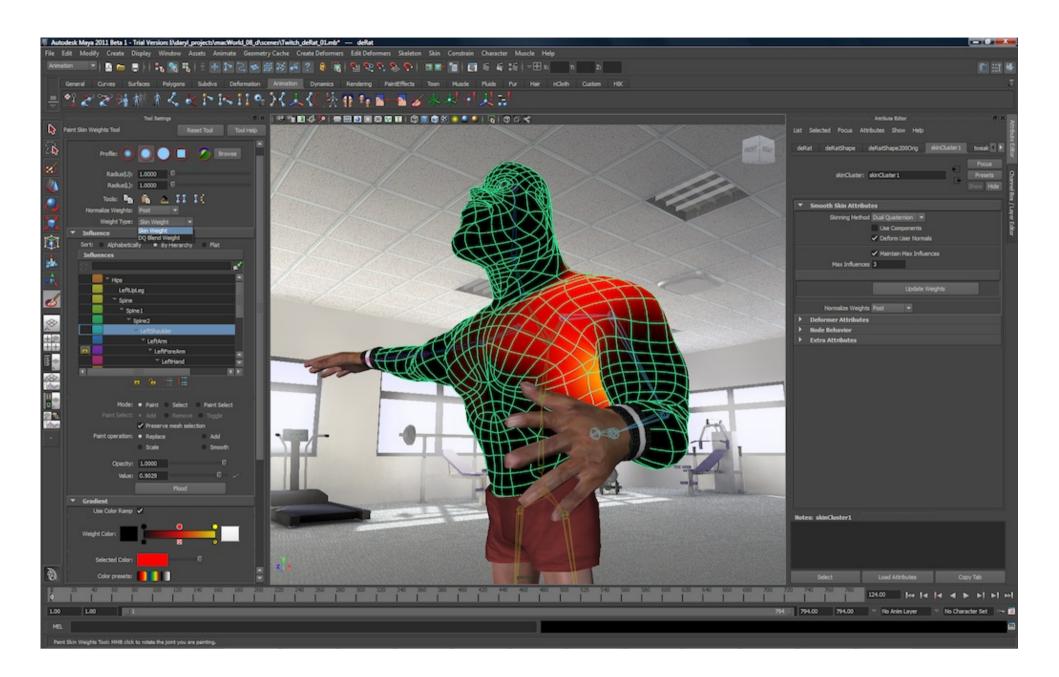
Data-Driven Design

Siddhartha Chaudhuri

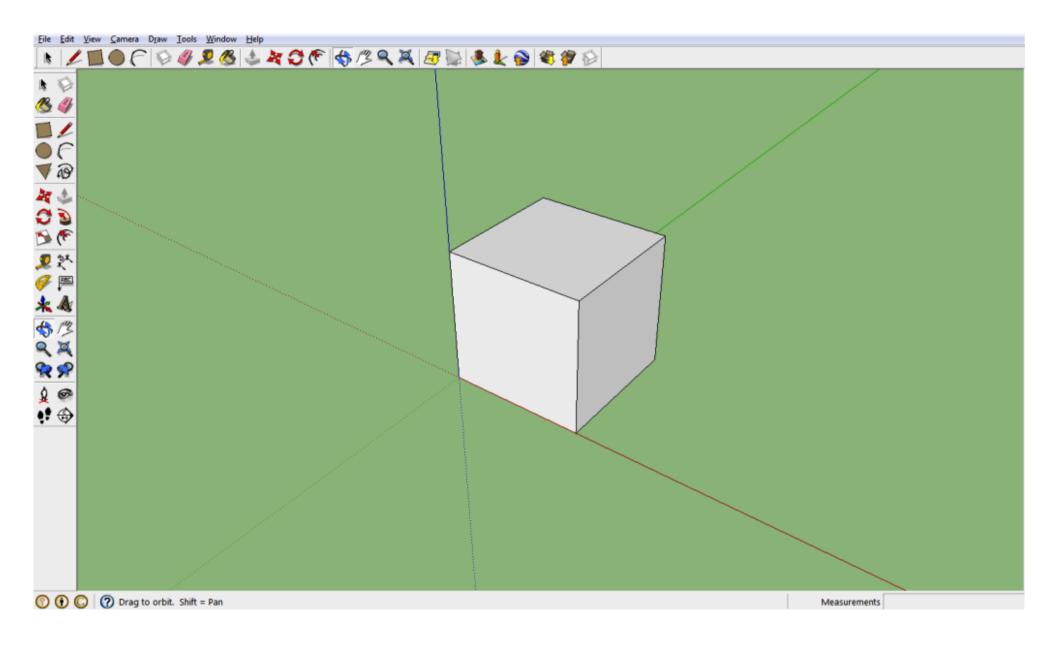
CS749: Digital Geometry Processing Spring 2016

http://www.cse.iitb.ac.in/~cs749



Autodesk, Inc.

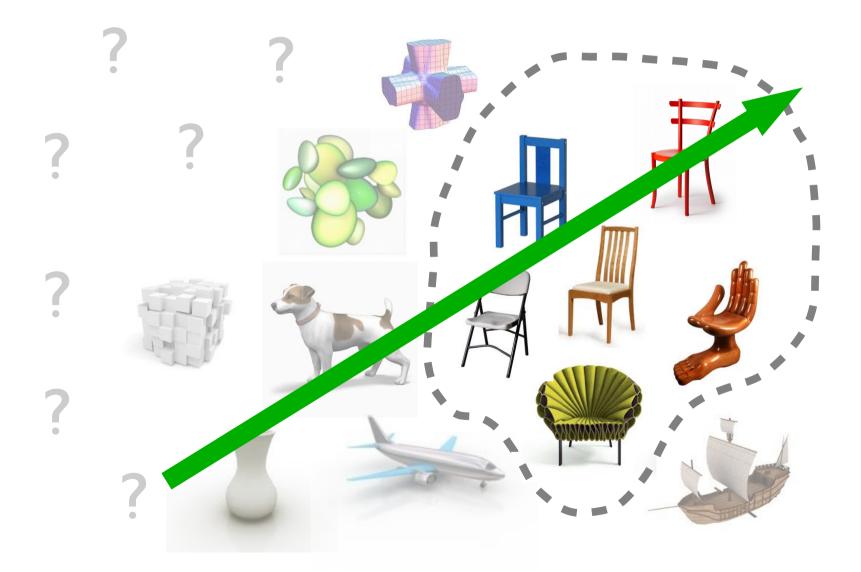
silmaril@wikipedia

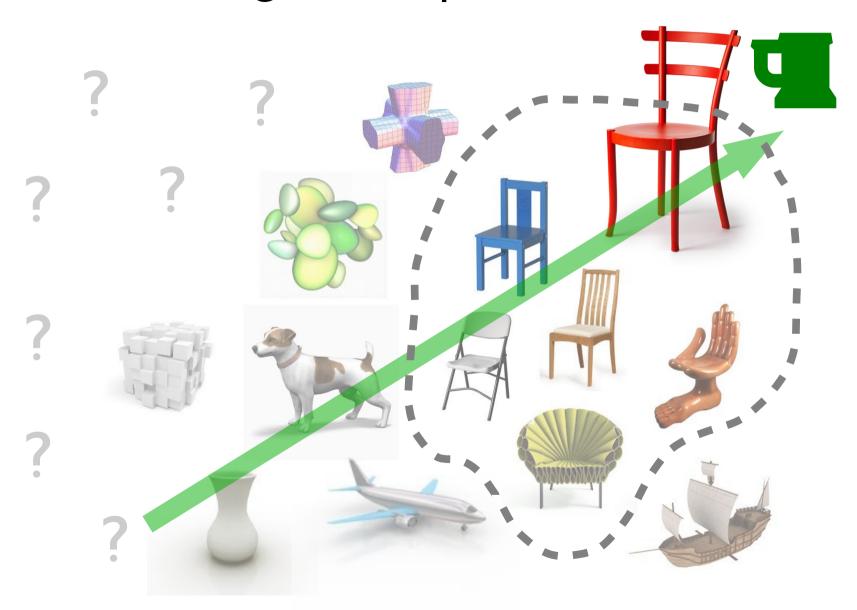


rollins.edu

How can we create more widely usable design tools?

