
Least Squares Fitting of Data

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2015. All Rights Reserved.

Created: July 15, 1999
Last Modified: January 5, 2015

Contents

1 Linear Fitting of 2D Points of Form (x, f(x)) 2

2 Linear Fitting of nD Points Using Orthogonal Regression 2

3 Planar Fitting of 3D Points of Form (x, y, f(x, y)) 3

4 Hyperplanar Fitting of nD Points Using Orthogonal Regression 4

5 Fitting a Circle to 2D Points 5

6 Fitting a Sphere to 3D Points 6

7 Fitting an Ellipse to 2D Points 7

8 Fitting an Ellipsoid to 3D Points 8

9 Fitting a Paraboloid to 3D Points of the Form (x, y, f(x, y)) 8

1

http://www.geometrictools.com/


This document describes some algorithms for fitting 2D or 3D point sets by linear or quadratic structures
using least squares minimization.

1 Linear Fitting of 2D Points of Form (x, f(x))

This is the usual introduction to least squares fit by a line when the data represents measurements where
the y-component is assumed to be functionally dependent on the x-component. Given a set of samples
{(xi, yi)}mi=1, determine A and B so that the line y = Ax + B best fits the samples in the sense that the
sum of the squared errors between the yi and the line values Axi + B is minimized. Note that the error is
measured only in the y-direction.

Define E(A,B) =
∑m

i=1[(Axi +B)− yi]2. This function is nonnegative and its graph is a paraboloid whose
vertex occurs when the gradient satistfies ∇E = (0, 0). This leads to a system of two linear equations in A
and B which can be easily solved. Precisely,

(0, 0) = ∇E = 2

m∑
i=1

[(Axi +B)− yi](xi, 1)

and so  ∑m
i=1 x

2
i

∑m
i=1 xi∑m

i=1 xi
∑m

i=1 1

 A

B

 =

 ∑m
i=1 xiyi∑m
i=1 yi

 .
The solution provides the least squares solution y = Ax+B.

If implemented directly, this formulation can lead to an ill-conditioned linear system. To avoid this, you
should first compute the averages x̄ =

∑m
i=1 xi and ȳ =

∑m
i=1 yi and subtract them from the data, xi ← xi−x̄

and yi ← yi − ȳ. The fitted line is of the form y − ȳ = A(x− x̄).

2 Linear Fitting of nD Points Using Orthogonal Regression

It is also possible to fit a line using least squares where the errors are measured orthogonally to the pro-
posed line rather than measured vertically. The following argument holds for sample points and lines in n
dimensions. Let the line be L(t) = tD+A where D is unit length. Define Xi to be the sample points; then

Xi = A + diD + piD
⊥
i

where di = D · (Xi −A) and D⊥i is some unit length vector perpendicular to D with appropriate coefficient
pi. Define Yi = Xi −A. The vector from Xi to its projection onto the line is

Yi − diD = piD
⊥
i .

The squared length of this vector is p2i = (Yi−diD)2. The energy function for the least squares minimization
is E(A,D) =

∑m
i=1 p

2
i . Two alternate forms for this function are

E(A,D) =

m∑
i=1

(
YT

i

[
I −DDT

]
Yi

)

2



and

E(A,D) = DT

(
m∑
i=1

[
(Yi ·Yi)I −YiY

T
i

])
D = DTM(A)D.

Using the first form of E in the previous equation, take the derivative with respect to A to get

∂E

∂A
= −2

[
I −DDT

] m∑
i=1

Yi.

This partial derivative is zero whenever
∑m

i=1 Yi = 0 in which case A = (1/m)
∑m

i=1 Xi (the average of the
sample points).

Given A, the matrix M(A) is determined in the second form of the energy function. The quantity DTM(A)D
is a quadratic form whose minimum is the smallest eigenvalue of M(A). This can be found by standard
eigensystem solvers. A corresponding unit length eigenvector D completes our construction of the least
squares line.

For n = 2, if A = (a, b), then matrix M(A) is given by

M(A) =

(
m∑
i=1

(xi − a)2 +

n∑
i=1

(yi − b)2
) 1 0

0 1

−
 ∑m

i=1(xi − a)2
∑m

i=1(xi − a)(yi − b)∑m
i=1(xi − a)(yi − b)

∑m
i=1(yi − b)2

 .
For n = 3, if A = (a, b, c), then matrix M(A) is given by

M(A) = δ


1 0 0

0 1 0

0 0 1

−


∑m
i=1(xi − a)2

∑m
i=1(xi − a)(yi − b)

∑m
i=1(xi − a)(zi − c)∑m

i=1(xi − a)(yi − b)
∑m

i=1(yi − b)2
∑m

i=1(yi − b)(zi − c)∑m
i=1(xi − a)(zi − c)

∑m
i=1(yi − b)(zi − c)

∑m
i=1(zi − c)2


where

δ =

m∑
i=1

(xi − a)2 +

m∑
i=1

(yi − b)2 +

m∑
i=1

(zi − c)2.

