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This document describes some algorithms for fitting 2D or 3D point sets by linear or quadratic structures
using least squares minimization.

1 Linear Fitting of 2D Points of Form (z, f(x))

This is the usual introduction to least squares fit by a line when the data represents measurements where
the y-component is assumed to be functionally dependent on the z-component. Given a set of samples
{(xs,y:)}1™, determine A and B so that the line y = Az + B best fits the samples in the sense that the
sum of the squared errors between the y; and the line values Ax; + B is minimized. Note that the error is
measured only in the y-direction.

Define E(A, B) = > | [(Az; + B) — y;]*. This function is nonnegative and its graph is a paraboloid whose
vertex occurs when the gradient satistfies VE = (0,0). This leads to a system of two linear equations in A
and B which can be easily solved. Precisely,

(0,0)= VE =2 [(Az; + B) — yi](w:, 1)
i=1

and so
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The solution provides the least squares solution y = Ax + B.

If implemented directly, this formulation can lead to an ill-conditioned linear system. To avoid this, you
should first compute the averages z = >\, z; and § = > .-, y; and subtract them from the data, z; < x;—
and y; « y; — y. The fitted line is of the form y — § = A(x — T).

2 Linear Fitting of nD Points Using Orthogonal Regression

It is also possible to fit a line using least squares where the errors are measured orthogonally to the pro-
posed line rather than measured vertically. The following argument holds for sample points and lines in n
dimensions. Let the line be L(t) = tD + A where D is unit length. Define X; to be the sample points; then

X; = A +d;D +p,Df

where d; =D - (X; — A) and Dil is some unit length vector perpendicular to D with appropriate coefficient
pi- Define Y; = X; — A. The vector from X; to its projection onto the line is

The squared length of this vector is p? = (Y; —d;D)?. The energy function for the least squares minimization
is E(A,D) =>"", p?. Two alternate forms for this function are

m

E(A,D)=Y (YiT [I - DDT} Yi)

i=1



and

E(A (Z[Y YT - YYTDDDTM(A)D.

Using the first form of F in the previous equation, take the derivative with respect to A to get
m

g—i — 9 [I — DDT] ;Y

This partial derivative is zero whenever Y . Y; = 0 in which case A = (1/m)>_" | X, (the average of the
sample points).

Given A, the matrix M(A) is determined in the second form of the energy function. The quantity D™ M (A)D
is a quadratic form whose minimum is the smallest eigenvalue of M (A). This can be found by standard
eigensystem solvers. A corresponding unit length eigenvector D completes our construction of the least
squares line.

For n = 2, if A = (a,b), then matrix M(A) is given by

- - L0 Yiti(wi—a)? 3 (zi—a)(yi — D)
M(A) = < (i —a)* + ) ( i—b)2> -
; ; ! 01 itz —a)(yi —b) >ty (yi —b)°

For n =3, if A = (a,b,c), then matrix M (A) is given by

100 2211(% - a)2 221(% —a)(y; —b) 221(% —a)(z —c¢)
M(A)=6]0 1 0 |—| X% (xi—a)(y:—b) ity (yi — b)? P

001 Somi(wi—a)(zi =) 3 (yi —b)(2i —0) (zi —¢)?
where . . .
- Z(x, —a)® + 2:(3/z —b)? + Z(Zz —c)%

3 Planar Fitting of 3D Points of Form (x,y, f(z,y))

The assumption is that the z-component of the data is functionally dependent on the z- and y-components.
Given a set of samples {(z;, s, z;) }™,, determine A, B, and C so that the plane z = Az + By + C best fits
the samples in the sense that the sum of the squared errors between the z; and the plane values Ax; + By; +C
is minimized. Note that the error is measured only in the z-direction.

Define E(A, B,C) = >"i" | [(Az; + By; + C) — z;]*>. This function is nonnegative and its graph is a hyper-
paraboloid whose vertex occurs when the gradient satistfies VE = (0,0,0). This leads to a system of three
linear equations in A, B, and C which can be easily solved. Precisely,

i=1



and so
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The solution provides the least squares solution z = Az 4+ By + C.

If implemented directly, this formulation can lead to an ill-conditioned linear system. To avoid this, you
should first compute the averages z =Y " z;, Y = > ., y;, and Z = >~ | z;, and then subtract them from
the data, z; < x; — T, y; < y; — 7, and z; < z; —z. The fitted plane is of the form z—z = A(x—z)+ B(y — 7).