- Humans give high-level directions
- Computers handle low-level details





2 Big Questions

2 Big Questions

• How can we identify the **feasible** regions of design space?

(Optimization *constraint*)

2 Big Questions

 How can we identify the feasible regions of design space?

(Optimization *constraint*)

• How can people specify design intent? (Optimization *objective*)

Outline

- Learning design structure from repositories of shapes
 - Probabilistic models of shape

Outline

- Learning design structure from repositories of shapes
 - Probabilistic models of shape
- Learning to capture design intent
 - Semantic **attributes** (*scary, artistic,* ...)
 - Mechanical **function** (*this airplane should fly*...)
 - Human interaction (*sit comfortably in a chair...*)

• **Reuse** (of existing components)

- **Reuse** (of existing components)
- Training (of computational models)

- **Reuse** (of existing components)
- Training (of computational models)
- Inspiration (for new designs)

Outline

- Learning design structure from repositories of shapes
 - Probabilistic models of shape
- Learning to capture design intent
 - Semantic **attributes** (*scary, artistic,* ...)
 - Mechanical **function** (*this airplane should fly...*)
 - Human interaction (*sit comfortably in a chair...*)

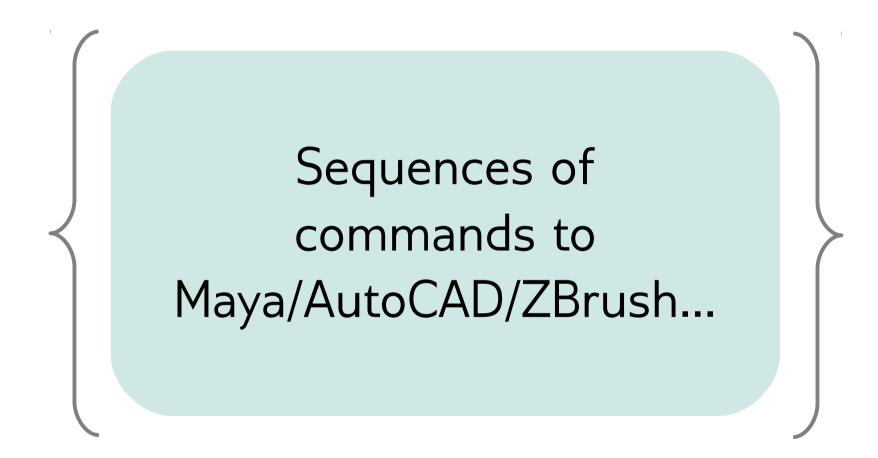
- General
 - Topological/geometric/configurational variety

- General
 - Topological/geometric/configurational variety
- Probabilistic
 - Some designs are more plausible than others

- General
 - Topological/geometric/configurational variety
- Probabilistic
 - Some designs are more plausible than others
- Generative
 - Can be used to produce new designs

- General
 - Topological/geometric/configurational variety
- Probabilistic
 - Some designs are more plausible than others
- Generative
 - Can be used to produce new designs
- Meaningfully Parametrized
 - Design intent readily maps to "suitable" designs

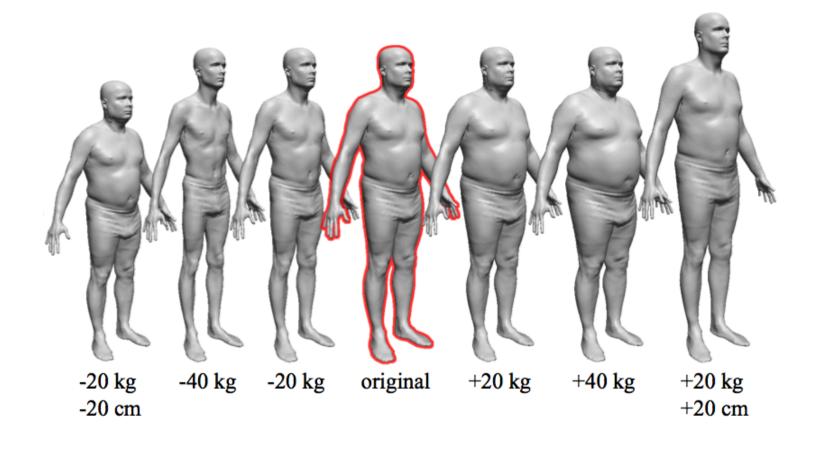
Design Space: Maya



Generality: High Probabilistic: No Meaningful parametrization: No Data-driven: No

Design Space: Deformable Template

(one topology, plus parameters for body type)

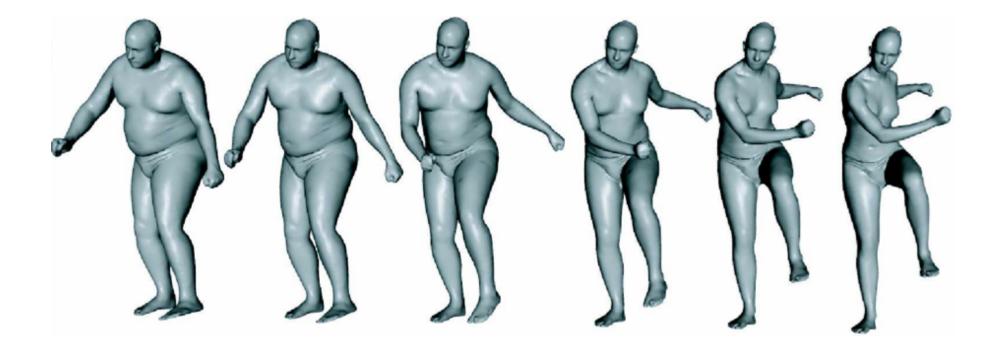


Generality:	Low	Meaningful parametrization:	Moderate
Probabilistic:	Yes	Data-driven:	Yes

Allen, Curless and Popovic, 2003

Design Space: Deformable Template

(one topology, plus parameters for both body type and pose)



Generality: Low-ish Probabilistic: Yes Meaningful parametrization: Data-driven:

Moderate Yes

Anguelov et al., 2005

Design Space: Parametrized Procedure

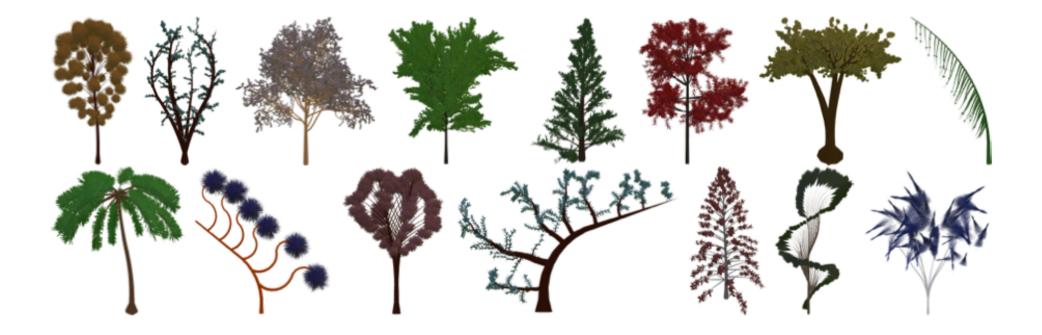
(fixed set of parameters)

Generality: Moderate Probabilistic: No Meaningful parametrization: Yes Data-driven: No

Weber and Penn, 1995

Design Space: Probabilistic Procedure

(probability distribution on parameters)



Generality: Moderate Probabilistic: Yes Meaningful parametrization: Data-driven:

Yes Partially

Design Space: Probabilistic Grammar

(hierarchical generation)

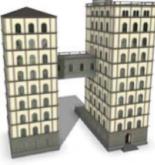
PRIORITY 1:

1: footprint → S(1r,building_height,1r) facades T(0,building_height,0) Roof("hipped",roof_angle){ roof }

