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How can we create
more widely usable design tools?

● Humans give high-level directions

● Computers handle low-level details
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2 Big Questions

● How can we identify the feasible 
regions of design space?

(Optimization constraint)

● How can people specify design intent?
(Optimization objective)
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● Learning to capture design intent
● Semantic attributes (scary, artistic, …)
● Mechanical function (this airplane should fly...)
● Human interaction (sit comfortably in a chair...)
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Design spaces should be...

● General
● Topological/geometric/configurational variety

● Probabilistic
● Some designs are more plausible than others

● Generative
● Can be used to produce new designs

● Meaningfully Parametrized
● Design intent readily maps to “suitable” designs



Design Space: Maya

Generality: High Meaningful parametrization: No
Probabilistic: No Data-driven: No

Sequences of
commands to

Maya/AutoCAD/ZBrush...



Design Space: Deformable Template
(one topology, plus parameters for body type)

Allen, Curless and Popovic, 2003

Generality: Low Meaningful parametrization: Moderate
Probabilistic: Yes Data-driven: Yes



Design Space: Deformable Template
(one topology, plus parameters for both body type and pose)

Anguelov et al., 2005

Generality: Low-ish Meaningful parametrization: Moderate
Probabilistic: Yes Data-driven: Yes



Weber and Penn, 1995

Design Space: Parametrized Procedure
(fixed set of parameters)

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: No Data-driven: No



Design Space: Probabilistic Procedure
(probability distribution on parameters)

Talton et al., 2009

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Partially



Design Space: Probabilistic Grammar
(hierarchical generation)

Müller et al., 2006

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Reuse



Design Space: Probabilistic Grammar
(learned from examples)

Talton et al., 2012

Generality: Moderate Meaningful parametrization: Moderate
Probabilistic: Yes Data-driven: Yes



Design Space: Assembly-Based Modeling
(piece together existing components)

Spore, Maxis 2008

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: No Data-driven: Reuse
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(some assemblies are better than others)

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Yes

Learned shape styles

Learned component styles More learned shape “styles”
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Design Space: Probabilistic Assembly
(some assemblies are better than others)

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Yes
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Outline

● Learning design structure from repositories of 
shapes
● Probabilistic models of shape

● Learning to capture design intent
● Semantic attributes (scary, artistic, …)
● Mechanical function (this airplane should fly...)
● Human interaction (sit comfortably in a chair...)
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A cute toy for a small child

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013

(Video)
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● Crowdsource comparative adjectives

● Amazon Mechanical Turk
● Schelling survey
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Learning Semantic Attributes
● Crowdsource comparative adjectives

● Amazon Mechanical Turk
● Schelling survey

● Crowdsource comparisons for training pairs
● A is more […...] than B

● Learn ranking functions
● f: shape features  → ℝ

● Rank-SVM with transformed features & sigmoid loss
● Iterate with cross-correlation between attributes
● Extend to multi-component rankings



“Dangerous”

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013
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Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013
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“Old-fashioned”

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



Web Design with Semantic Attributes

Less “artistic” More “artistic”

Less “casual” More “casual”

Attributes: artistic, casual, cheerful, colorful, creative, cute, elegant, 
emphatic, modern, professional, romantic, simple, welcoming

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



Continuous Deformation: Shoes

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015

(Video)



Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015

Continuous Deformation: Cars

(Video)



Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015

Continuous Deformation: Chairs

(Video)



Designing for Mechanical Function

Umetani, Igarashi and Mitra, 2012



Designing for Mechanical Function

Umetani, Koyama, Schmidt and Igarashi, 2014
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Designing for Mechanical Function

Umetani, Koyama, Schmidt and Igarashi, 2014



What makes a chair a chair?

Grabner, Gall and Van Gool, 2011



Human-Centric Shape Analysis

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Point-to-Point Correspondences

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Functional Parts

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Structural Variations

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Shape Adjustment for Body Type

Zheng, Dorsey and Mitra, 2014



Shape Adjustment for Body Pose

Zheng, Dorsey and Mitra, 2014
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Summary

● Design as optimization

● Probabilistic models can characterize the structure of 
“plausible” objects

● Design intent can be captured through 
semantic attributes, mechanical function and 
human interaction

● Models of structure, attributes, function and interaction 
can be automatically learned from (big) data



Goal-Oriented Design Evolution

Swimming

Walking

Jumping

“Evolving Virtual Creatures”, Karl Sims, SIGGRAPH 1994



(Video)
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