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Spectral Mesh Analysis
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Matrices as transformations

e Let 4 be an mxn matrix

— It can be thought of as a function that maps a vector
x € R" to a vector 4x € R"

e 41s a linear transformation

- fis linear if fla + b) = fla) + f(b)
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Eigenvalues and Eigenvectors

||

* Let 4 be an nxn square matrix

* An eigenvalue of 4 is a scalar
A such that

Ax = AXx

where x Is some n-D vector

. ) . .
X 1S the correspondlng elgenvector Blue arrow is eigenvector of shear

— Interpretation: x Is a vector that is left transform, red is not

unchanged in direction by the linear transformation
— It is not unique: sx Is also an eigenvector for scalar s

— If, for the same eigenvalue /, there are & linearly independent eigenvectors
X,, X,, -.., X;, then the eigenvalue Is said to have geometric multiplicity £,
and any linear combination X, w;x; Is also an eigenvector




Functions as vectors

e Functions from 4 to B form a vector space: we
can think of functions as “vectors”

- E.g. we can commutatively add two functions:
frg=g+f

— Or distribute multiplication with a scalar:
s(f+g)=sf+sg

- If we want, we can also associate a norm (“vector
length”) with a function: e.g. || f]| = (If2(x) dx)"?



A function can be discretized

* Characterize a function f* by its values at a finite
set of n sample points

— This results in a discrete function, let’s call 1t /*

— The discrete function is perfectly defined by its values
at the n points

— In other words, f* Is represented by a finite-
dimensional vector [ /' (x)), f (x,), ..., f(x,)]

Continuous function f _ _
0 1
Discrete approximation f * _ _

1 2 3 4 5 6 7 8 9 10 N 12 13 14




Linear operators

* An operator 7 is a mapping from a vector space U to
another vector space V

— Tis a linear operator if T(a + b) = T(a) + T(b)

e The set of functions F from domain 4 to codomain B Is a
vector space

— So we can have operators T that map from one function space
I to another function space G

— Note that T maps functions to functions!
. . d d& .
* The differentials ,—5, T etc are linear operators
dx " dx" dx

— They map functions to their derivatives




Eigenfunctions

* An eigenvalue of a linear operator 7 that maps a
vector space to itself is a scalar 4 s.t.

1(x) = Ax
and x Is the corresponding eigenvector

 If 7 maps functions to functions, then we call x an
eigenfunction: 7(f) = Jf



Discrete Linear Operators

 Theorem: Any linear operator between finite-
dimensional vector spaces can be represented by a
matrix

— Let’s say we have a set of functions F from 4 to B

— The discrete versions of the functions form a finite-
dimensional vector space F* equivalent to R"

e Each function is sampled at the same finite set of points

— Let T be a linear operator from F to itself
— ... and T* be a “discrete version” of T acting on F*

— Then T* can be represented by a nxn matrix (cf. theorem)



Example: Discrete Derivative

Continuous Discrete
* Function: f .« Vector: £=[ f{x,), fix) ... fix,)]
» Operator: di .« Matrix:
X :
-1 1 0 0 0
: 0O -1 1 0 0
. ! 1 0 -1 0 0
* Applying operator: A=
5 0 0 11
ﬂi:: ' : 0 0 - 0 -1
d x '

* Applying matrix:
Af=1



Example: Discrete Derivative

Continuous Discrete




Example: Discrete 2™ Derivative

Continuous Discrete
e Function: f .« Vector: £=[f{x,), ix,) ... fix,)]
 Operator: d .« Matrix:
dx’ :
—2 1 0 0 0
, 1 -2 1 0 0
: : 1 1 =2 0 O
* Applying operator: b=
, : 0 0 -2 1
d_f:f,, ; 0 0 - 1 -2
dx’ :

* Applying matrix:
LEf=f”



Operators in higher dimensions

e The underlying function space can have a higher-
dimensional domain

F ‘ -4 1 .- 1 .

1 -4 1 - 1 . .

1 —4 : 1 :
B 1. . -4 1 .1 .
Continuous function . 1 ‘ 1 -4 1 y 1 .
.1 - 1 —4 .1
F ™ S Y
.1 -1 -4 1

) L1 1 —4 |

E 4

Discrete approximation

2D discrete Laplace operator




Interpreting eigenfunctions

e Eigenvalues of a linear operator form its spectrum

* The eigenfunctions are unchanged (except for
scaling) when transformed by the operator

- Think of them as standing waves on the surface

° Eg
2 .
d 5111(21”1X> — _n? X% sin(nx) d’e™”
d x 2 2 e
dzcos(nx) "

. = —n° X cos(nx)



Interpreting eigenfunctions

* The eigenfunctions of the operator form a basis
for the function space

2
— E.g. the sinusoidal eigenfunctions of LZ form the

Fourier basis
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The first 8 sinusoidal eigenfunctions of the second derivative operator.
The eigenvalues are the negative squared frequencies.



Operators on manifolds

» We can define a function on ‘N %
: b e
a manifold curve/surface! 1
- E.g. the coordinate function: ot y
gives the (X, Y, Z) position of » % /A
a point on the surface '\

e A common operator Is the

Laplace-Beltrami operator ; L &

— lts eigenfunctions define a

basis for functions over the ; E
surface JH px




Levy and Zhang

Eigenfunctions of Laplace-Beltrami
oo TRMNIRAR PRAATR
20"

surface
under isometry
e We can discretize it dm 0@0‘“
as usual: the e ) /.“\
function Is defined " . -
at a fixed set of

sample points on
the shape

- Doesn’t change




Levy and Zhang, Ovsjanikov et al.

Eigenfunctions of Laplace-Beltrami

* The spectrum of the L-B operator characterizes
the |ntr|nS|c geometry of the shape
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» [wo shapes related by isometry have the same
Laplace-Beltrami spectrum
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Expressing a function with eigenfunctions

e Continuous:

Jp)=w0/(p) t w,ex(p) + ... T W,0,(p)

e Discrete:

[ E/117] [ E1n [ E11 cee Bin] 21

ok E'2q Ea., EFEa1 ... E::: ;.13 B
Z e, T, g (1 B e o | e : : _ | = EX
= - Enn ] | E.. o [

X =ETX
The spectral transform
v, = el - X N
i —
X X
Projection of X Spatial Specitral
along eigenvector domain domain



Reconstruction in 2D

* More accuracy with more eigenfunctions

e Function i1s the coordinate function

— We're reconstructing the extrinsic shape of the object

/7
” ik
/ \ \
()] ) # éL % ﬁ*
\ / ' n=75
</ L ¢ €
k=3. k=5 k=10 k=20 k=30, k = %n Original.
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Reconstruction in 3D

* More accuracy with more eigenfunctions

e Function iIs the coordinate function

— We're reconstructing the extrinsic shape of the object

N~

ta) Original, (b} & =300, fe) A= 200, (d) & = 100,

1) A 4 P 7 kh

(e) k = 50, (£) ke = 10, ig) k=5, (b) & = 3.
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