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Recap

● A shape descriptor is a set of numbers 
that describes a shape in a way that is
– Concise
– Quick to compute
– Efficient to compare
– Discriminative

● Local descriptors describe 
(neighborhoods around) points

● Global descriptors describe whole objects
● Typically, the descriptors form a vector 

space with a meaningful distance metric

Global

Local

Funkhouser;   Feng, Liu, Gong



Feature detection Correspondences

Registration Symmetry detection

Segmentation

Labeling

Retrieval

Recognition

Classification

Clustering

Local Global



Today

● 2D global descriptors for 3D shapes
– Light Field Descriptor (LFD)
– Multi-View Convolutional Neural Network (MVCNN)



Why 2D?

● 2D views contain a lot of information about a shape
– That’s how humans see stuff, and we do quite well

● For many applications, the additional information in 3D data 
quickly reaches diminishing returns and can even hurt 
performance since statistical models need to be more complex

● We have huge amounts of prior information and models for 
processing 2D data



Light Field
● A light field (or plenoptic function) captures the 

radiance at a (3D) point along a (2D) direction
– It is a 5D function

– In free space, all points on a straight line have the same light 
field value in that direction, so reduces to a 4D function

– With the free space assumption, a set of perspective images of 
an object from all possible directions constitutes its light field

Christian Jacquemin



Light Field Descriptor

● The Light Field Descriptor (LFD) of a 3D shape is 
a set of 2D images of it, taken from a 2D array of 
cameras
– 20 cameras positioned at the vertices of a regular 

dodecahedron

– Images rendered as silhouettes, so 10 unique views 
(say from a hemisphere)

Chen et al., “On Visual Similarity Based 3D Model Retrieval”, 2003



Comparing Shapes with LFD

● Consider two shapes

Chen et al., “On Visual Similarity Based 3D Model Retrieval”, 2003



Comparing Shapes with LFD

● A candidate rotation aligns the two sets of images
– Comparing aligned image pairs gives a similarity metric

Chen et al., “On Visual Similarity Based 3D Model Retrieval”, 2003



Comparing Shapes with LFD

● Here’s another candidate rotation
– … which yields another similarity value

Chen et al., “On Visual Similarity Based 3D Model Retrieval”, 2003



Comparing Shapes with LFD

● And another...

Chen et al., “On Visual Similarity Based 3D Model Retrieval”, 2003



Comparing Shapes with LFD

● 60 different ways of aligning the dodecahedra
● The distance between two shapes A and B, with 

image sets {Ai}, {Bi} is

where Brot(r, i) is the image aligned to Ai by the 
r’th rotation

D (A , B)  = min r=1
60 ∑i=1

10

d image(Ai ,Brot (r , i))



More views for more accuracy
● To increase chances of finding the right alignment, store image sets 

{Aj} from N different dodecahedra (N = 10 in original paper)

● (N(N – 1) + 1) × 60 image comparisons (= 5460 in this case)

DLFD(A ,B)  =  min j ,k=1
N D (A j ,Bk

)

Chen et al., “On Visual Similarity Based 3D Model Retrieval”, 2003



Image Comparison Metric

● Combine a “region-based” and a “contour-based” 2D 
descriptor

● Region-based descriptor
– Combine information from all pixels in region

– Do not emphasize boundary features

– Zernike Moment Descriptors (ZMD)   [35 8-bit coefficients]

● Contour-based descriptor
– Captures only boundary information, ignoring interior

– Fourier Descriptors (FD)    [10 8-bit coefficients]

d image(Img1, Img2)  =  ∑k=1

45

|C1,k−C2,k|



Querying Large Databases

● LFD is not a natural vector space (need to search 
over rotations), so can’t apply traditional methods 
to accelerate nearest neighbor search

● Progressively refine descriptors for faster search
– Use a few image sets, and a few highly quantized 

coefficients, to prune database and identify likely 
alignments

– Progressively redo the search in the pruned database 
with more descriptors and more coefficients, using 
candidate alignments from the previous step



Results

3D Harmonics: 
discussed last class

Shape 3D Descriptor: 
curvature histograms

Multiple View 
Descriptor: align 
shapes using PCA, 
compare views along 
principal axes

Test database: 1833 shapes, with 549 shapes classified into 47 functional 
categories, the remaining shapes classified as “miscellaneous”

Chen et al., “On Visual Similarity Based 3D Model Retrieval”, 2003



Properties of LFD

● Not very concise (100 × 45 coefficients)
● Reasonably quick to compute
● Not very efficient to match
● Good discrimination
● Invariant to rigid transformations
● Invariant to small deformations
● Insensitive to noise
● Insensitive to mesh topology
● Robust to degeneracies



What if we use better image descriptors?

● ZMD/FD are ok, but hardly the state of the art in 
modern computer vision (circa 2016)

● Convolutional Neural Nets (CNNs) have 
revolutionized image recognition tasks

In 2012, the error rate in the ImageNet visual recognition 
challenge was halved by a deep CNN (gains are typically 
incremental). There are 1000 categories: the baseline of 

random guessing would have a 99.9% error.