PRIORITY 2:

3:

- 2: facades \rightsquigarrow Comp("sidefaces"){ facade }
- 4: facade \rightarrow tiles
- 5: tiles → Repeat("X",*window_spacing*){ tile }
- 6: tile → Subdiv("X",1r,window_width,1r){ wall | Subdiv("Y",2r,window_height,1r){ wall | window | wall } | wall }
- 7: window : Scope.occ("noparent") != "none" → wall
- 8: window \rightarrow S(1r,1r,window_depth) I("win.obj")
- 9: entrance → Subdiv("X",1r,door_width,1r){ wall | Subdiv("Y",door_height,1r){ door | wall } | wall }
- 10: door \rightsquigarrow S(1r,1r,door_depth) I("door.obj")
- 11: wall \rightsquigarrow I("wall.obj")



Generality: Moderate Probabilistic: Yes

Meaningful parametrization: Data-driven:

Design Space: Probabilistic Grammar

(learned from examples)

Generality: Moderate Probabilistic: Yes Meaningful parametrization: Data-driven:

Moderate Yes

Talton et al., 2012

Design Space: Assembly-Based Modeling

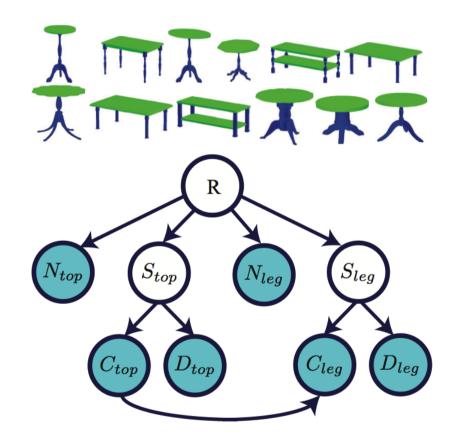
(piece together existing components)

Generality: Moderate Probabilistic: No Meaningful parametrization:YesData-driven:Reuse

Spore, Maxis 2008

Design Space: Probabilistic Assembly

(some assemblies are better than others)



Generality:ModerateMeaningful parametrization:YesProbabilistic:YesData-driven:Yes

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Design Space: Probabilistic Assembly

(some assemblies are better than others)

Learned shape styles

Learned component styles

Generality: Moderate Probabilistic: Yes Meaningful parametrization: Yes Data-driven: Yes

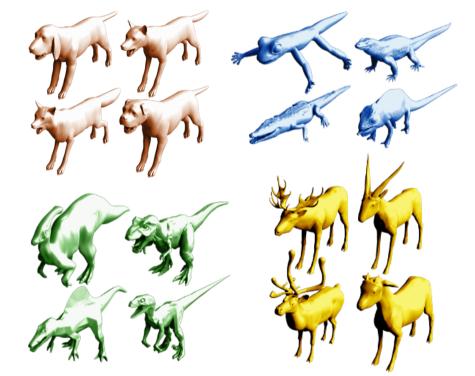
Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Design Space: Probabilistic Assembly

(some assemblies are better than others)

Learned shape styles

Learned component styles

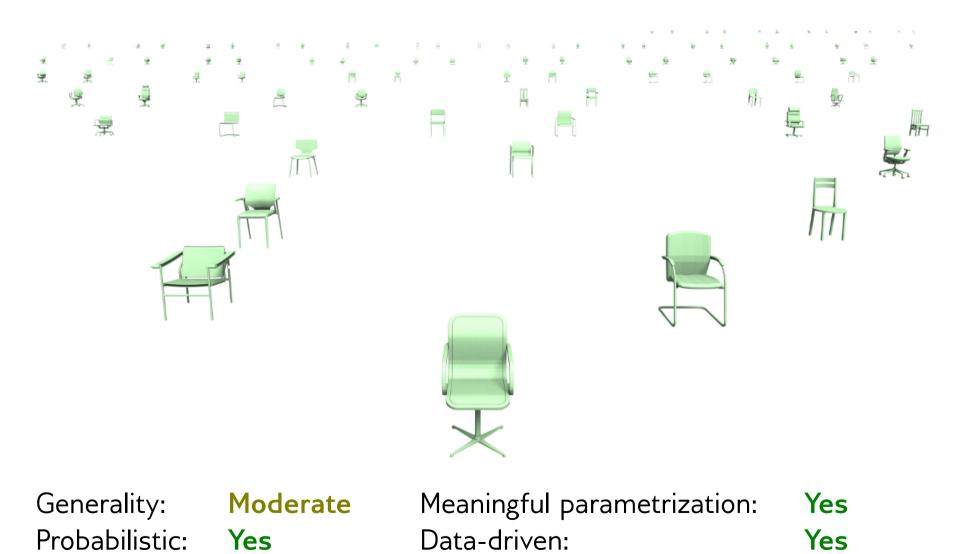


More learned shape "styles"

Generality: Moderate Probabilistic: Yes Meaningful parametrization:YesData-driven:Yes

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

(some assemblies are better than others)



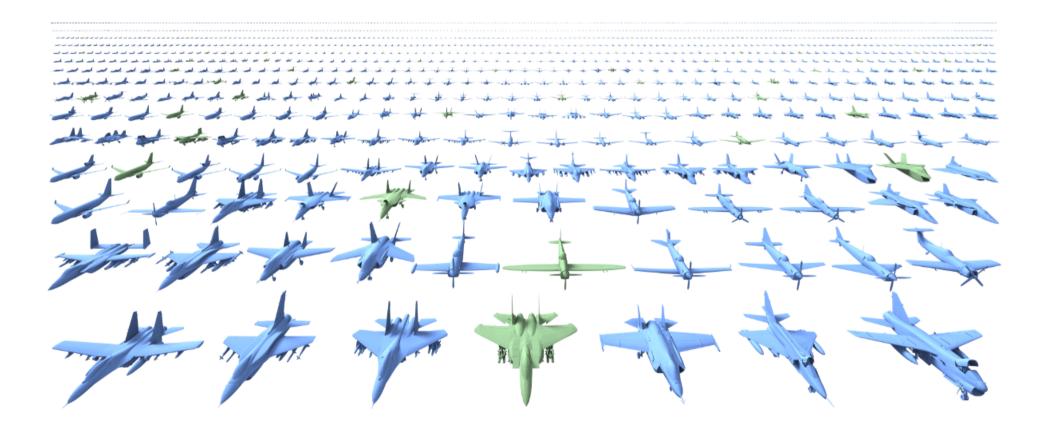
(some assemblies are better than others)

Generality:ModerateMeaningful parametrization:YesProbabilistic:YesData-driven:Yes

(some assemblies are better than others)

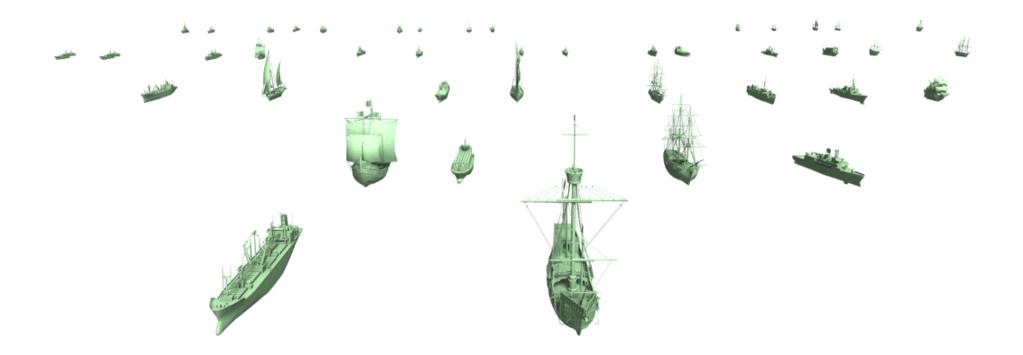
Generality:ModerateMeaningful parametrization:YesProbabilistic:YesData-driven:Yes

(some assemblies are better than others)