3 Planar Fitting of 3D Points of Form (x, y, f(x, y))

The assumption is that the z-component of the data is functionally dependent on the x- and y-components.
Given a set of samples {(xi, yi, zi)}mi=1, determine A, B, and C so that the plane z = Ax+By +C best fits
the samples in the sense that the sum of the squared errors between the zi and the plane values Axi+Byi+C
is minimized. Note that the error is measured only in the z-direction.

Define E(A,B,C) =
∑m

i=1[(Axi + Byi + C) − zi]2. This function is nonnegative and its graph is a hyper-
paraboloid whose vertex occurs when the gradient satistfies ∇E = (0, 0, 0). This leads to a system of three
linear equations in A, B, and C which can be easily solved. Precisely,

(0, 0, 0) = ∇E = 2

m∑
i=1

[(Axi +Byi + C)− zi](xi, yi, 1)

3



and so 
∑m

i=1 x
2
i

∑m
i=1 xiyi

∑m
i=1 xi∑m

i=1 xiyi
∑m

i=1 y
2
i

∑m
i=1 yi∑m

i=1 xi
∑m

i=1 yi
∑m

i=1 1



A

B

C

 =


∑m

i=1 xizi∑m
i=1 yizi∑m
i=1 zi

 .
The solution provides the least squares solution z = Ax+By + C.

If implemented directly, this formulation can lead to an ill-conditioned linear system. To avoid this, you
should first compute the averages x̄ =

∑m
i=1 xi, ȳ =

∑m
i=1 yi, and z̄ =

∑m
i=1 zi, and then subtract them from

the data, xi ← xi− x̄, yi ← yi− ȳ, and zi ← zi− z̄. The fitted plane is of the form z− z̄ = A(x− x̄)+B(y− ȳ).

4 Hyperplanar Fitting of nD Points Using Orthogonal Regression

It is also possible to fit a plane using least squares where the errors are measured orthogonally to the proposed
plane rather than measured vertically. The following argument holds for sample points and hyperplanes in
n dimensions. Let the hyperplane be N · (X −A) = 0 where N is a unit length normal to the hyperplane
and A is a point on the hyperplane. Define Xi to be the sample points; then

Xi = A + λiN + piN
⊥
i

where λi = N·(Xi−A) and N⊥i is some unit length vector perpendicular to N with appropriate coefficient pi.
Define Yi = Xi−A. The vector from Xi to its projection onto the hyperplane is λiN. The squared length of
this vector is λ2i = (N ·Yi)

2. The energy function for the least squares minimization is E(A,N) =
∑m

i=1 λ
2
i .

Two alternate forms for this function are

E(A,N) =

m∑
i=1

(
YT

i

[
NNT

]
Yi

)
and

E(A,N) = NT

(
m∑
i=1

YiY
T
i

)
N = NTM(A)N.

Using the first form of E in the previous equation, take the derivative with respect to A to get

∂E

∂A
= −2

[
NNT

] m∑
i=1

Yi.

This partial derivative is zero whenever
∑m

i=1 Yi = 0 in which case A = (1/m)
∑m

i=1 Xi (the average of the
sample points).

Given A, the matrix M(A) is determined in the second form of the energy function. The quantity NTM(A)N
is a quadratic form whose minimum is the smallest eigenvalue of M(A). This can be found by standard
eigensystem solvers. A corresponding unit length eigenvector N completes our construction of the least
squares hyperplane.

4



For n = 3, if A = (a, b, c), then matrix M(A) is given by

M(A) =


∑m

i=1(xi − a)2
∑m

i=1(xi − a)(yi − b)
∑m

i=1(xi − a)(zi − c)∑m
i=1(xi − a)(yi − b)

∑m
i=1(yi − b)2

∑m
i=1(yi − b)(zi − c)∑m

i=1(xi − a)(zi − c)
∑m

i=1(yi − b)(zi − c)
∑m

i=1(zi − c)2

 .

5 Fitting a Circle to 2D Points

Given a set of points {(xi, yi)}mi=1, m ≥ 3, fit them with a circle (x − a)2 + (y − b)2 = r2 where (a, b) is
the circle center and r is the circle radius. An assumption of this algorithm is that not all the points are
collinear. The energy function to be minimized is

E(a, b, r) =

m∑
i=1

(Li − r)2

where Li =
√

(xi − a)2 + (yi − b)2. Take the partial derivative with respect to r to obtain

∂E

∂r
= −2

m∑
i=1

(Li − r).

Setting equal to zero yields

r =
1

m

∑
i=1

Li.