What is a Convolutional Neural Network?

● Imagine we have a set of N samples from some 
signal

● We want to produce a prediction, e.g. whether the 
signal represents a human voice, or a picture of a 
cat, or a depth image of a building

Christopher Olah



What is a Convolutional Neural Network?

● We can compute the probability as a function F of 
these values
– In a fully-connected network, the function takes in all the 

inputs at once, e.g. as g(w·x), where w is a weight vector 
and g is some nonlinear transformation such as a sigmoid 
function

Christopher Olah



What is a Convolutional Neural Network?
● Fully-connected networks have some drawbacks

– The function is very high-dimensional (all inputs processed at once)

– No complex relationships between inputs is modeled (just a dot 
product)

– Local information is not captured in a “translation-invariant” way 
(a feature of the signal at the left end of the sequence must be 
learned independently of the same feature occurring at the right end)

Christopher Olah



What is a Convolutional Neural Network?

● Solution: a convolutional layer
● A filter (again, a dot product followed by a nonlinear 

transformation) is applied on local neighborhoods of 
the signal

Christopher Olah



What is a Convolutional Neural Network?

● All filters share the same weights!
– Dramatically reduces number of parameters of the network

● The final output is a function of the filter responses

Christopher Olah

Each A node 
has the same 
set of 
weights



What is a Convolutional Neural Network?

● We can make the neighborhoods larger, to capture 
broader local features

Christopher Olah



What is a Convolutional Neural Network?
● Convolutional layers are composable: they can be stacked with 

each layer providing inputs for the next layer
– Higher layers can capture more abstract features since they effectively cover 

larger neighborhoods, and combine multiple different nonlinear 
transformations of the signal

Christopher Olah

One set of 
weights 
for all A 
nodes

Another set 
of weights 
for all B 
nodes



What is a Convolutional Neural Network?

Return the max of 
the inputs

Christopher Olah

● To make the network robust to small translations in 
detected features, and to reduce the amount of 
redundant data fed into higher layers, we introduce 
pooling layers



What is a Convolutional Neural Network?

Christopher Olah

● The signal can be 2D: the filters are now also 2D, 
but it’s all essentially the same



What is a Convolutional Neural Network?

Christopher Olah

● The function computed by this gigantic model is 
differentiable* w.r.t. the weights
– Given training data and a loss function measuring the 

deviation from predicted and actual values, we can 
optimize the weights by gradient descent

– The gradient of the loss function can
be found efficiently by a method
called back-propagation

* nearly everywhere



A real-world CNN

Krizhevsky, Sutskever and Hinton, 2012

● 5 convolutional layers, 3 max-pooling layers, 3 
fully-connected layers

● ~60 million parameters (despite the weight 
sharing!)



Using the CNN for classification

Krizhevsky, Sutskever and Hinton, 2012



Using the CNN for retrieval

Krizhevsky, Sutskever and Hinton, 2012

Query Top 6 results

The descriptor 
is the vector 
of neuron 
activations in 
the second 
last layer



Image CNN for 3D shapes
● Let’s take a CNN trained on a (huge) image database, and use 

it to analyze views of 3D shapes
– Render a 3D shape from an arbitrary viewpoint

– Pass it through the pre-trained CNN and take the neuron activations 
in the second-last layer as the descriptor

– For more accuracy, fine-tune the network on a training set of 
rendered shapes before testing

● Just this alone, with a single view (from an unknown direction) 
of the shape, bumps up the mAP retrieval accuracy (area 
under PR curve) on a 40-class, 12K-shape collection from 
40.9% (LFD) to 61.7%.
– An LFD-like approach with 12 views/shape further improves to 62.8%

Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



Combining Views
● A smarter way to aggregate information from multiple views

– Take the output signal of the last convolutional layer of the base 
network (CNN1) from each view, and combine them, element-by-
element, using a max-pooling operation

– Pass this view-pooled signal through the rest of the network (CNN2)

Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



Combining Views
● The view-pooled CNN can still be trained (in exactly the same way) 

using back-propagation and gradient descent
● For retrieval, the descriptor from the second-last layer can be further 

tuned by learning a Mahalanobis metric (a projection of the 
descriptors) where the distance between shapes of the same training 
category is small

Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



How well does this work?

Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



How well does this work?

Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



A side benefit of view-based representations

● The MVCNN can be fine-tuned to retrieve 3D models based on 
hand-drawn 2D sketches

Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



Properties of MVCNN

● Not very concise (4096 second-last layer neurons)
● Reasonably quick to compute (render and pass through CNN)
● Efficient to compare (natural vector space)
● Good discrimination
● Invariant to rigid transformations
● Invariant to small deformations
● Insensitive to noise
● Insensitive to mesh topology
● Robust to degeneracies
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