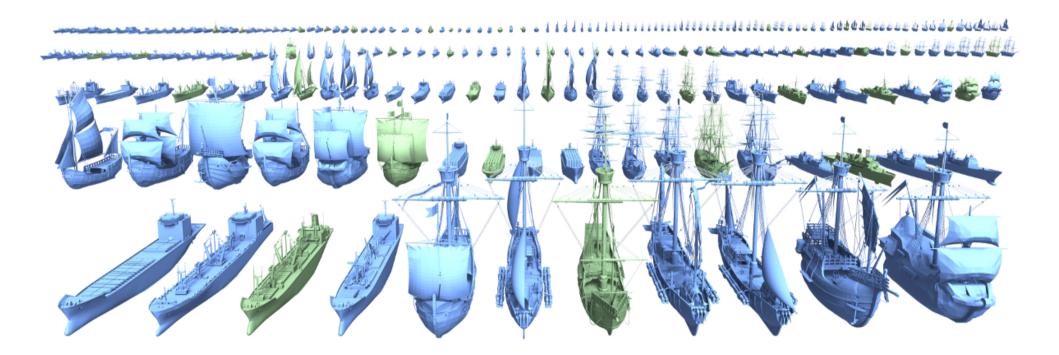
Generality:ModerateMeaningful parametrization:YesProbabilistic:YesData-driven:Yes

(some assemblies are better than others)



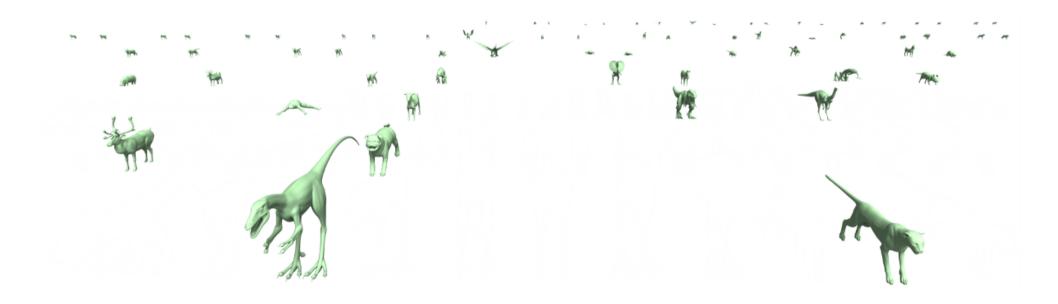
Generality:ModerateMeaningful parametrization:YesProbabilistic:YesData-driven:Yes

(some assemblies are better than others)



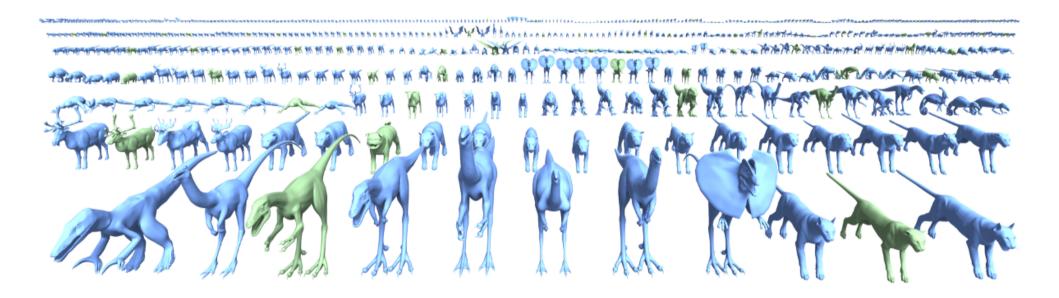
Generality:ModerateMeaningful parametrization:YesProbabilistic:YesData-driven:Yes

(some assemblies are better than others)



Generality:ModerateMeaningful parametrization:YesProbabilistic:YesData-driven:Yes

(some assemblies are better than others)



Generality:ModerateMeaningful parametrization:YesProbabilistic:YesData-driven:Yes

• Make an aerodynamic airplane

• Make an aerodynamic airplane

Make a comfortable chair

• Make an aerodynamic airplane

• Make a comfortable chair

• Make an efficient bicycle

• Make an aerodynamic airplane

• Make a comfortable chair

• Make an efficient bicycle

Make a professional-looking webpage

• Make an aerodynamic airplane

• Make a comfortable chair

• Make an efficient **bicycle**

Make a professional-looking webpage

• Make an **aerodynamic** airplane

• Make a **comfortable** chair

• Make an **efficient** bicycle

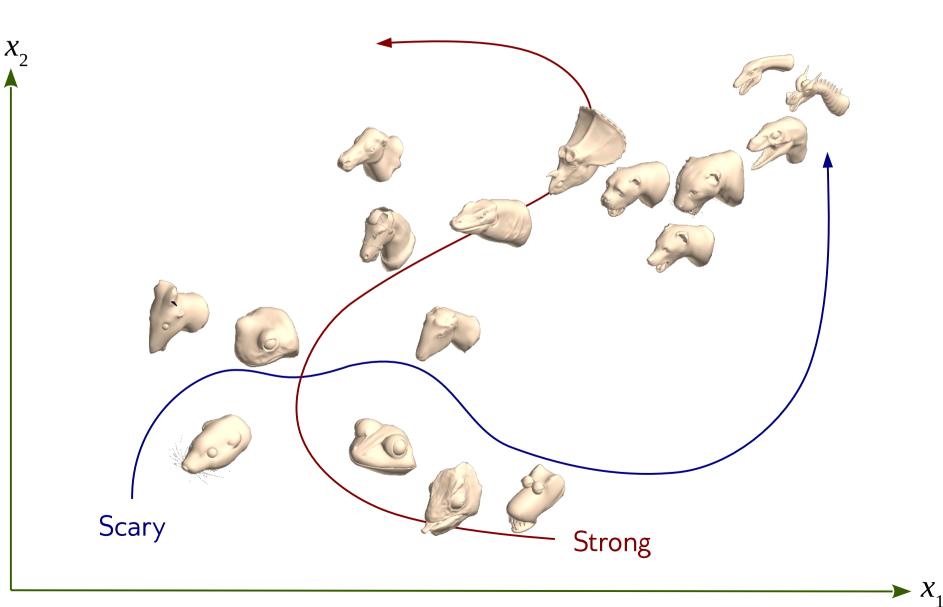
Make a professional-looking webpage

Outline

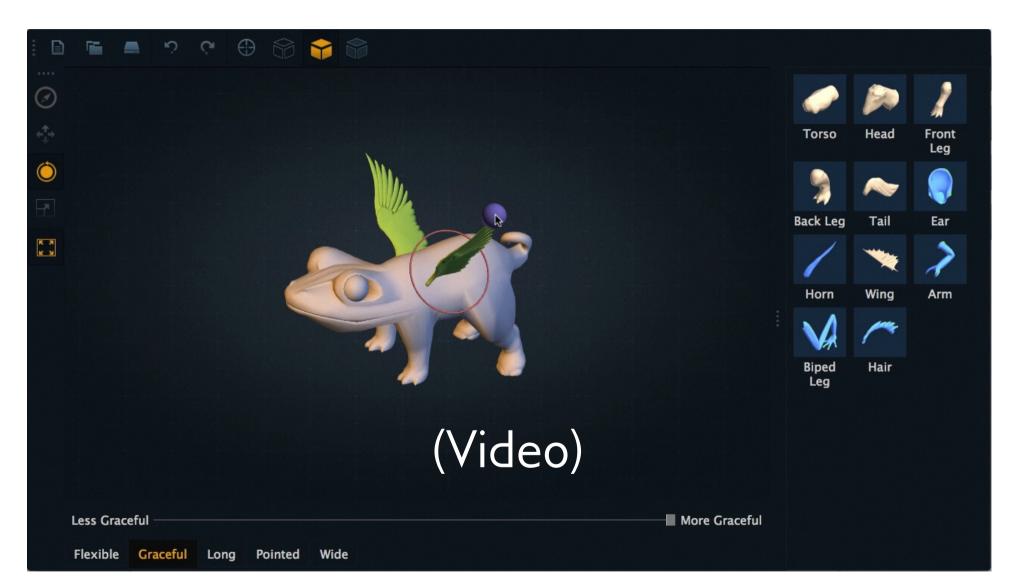
- Learning design structure from repositories of shapes
 - Probabilistic models of shape
- Learning to capture design intent
 - Semantic **attributes** (*scary, artistic,* ...)
 - Mechanical **function** (*this airplane should fly*...)
 - Human interaction (*sit comfortably in a chair...*)