Take the partial derivative with respect to a to obtain

∂E

∂a
= −2

m∑
i=1

(Li − r)
∂Li

∂a
= 2

m∑
i=1

(
(xi − a) + r

∂Li

∂a

)
and take the partial derivative with respect to b to obtain

∂E

∂b
= −2

m∑
i=1

(Li − r)
∂Li

∂b
= 2

m∑
i=1

(
(yi − b) + r

∂Li

∂b

)
.

Setting these two derivatives equal to zero yields

a =
1

m

m∑
i=1

xi + r
1

m

m∑
i=1

∂Li

∂a

and

b =
1

m

m∑
i=1

yi + r
1

m

m∑
i=1

∂Li

∂b
.

Replacing r by its equivalent from ∂E/∂r = 0 and using ∂Li/∂a = (a − xi)/Li and ∂Li/∂b = (b − yi)/Li,
we get two nonlinear equations in a and b:

a = x̄+ L̄L̄a =: F (a, b)

b = ȳ + L̄L̄b =: G(a, b)

5



where

x̄ = 1
m

∑m
i=1 xi

ȳ = 1
m

∑m
i=1 yi

L̄ = 1
m

∑m
i=1 Li

L̄a = 1
m

∑m
i=1

a−xi

Li

L̄b = 1
m

∑m
i=1

b−yi

Li

Fixed point iteration can be applied to solving these equations: a0 = x̄, b0 = ȳ, and ai+1 = F (ai, bi) and
bi+1 = G(ai, bi) for i ≥ 0. Warning. I have not analyzed the convergence properties of this algorithm. In a
few experiments it seems to converge just fine.

6 Fitting a Sphere to 3D Points

Given a set of points {(xi, yi, zi)}mi=1, m ≥ 4, fit them with a sphere (x− a)2 + (y− b)2 + (z− c)2 = r2 where
(a, b, c) is the sphere center and r is the sphere radius. An assumption of this algorithm is that not all the
points are coplanar. The energy function to be minimized is

E(a, b, c, r) =

m∑
i=1

(Li − r)2

where Li =
√

(xi − a)2 + (yi − b)2 + (zi − c). Take the partial derivative with respect to r to obtain

∂E

∂r
= −2

m∑
i=1

(Li − r).

Setting equal to zero yields

r =
1

m

∑
i=1

Li.

Take the partial derivative with respect to a to obtain

∂E

∂a
= −2

m∑
i=1

(Li − r)
∂Li

∂a
= 2

m∑
i=1

(
(xi − a) + r

∂Li

∂a

)
,

take the partial derivative with respect to b to obtain

∂E

∂b
= −2

m∑
i=1

(Li − r)
∂Li

∂b
= 2

m∑
i=1

(
(yi − b) + r

∂Li

∂b

)
,

and take the partial derivative with respect to c to obtain

∂E

∂c
= −2

m∑
i=1

(Li − r)
∂Li

∂c
= 2

m∑
i=1

(
(zi − c) + r

∂Li

∂c

)
.

6



Setting these three derivatives equal to zero yields

a =
1

m

m∑
i=1

xi + r
1

m

m∑
i=1

∂Li

∂a

and

b =
1

m

m∑
i=1

yi + r
1

m

m∑
i=1

∂Li

∂b
.

and

c =
1

m

m∑
i=1

zi + r
1

m

m∑
i=1

∂Li

∂c
.

Replacing r by its equivalent from ∂E/∂r = 0 and using ∂Li/∂a = (a − xi)/Li, ∂Li/∂b = (b − yi)/Li, and
∂Li/∂c = (c− zi)/Li, we get three nonlinear equations in a, b, and c:

a = x̄+ L̄L̄a =: F (a, b, c)

b = ȳ + L̄L̄b =: G(a, b, c)

c = z̄ + L̄L̄c =: H(a, b, c)

where

x̄ = 1
m

∑m
i=1 xi

ȳ = 1
m

∑m
i=1 yi

z̄ = 1
m

∑m
i=1 zi

L̄ = 1
m

∑m
i=1 Li

L̄a = 1
m

∑m
i=1

a−xi

Li

L̄b = 1
m

∑m
i=1

b−yi

Li

L̄c = 1
m

∑m
i=1

c−zi
Li

Fixed point iteration can be applied to solving these equations: a0 = x̄, b0 = ȳ, c0 = z̄, and ai+1 =
F (ai, bi, ci), bi+1 = G(ai, bi, ci), and ci+1 = H(ai, bi, ci) for i ≥ 0. Warning. I have not analyzed the
convergence properties of this algorithm. In a few experiments it seems to converge just fine.