4 Hyperplanar Fitting of nD Points Using Orthogonal Regression

It is also possible to fit a plane using least squares where the errors are measured orthogonally to the proposed
plane rather than measured vertically. The following argument holds for sample points and hyperplanes in
n dimensions. Let the hyperplane be N - (X — A) = 0 where N is a unit length normal to the hyperplane
and A is a point on the hyperplane. Define X; to be the sample points; then

X; = A+ NN + p;Nf-

where \; = N-(X;—A) and Nf‘ is some unit length vector perpendicular to N with appropriate coefficient p;.
Define Y; = X; — A. The vector from X; to its projection onto the hyperplane is \;IN. The squared length of
this vector is A? = (N -Y;)2. The energy function for the least squares minimization is E(A,N) = > A2,
Two alternate forms for this function are

m

B(AN) = (Y [NNT] ;)
i=1

and

E(A,N)=N" (i YiYiT> N =NTM(A)N.

i=1

Using the first form of F in the previous equation, take the derivative with respect to A to get

%ﬁ =2 [NNT} i}Y

This partial derivative is zero whenever Y . 'Y; = 0 in which case A = (1/m)>_" | X, (the average of the
sample points).

Given A, the matrix M(A) is determined in the second form of the energy function. The quantity NT M (A)N
is a quadratic form whose minimum is the smallest eigenvalue of M(A). This can be found by standard
eigensystem solvers. A corresponding unit length eigenvector N completes our construction of the least
squares hyperplane.



For n =3, if A = (a,b,c), then matrix M(A) is given by

>y (s — a)? iy (i —a)(yi —b) 3L (i —a)(zi — )
M(A) = Zgl(‘rl —a)(y; —b) 221(% —b)? Z?il(yi —b)(zi —¢)
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5 Fitting a Circle to 2D Points

Given a set of points {(x;,v;)}"™,, m > 3, fit them with a circle (z — a)? + (y — b)? = r? where (a,b) is
the circle center and r is the circle radius. An assumption of this algorithm is that not all the points are
collinear. The energy function to be minimized is

E(a,b,r) = Z(L’ —r)?

where L; = \/(z; — a)? + (y; — b)2. Take the partial derivative with respect to r to obtain

OF -
= _ 9 L —
or ;(
Setting equal to zero yields
1
= — L;.
e
Take the partial derivative with respect to a to obtain
OE - oL - oL
T =2 =23 (e )
and take the partial derivative with respect to b to obtain
OF - i L
YT _ 9 L =2 ,—b * ).
ab ;( ;(“f )”ab)

Setting these two derivatives equal to zero yields

Py merny G

and
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Replacing r by its equivalent from OE/0r = 0 and using 8L¢/8a = (a —z;)/L; and OL;/0b = (b —y;)/Li,
we get two nonlinear equations in a and b:



where

To=

y = % Z;ﬂ;l Yi

L = % Z?il L;
Lo = Xl g
L, = % i b%y

Fixed point iteration can be applied to solving these equations: ag = Z, by = ¥, and a;+1 = F(a;,b;) and
biv1 = Gl(a;,b;) for i > 0. Warning. I have not analyzed the convergence properties of this algorithm. In a
few experiments it seems to converge just fine.

6 Fitting a Sphere to 3D Points

Given a set of points {(z;, i, 2;)}™, m > 4, fit them with a sphere (z —a)? + (y — b)? + (2 — ¢)? = r? where
(a,b,c) is the sphere center and r is the sphere radius. An assumption of this algorithm is that not all the
points are coplanar. The energy function to be minimized is

m

E(a,b,c,r) = Z(L2 —r)?

i=1

where L; = \/(z; — a)? + (y; — b)2 + (2; — ¢). Take the partial derivative with respect to 7 to obtain

oE s
5, =2 ;(Li —7).