Semantic Basis for Design Space

Semantic Basis for Design Space



A cute toy for a small child



Learning Semantic Attributes

- Crowdsource **comparative adjectives**
 - Amazon Mechanical Turk
 - Schelling survey

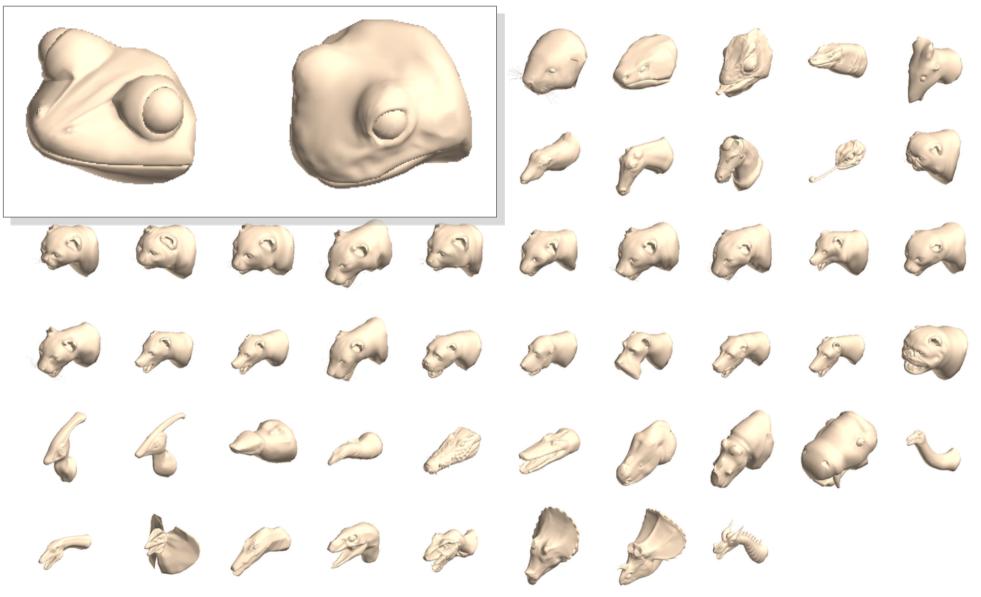
Learning Semantic Attributes

- Crowdsource **comparative adjectives**
 - Amazon Mechanical Turk
 - Schelling survey
- Crowdsource comparisons for training pairs
 - A is more [.....] than B

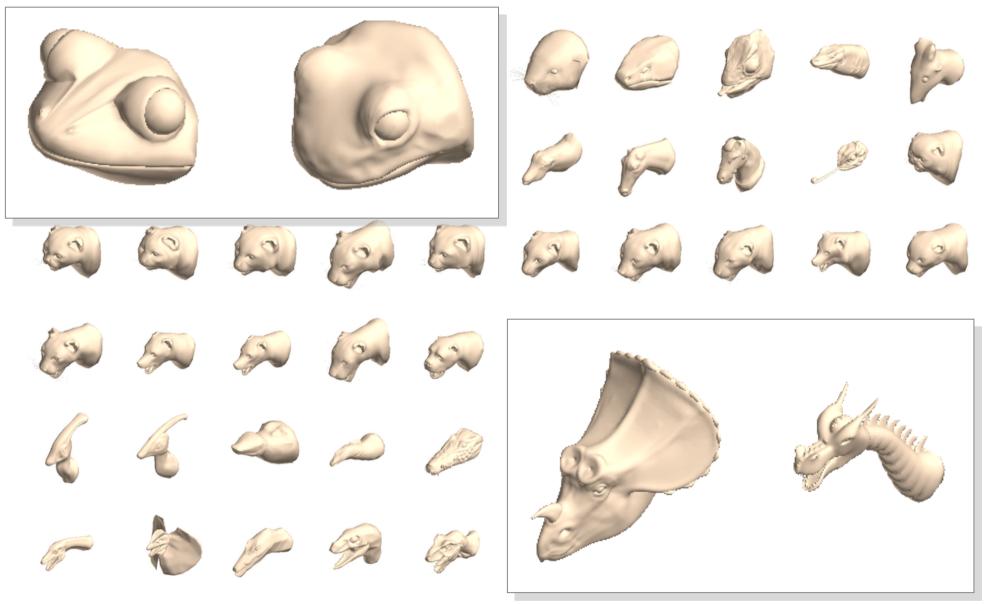
Learning Semantic Attributes

- Crowdsource comparative adjectives
 - Amazon Mechanical Turk
 - Schelling survey
- Crowdsource comparisons for training pairs
 - A is more [.....] than B
- Learn ranking functions
 - f: shape features $\rightarrow \mathbb{R}$
 - Rank-SVM with transformed features & sigmoid loss
 - Iterate with cross-correlation between attributes
 - Extend to multi-component rankings

"Dangerous"

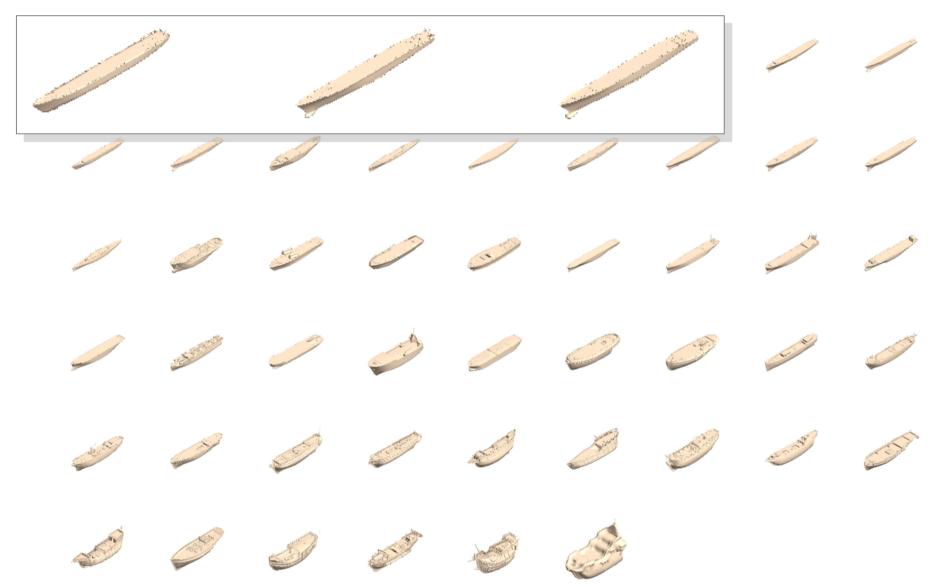


"Dangerous"

