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Matrices as transformations
● Let A be an m×n matrix

– It can be thought of as a function that maps a vector
x ∈ ℝn to a vector Ax ∈ ℝm

● A is a linear transformation
– f is linear if f(a + b) = f(a) + f(b)
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Eigenvalues and Eigenvectors

● Let A be an n×n square matrix
● An eigenvalue of A is a scalar

λ such that

            Ax = λx

where x is some n-D vector
● x is the corresponding eigenvector

– Interpretation: x is a vector that is left
unchanged in direction by the linear transformation

– It is not unique: sx is also an eigenvector for scalar s

– If, for the same eigenvalue λ, there are k linearly independent eigenvectors
x1, x2, …, xk , then the eigenvalue is said to have geometric multiplicity k,
and any linear combination Σi wi xi is also an eigenvector

Blue arrow is eigenvector of shear
transform, red is not

Wikipedia



Functions as vectors

● Functions from A to B form a vector space: we
can think of functions as “vectors”
– E.g. we can commutatively add two functions:

f + g = g + f

– Or distribute multiplication with a scalar:
s(f + g) = sf + sg

– If we want, we can also associate a norm (“vector
length”) with a function: e.g. || f || = (∫ f 2(x) dx)1/2



A function can be discretized
● Characterize a function f  by its values at a finite

set of n sample points
– This results in a discrete function, let’s call it f *

– The discrete function is perfectly defined by its values
at the n points

– In other words, f * is represented by a finite-
dimensional vector [ f (x1), f (x2), …, f (xn)]

Continuous function f

Discrete approximation f *
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Linear operators

● An operator T is a mapping from a vector space U to
another vector space V

– T is a linear operator if T(a + b) = T(a) + T(b)

● The set of functions F from domain A to codomain B is a
vector space
– So we can have operators T that map from one function space

F to another function space G

– Note that T maps functions to functions!

● The differentials      ,      ,       etc are linear operators
– They map functions to their derivatives
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Eigenfunctions

● An eigenvalue of a linear operator T that maps a
vector space to itself is a scalar λ s.t.

T(x) = λx

and x is the corresponding eigenvector
● If T maps functions to functions, then we call x an

eigenfunction: T(f ) = λf



Discrete Linear Operators

● Theorem: Any linear operator between finite-
dimensional vector spaces can be represented by a
matrix
– Let’s say we have a set of functions F from A to B
– The discrete versions of the functions form a finite-

dimensional vector space F* equivalent to ℝn

● Each function is sampled at the same finite set of points

– Let T be a linear operator from F to itself
– … and T* be a “discrete version” of T acting on F*

– Then T* can be represented by a n×n matrix (cf. theorem)



Example: Discrete Derivative

A  =  
1
h [

−1 1 0 ⋯ 0 0
0 −1 1 ⋯ 0 0

 0 −1 ⋯ 0 0
⋮   ⋱  ⋮
0 0   −1 1
0 0 ⋯  0 −1

]

Continuous
● Function: f
● Operator:

● Applying operator:

Discrete
● Vector: f = [ f(x1), f(x2) … f(xn)]

● Matrix:

● Applying matrix:
Af = f’
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Example: Discrete Derivative

Continuous Discrete

d
d x A



Example: Discrete 2nd Derivative

Continuous
● Function: f
● Operator:

● Applying operator:

Discrete
● Vector: f = [ f(x1), f(x2) … f(xn)]

● Matrix:

● Applying matrix:
Lf = f ”

d2

d x2

d2 f

d x2  = f ' '

L  =  
1

h2 [
−2 1 0 ⋯ 0 0
1 −2 1 ⋯ 0 0

 1 −2 ⋯ 0 0
⋮   ⋱  ⋮
0 0   −2 1
0 0 ⋯  1 −2

]



Operators in higher dimensions
● The underlying function space can have a higher-

dimensional domain

2D discrete Laplace operator

Continuous function

Discrete approximation



Interpreting eigenfunctions

● Eigenvalues of a linear operator form its spectrum
● The eigenfunctions are unchanged (except for

scaling) when transformed by the operator
– Think of them as standing waves on the surface

● E.g.

d2sin (n x )
d x2

 =  −n2  × sin(n x )

d2cos (n x)
d x2  = −n2  ×  cos (n x)

d2eλ x

d x2  = λ2  ×  eλ x



Interpreting eigenfunctions
● The eigenfunctions of the operator form a basis

for the function space
– E.g. the sinusoidal eigenfunctions of         form the

Fourier basis

The first 8 sinusoidal eigenfunctions of the second derivative operator.
The eigenvalues are the negative squared frequencies.

d2

d x2
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Operators on manifolds

● We can define a function on
a manifold curve/surface!
– E.g. the coordinate function:

gives the (X, Y, Z) position of
a point on the surface

● A common operator is the
Laplace-Beltrami operator
– Its eigenfunctions define a

basis for functions over the
surface

Ovsjanikov et al.



Eigenfunctions of Laplace-Beltrami

● Intrinsic basis for
functions over
surface
– Doesn’t change

under isometry

● We can discretize it
as usual: the
function is defined
at a fixed set of
sample points on
the shape

Levy and Zhang



Eigenfunctions of Laplace-Beltrami

● The spectrum of the L-B operator characterizes
the intrinsic geometry of the shape

● Two shapes related by isometry have the same
Laplace-Beltrami spectrum

Levy and Zhang, Ovsjanikov et al.



Expressing a function with eigenfunctions

● Continuous:
f(p) = w1 φ1(p) + w2 φ2(p) + … + wnφn(p)

● Discrete:

Levy and Zhang



Reconstruction in 2D

● More accuracy with more eigenfunctions
● Function is the coordinate function

– We’re reconstructing the extrinsic shape of the object

Levy and Zhang



Reconstruction in 3D
● More accuracy with more eigenfunctions
● Function is the coordinate function

– We’re reconstructing the extrinsic shape of the object

Levy and Zhang
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