Setting equal to zero yields
1
r=— Z Lz
miz
Take the partial derivative with respect to a to obtain
OE S OL; S OL;
B0 —QZ(Li—T) 9a :22 ((ri—a)+r % ) ,
i=1 i=1
take the partial derivative with respect to b to obtain

OF " oL; = oL;
%——2;(14—7") o —2;<(yi—b)+r 8b>’

and take the partial derivative with respect to ¢ to obtain

m

OF OL; ~ OL;
%:—QZ(Li—r) e _22((;:@—0)4—7"60).

i=1 i=1




Setting these three derivatives equal to zero yields

1 & 1 <= 0L;
a—E;mi—i—r—
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and
1 - Ll 0L,
T m LA L+ 9b
=1 =1
and
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Replacing r by its equivalent from OF/dr = 0 and using 0L;/0a = (a — x;)/L;, OL;/0b = (b — y;)/L;, and
OL;/0c = (¢ — z;)/ L;, we get three nonlinear equations in a, b, and ¢:

a +
b=4y+ LL, =: G(a,b,c)
+

c=z2+LL.=: H(a,b,c)
where

ro= % 2211 Ty

U o= =it

z = % Dy Zi

L = % 2?11 L;
L, = % Z:n:l %
L, = % i b%y
Lo = 52, g2

Fixed point iteration can be applied to solving these equations: a9 = =, by = 4, ¢ = Z, and a;41 =
F(a;, bi,c), bivi = G(as,biyci), and ¢;41 = H(ag, b, ¢;) for i > 0. Warning. I have not analyzed the
convergence properties of this algorithm. In a few experiments it seems to converge just fine.

7 Fitting an Ellipse to 2D Points

Given a set of points {X;}™,, m > 3, fit them with an ellipse (X — U)TRTDR(X — U) = 1 where U is the
ellipse center, R is an orthonormal matrix representing the ellipse orientation, and D is a diagonal matrix
whose diagonal entries represent the reciprocal of the squares of the half-lengths lengths of the axes of the
ellipse. An axis-aligned ellipse with center at the origin has equation (x/a)? + (y/b)? = 1. In this setting,
U = (0,0), R = I (the identity matrix), and D = diag(1/a?,1/b?). The energy function to be minimized is

m

E(U,R,D) =Y (L;—1)*

i=1



where L; is the distance from X; to the ellipse with the given parameters.

This problem is more difficult than that of fitting circles. The distance L; is computed according to the
algorithm described in Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid. The function
FE is minimized iteratively using Powell’s direction-set method to search for a minimum. An implementation
is GteApprEllipse2.h.

8 Fitting an Ellipsoid to 3D Points

Given a set of points {X;}7;, m > 3, fit them with an ellipsoid (X — U)TRTDR(X — U) = 1 where U is
the ellipsoid center and R is an orthonormal matrix representing the ellipsoid orientation. The matrix D is a
diagonal matrix whose diagonal entries represent the reciprocal of the squares of the half-lengths of the axes
of the ellipsoid. An axis-aligned ellipsoid with center at the origin has equation (z/a)? + (y/b)* + (z/c)? = 1.
In this setting, U = (0,0,0), R = I (the identity matrix), and D = diag(1/a? 1/b% 1/c?). The energy

function to be minimized is
m

E(U,R,D)=> (L;— 1)’

i=1
where L; is the distance from X; to the ellipse with the given parameters.
This problem is more difficult than that of fitting spheres. The distance L; is computed according to the
algorithm described in Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid. The function

FE is minimized iteratively using Powell’s direction-set method to search for a minimum. An implementation
is GteApprEllipsoid3.h.

9 Fitting a Paraboloid to 3D Points of the Form (z,y, f(z,v))

Given a set of samples {(x;, y;, 2;) }/2; and assuming that the true values lie on a paraboloid

z = f(z,y) = p1a® + powy + p3y” + paz + psy + ps = P - Q(z,y)

where P = (p1,p2, p3, P4, ps,ps) and Q(z,y) = (22, 2y, y?, z,y, 1), select P to minimize the sum of squared

€errors
m

EP)=> (P-Q,—z)

i=1

where Q, = Q(z;,y;). The minimum occurs when the gradient of F is the zero vector,

VE=2) (P-Q,-2)Q; =0.

=1

Some algebra converts this to a system of 6 equations in 6 unknowns:

<Z @Q?) P=> zQ,
1=1 1=1
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The product QiQiT is a product of the 6 x 1 matrix Q, with the 1 x 6 matrix Q;F, the result being a 6 x 6
matrix.

Define the 6 x 6 symmetric matrix A = 37" Q;Q; and the 6 x 1 vector B = 3.7 | 2,Q,. The choice for P
is the solution to the linear system of equations AP = B. The entries of A and B indicate summations over
the appropriate product of variables. For example, s(z3y) = 221 3y,

s(t)  s(ady)  s(a?y?) s(2®)  s(zPy) s(@?) || m s(z2?)
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