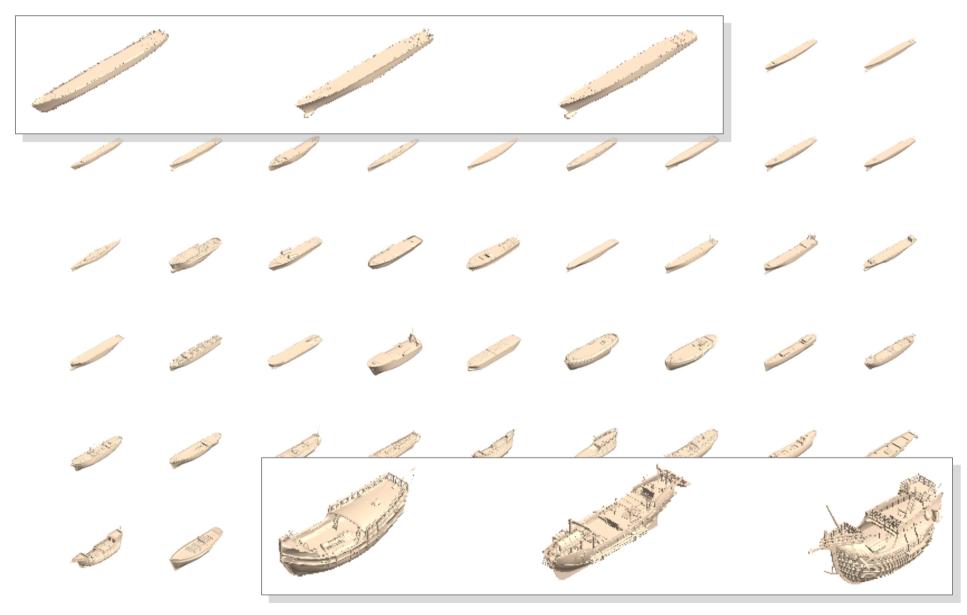


"Old-fashioned"

"Old-fashioned"



"Old-fashioned"

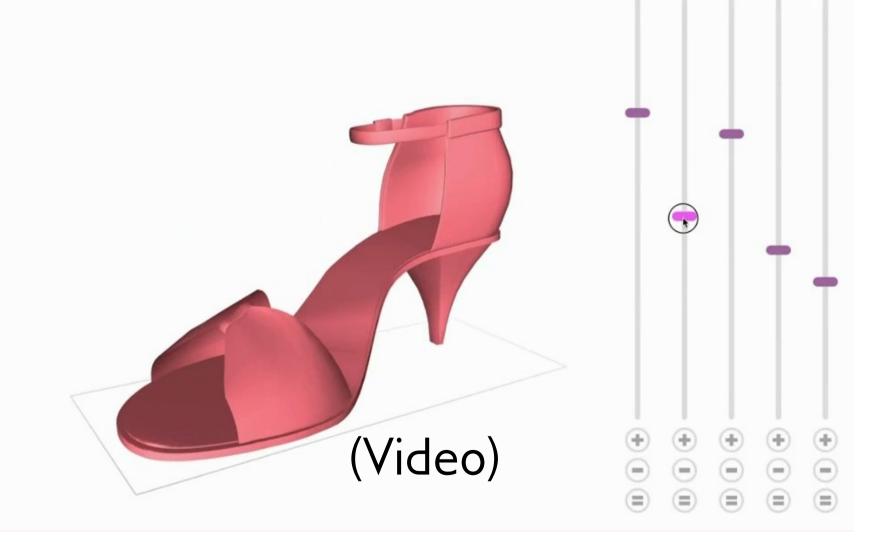


Web Design with Semantic Attributes

Attributes: artistic, casual, cheerful, colorful, creative, cute, elegant, emphatic, modern, professional, romantic, simple, welcoming

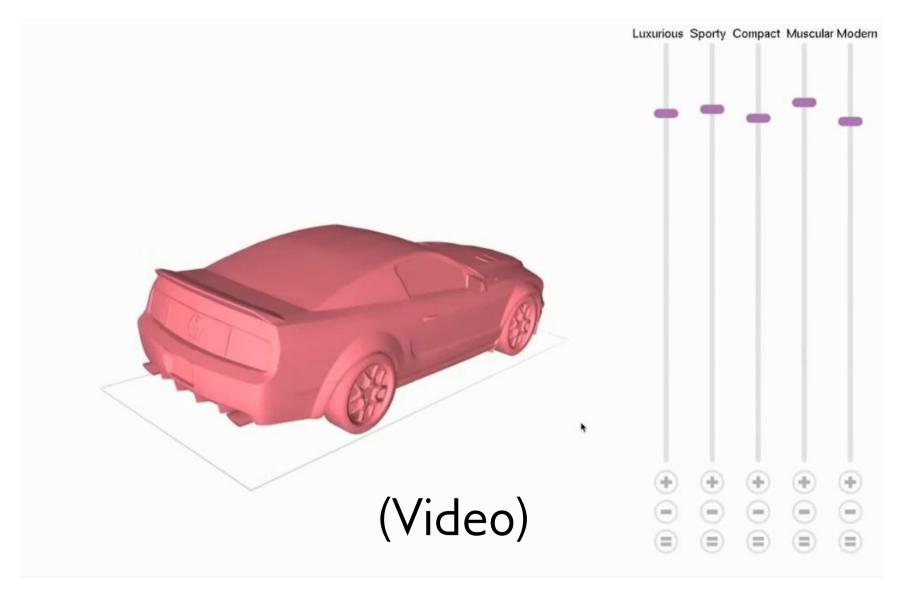
Continuous Deformation: Shoes

Fashionable Comfy Feminine Active Durable



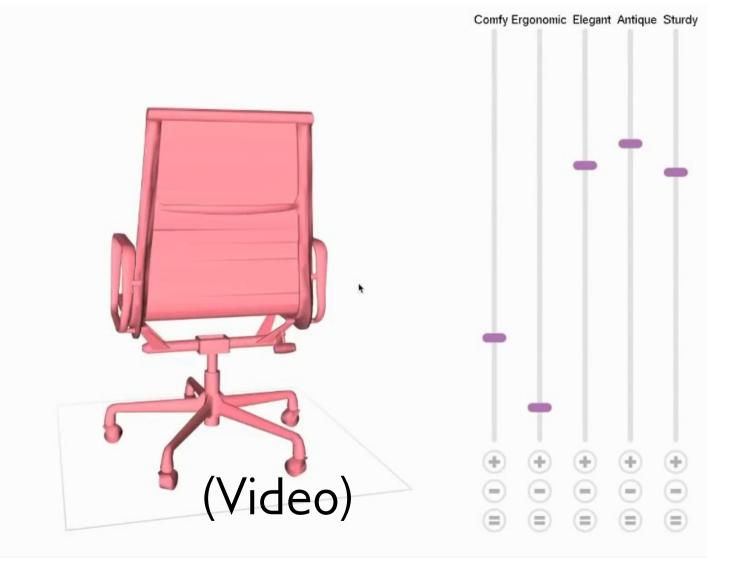
Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015