7 Fitting an Ellipse to 2D Points

Given a set of points {Xi}mi=1, m ≥ 3, fit them with an ellipse (X−U)TRTDR(X−U) = 1 where U is the
ellipse center, R is an orthonormal matrix representing the ellipse orientation, and D is a diagonal matrix
whose diagonal entries represent the reciprocal of the squares of the half-lengths lengths of the axes of the
ellipse. An axis-aligned ellipse with center at the origin has equation (x/a)2 + (y/b)2 = 1. In this setting,
U = (0, 0), R = I (the identity matrix), and D = diag(1/a2, 1/b2). The energy function to be minimized is

E(U, R,D) =

m∑
i=1

(Li − r)2

7



where Li is the distance from Xi to the ellipse with the given parameters.

This problem is more difficult than that of fitting circles. The distance Li is computed according to the
algorithm described in Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid. The function
E is minimized iteratively using Powell’s direction-set method to search for a minimum. An implementation
is GteApprEllipse2.h.

8 Fitting an Ellipsoid to 3D Points

Given a set of points {Xi}mi=1, m ≥ 3, fit them with an ellipsoid (X −U)TRTDR(X −U) = 1 where U is
the ellipsoid center and R is an orthonormal matrix representing the ellipsoid orientation. The matrix D is a
diagonal matrix whose diagonal entries represent the reciprocal of the squares of the half-lengths of the axes
of the ellipsoid. An axis-aligned ellipsoid with center at the origin has equation (x/a)2 + (y/b)2 + (z/c)2 = 1.
In this setting, U = (0, 0, 0), R = I (the identity matrix), and D = diag(1/a2, 1/b2, 1/c2). The energy
function to be minimized is

E(U, R,D) =

m∑
i=1

(Li − r)2

where Li is the distance from Xi to the ellipse with the given parameters.

This problem is more difficult than that of fitting spheres. The distance Li is computed according to the
algorithm described in Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid. The function
E is minimized iteratively using Powell’s direction-set method to search for a minimum. An implementation
is GteApprEllipsoid3.h.

9 Fitting a Paraboloid to 3D Points of the Form (x, y, f(x, y))

Given a set of samples {(xi, yi, zi)}mi=1 and assuming that the true values lie on a paraboloid

z = f(x, y) = p1x
2 + p2xy + p3y

2 + p4x+ p5y + p6 = P ·Q(x, y)

where P = (p1, p2, p3, p4, p5, p6) and Q(x, y) = (x2, xy, y2, x, y, 1), select P to minimize the sum of squared
errors

E(P) =

m∑
i=1

(P ·Qi − zi)2

where Qi = Q(xi, yi). The minimum occurs when the gradient of E is the zero vector,

∇E = 2

m∑
i=1

(P ·Qi − zi)Qi = 0.

Some algebra converts this to a system of 6 equations in 6 unknowns:(
m∑
i=1

QiQ
T
i

)
P =

m∑
i=1

ziQi.

8

http://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf
 http://www.geometrictools.com/GTEngine/Include/GteApprEllipse2.h
http://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf
http://www.geometrictools.com/GTEngine/Include/GteApprEllipsoid3.h


The product QiQ
T
i is a product of the 6× 1 matrix Qi with the 1× 6 matrix QT

i , the result being a 6× 6
matrix.

Define the 6× 6 symmetric matrix A =
∑m

i=1 QiQ
T
i and the 6× 1 vector B =

∑m
i=1 ziQi. The choice for P

is the solution to the linear system of equations AP = B. The entries of A and B indicate summations over
the appropriate product of variables. For example, s(x3y) =

∑m
i=1 x

3
i yi:

s(x4) s(x3y) s(x2y2) s(x3) s(x2y) s(x2)

s(x3y) s(x2y2) s(xy3) s(x2y) s(xy2) s(xy)

s(x2y2) s(xy3) s(y4) s(xy2) s(y3) s(y2)

s(x3) s(x2y) s(xy2) s(x2) s(xy) s(x)

s(x2y) s(xy2) s(y3) s(xy) s(y2) s(y)

s(x2) s(xy) s(y2) s(x) s(y) s(1)





p1

p2

p3

p4

p5

p6


=



s(zx2)

s(zxy)

s(zy2)

s(zx)

s(zy)

s(z)



9


	1 Linear Fitting of 2D Points of Form (x,f(x))
	2 Linear Fitting of nD Points Using Orthogonal Regression
	3 Planar Fitting of 3D Points of Form (x,y,f(x,y))
	4 Hyperplanar Fitting of nD Points Using Orthogonal Regression
	5 Fitting a Circle to 2D Points
	6 Fitting a Sphere to 3D Points
	7 Fitting an Ellipse to 2D Points
	8 Fitting an Ellipsoid to 3D Points
	9 Fitting a Paraboloid to 3D Points of the Form (x,y,f(x,y))

