** to source

The algorithm

- Initialize queue Q with a window for each edge adjacent to source s, sorted by distance to source
- Until *Q* is empty
 - **select** (and remove) a window from Q
 - propagate selected window
 - **update** *Q* with new windows
- The algorithm fully covers each edge with non-overlapping windows

Approximating Algorithm

- Basic idea: merge windows
 - Two original windows must have direction values τ in agreement
 - Original windows must define similar distances on their union
 - Distance function along edge must be **continuous**
 - Visibility region of new window must cover the union of visibility regions of original windows

Merging Windows

 Find a new source s = (x, y) and σ, for which the distances at the endpoints b₀ and b₁ are preserved:

Merging Windows

 Find a new source s = (x, y) and σ, for which the distances at the endpoints b₀ and b₁ are preserved:

> $(x - b_0)^2 + y^2 = (d_0 - \sigma)^2$ (x - b_1)^2 + y^2 = (d_1 - \sigma)^2

- *s* = (*x*, *y*) lies on a conic curve (quadratic algebraic curve)
- s = (x, y) must lie in the yellow area – visibility must not be reduced) with y > 0
- $\sigma > 0$ corresponds to the pink area

Shortest path between two vertices

- Sequence of pruned searches to locate exact shortest path
- Exact algorithm is invoked only on a thin region surrounding geodesic
- Upper bound is the length of the approximate path obtained by Djikstra search on edge graph, refined by output of approximation algorithm
- Lower bound initially represented by Euclidean distance, then replaced with output of approximation algorithm