Continuous Deformation: Cars

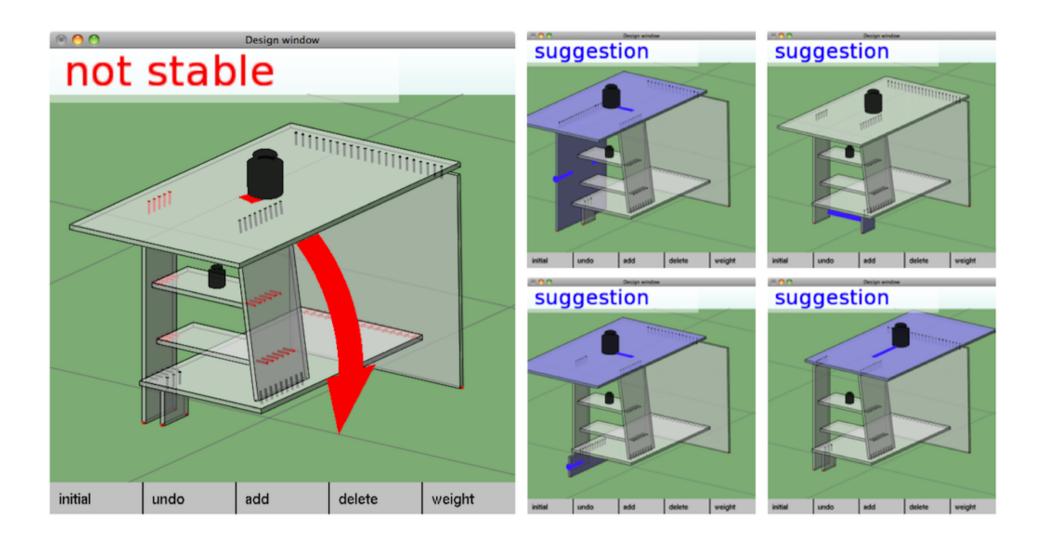


Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015

Continuous Deformation: Chairs



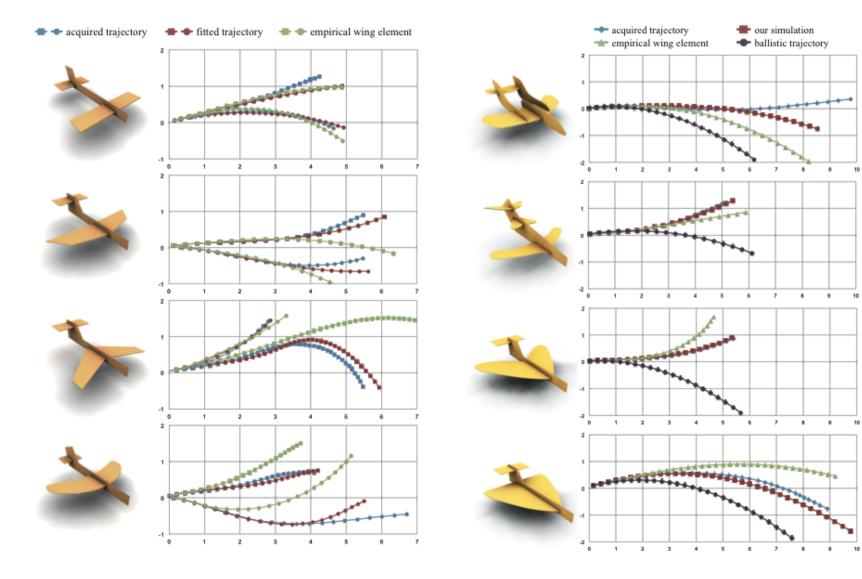
Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015



Umetani, Igarashi and Mitra, 2012

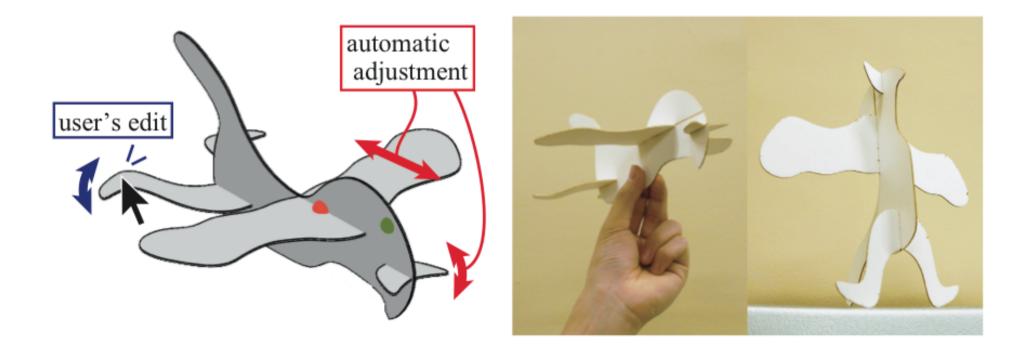
Umetani, Koyama, Schmidt and Igarashi, 2014

Umetani, Koyama, Schmidt and Igarashi, 2014



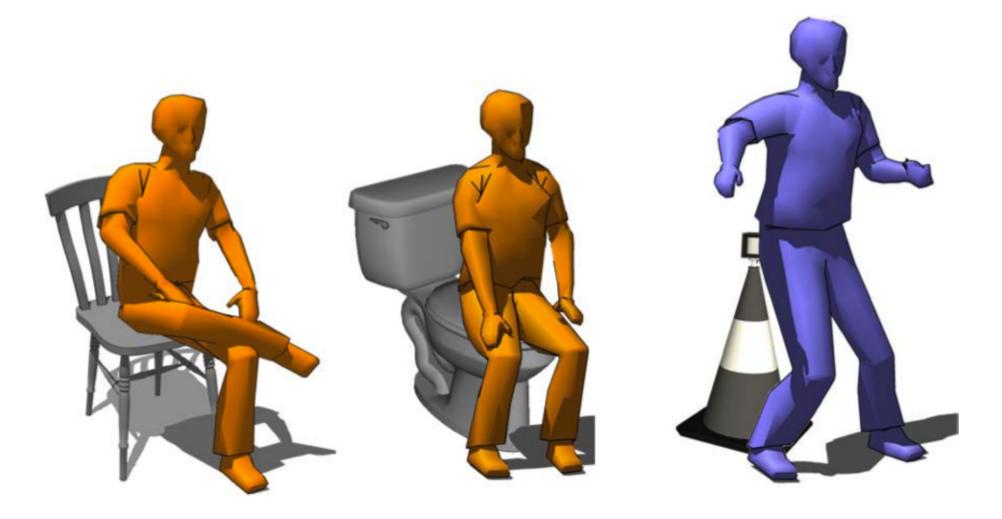
Umetani, Koyama, Schmidt and Igarashi, 2014

Designing for Mechanical Function



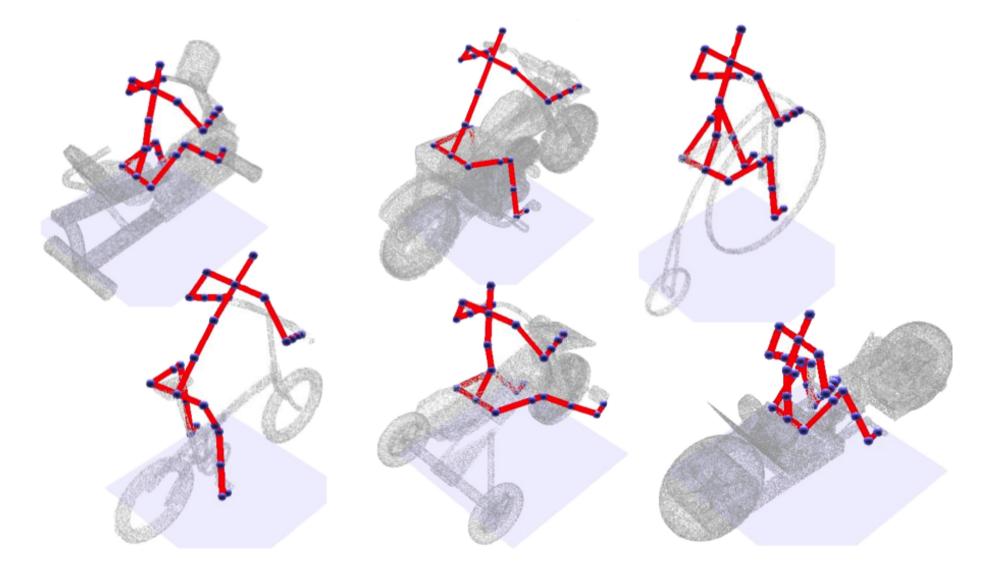
Umetani, Koyama, Schmidt and Igarashi, 2014

What makes a chair a chair?



Grabner, Gall and Van Gool, 2011

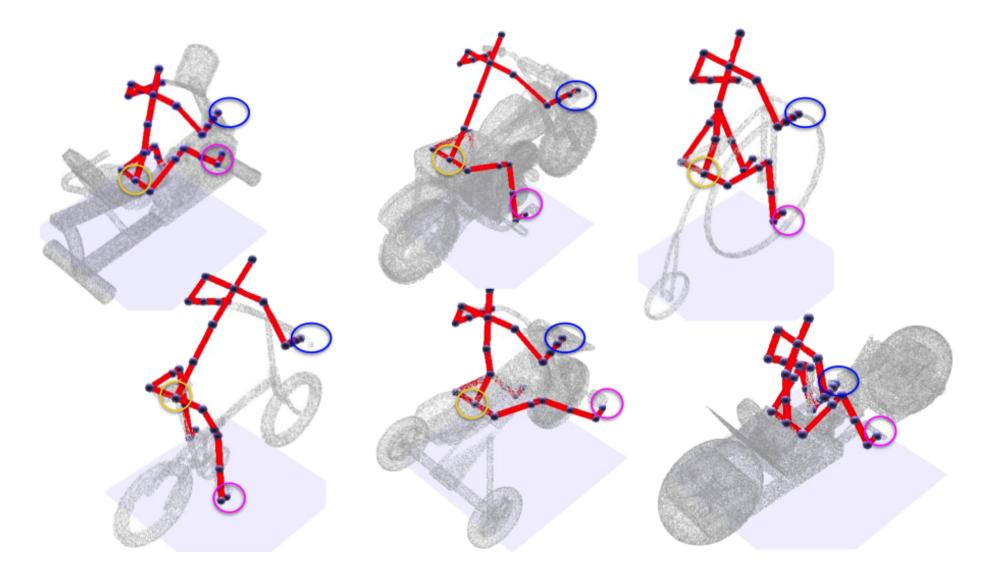
Human-Centric Shape Analysis



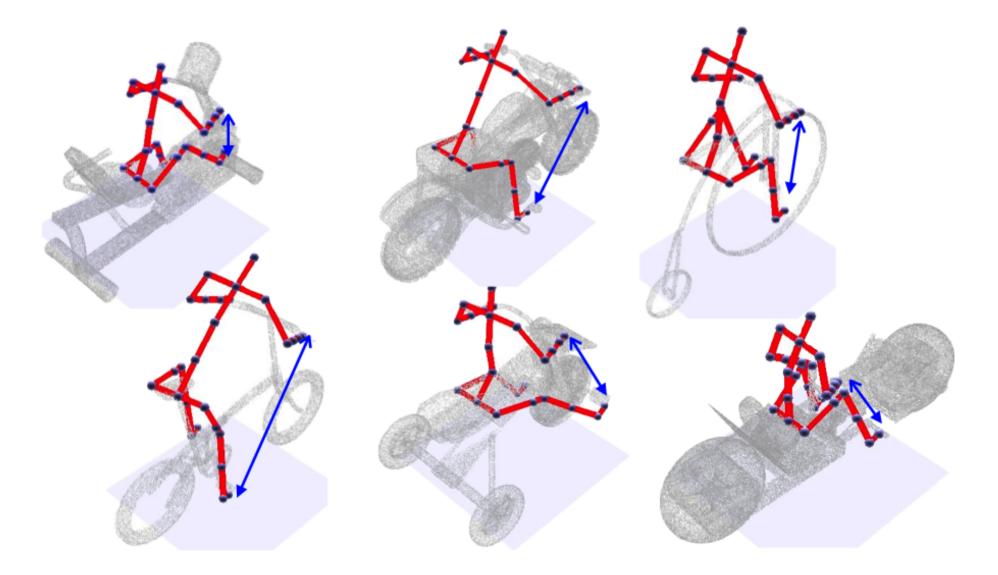
Point-to-Point Correspondences



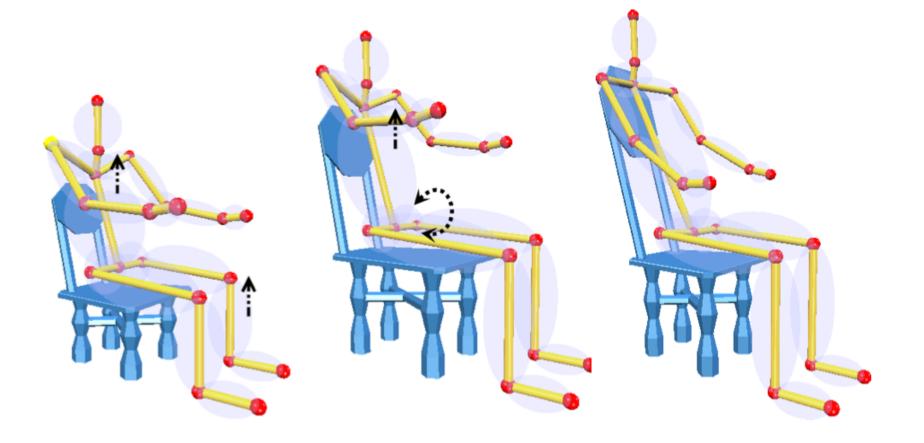
Functional Parts



Structural Variations

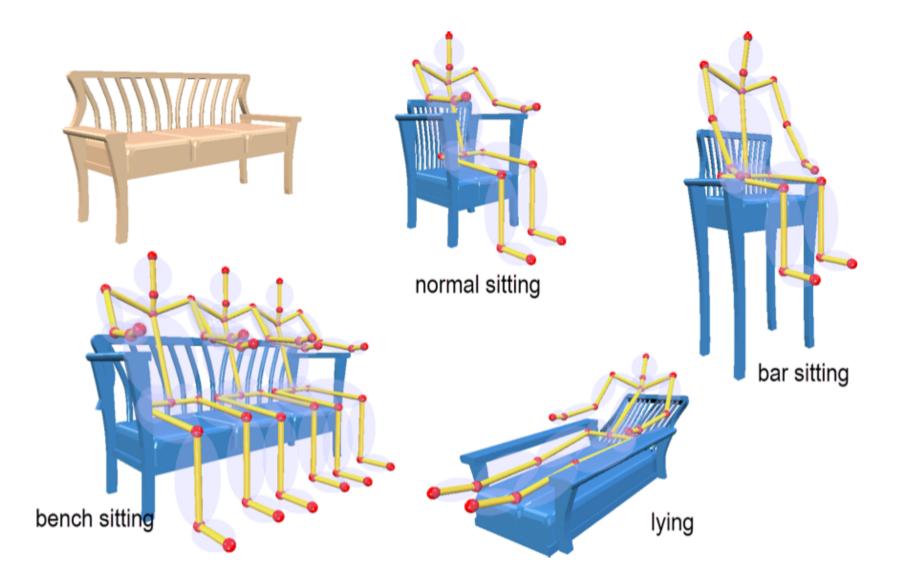


Shape Adjustment for Body Type



Zheng, Dorsey and Mitra, 2014

Shape Adjustment for Body Pose



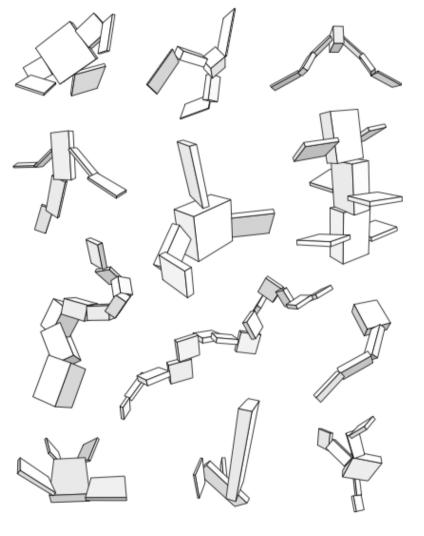
• **Design** as optimization

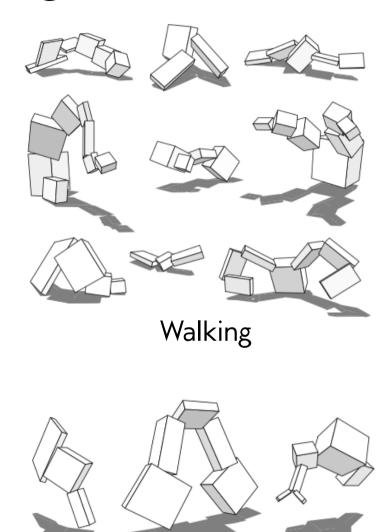
- **Design** as optimization
- **Probabilistic models** can characterize the structure of "plausible" objects

- **Design** as optimization
- **Probabilistic models** can characterize the structure of "plausible" objects
- Design intent can be captured through semantic attributes, mechanical function and human interaction

- **Design** as optimization
- **Probabilistic models** can characterize the structure of "plausible" objects
- Design intent can be captured through semantic attributes, mechanical function and human interaction
- Models of structure, attributes, function and interaction can be automatically learned from (big) data

Goal-Oriented Design Evolution





Swimming

"Evolving Virtual Creatures", Karl Sims, SIGGRAPH 1994

Jumping

