Lecture 10:

Triangle Meshes:
Simplification and Optimization

Topics:

Triangle meshes
Mesh data structures

Mesh simplification

W D

Mesh optimization

Michael S. Floater, Oslo, Oct. 2002

Polygonal meshes

A polygonal mesh is a set of faces (polygons) in R? such that
(i) the intersection between any pair of faces is either a common edge, a

common vertex, or nothing:

[0y 00

(ii) the union of the faces is a manifold surface (with or without boundary).

and

Condition (ii) implies that the mesh looks locally like a surface. It

requires that (a) each edge belongs to either one or two faces:
and (b) the faces incident on a vertex form an open or closed ‘fan’:

o

Edges belonging to only one face form the boundary (if any) of the mesh.
The boundary (if any) consists of one or more loops.

The orientation of a face is the cylic order of its incident vertices. There
are two possible orientations of each face: clockwise and anti-clockwise. The
orientation of two adjacent faces is compatible if the two vertices of their
common edge are in opposite order. A mesh is said to be orientable if
there exists a choice of face orientations that makes all pairs of adjacent
faces compatible.

The Euler formula describes the relationship between the number
of vertices v, edges e, faces f, and the topological type of an orientable
manifold mesh. The topological type is given by the Euler characteristic

X, and the Euler formula is
X:=v—e+ f.

A mesh is said to have genus ¢ if it can be cut along 2g closed loops
without disconnecting it. The sphere and torus have genus zero and one
respectively. The double torus has genus two etc. Any mesh of genus g

can be continuously deformed into a sphere with g handles.

QIE)GxXS)

If s is the number of connected components, g the genus and b the

number of boundary loops, it can be shown that

X =2(s—g)—b.

In the special case of a closed manifold triangular mesh each edge has
exactly two incident triangles and each triangle has three incident edges,
thus

2e = 3f.

This yields
2v — f = 2X7

and as x is typically small,
f =~ 2wv.

A mesh is sometimes called simple if it is connected, orientable, of

genus zero, and has one boundary loop.

Geometry and connectivity. We can view the mesh as consisting of
geometry, i.e., the vertices, and connectivity, i.e. the graph which spec-
ifies which pairs of vertices are neighbours. Two vertices are neighbours
if they are the end points of an edge. The graph can be written as G(V, E).
Fach vertex in the mesh can be represented by an integer index 7 in V' and

each edge can be represented as a pair (i,7) in E.

Mesh data structures

It is usual to represent the mesh geometry as a vector-valued array of floats

or doubles:

x0 yO z0
x1 y1 z1

XM ym Zm

The connectivity is often defined by a face vertex incidence table. For
each face an oriented cyclic list of indices of the incident vertices is given.
In VRML the IndexedFaceSet defines the face-vertex incidence table by
one list of indices, where the —1 separates different faces:

i0 j0 k0 10 -1

i1 j1 k1 -1

i2 j2 k2 12 m2 -1

in jn kn -1

The order of the vertex indices in a face defines the orientation. For a
triangle mesh, no —1 is needed as every face has three vertices:

i0 jO kO

i1 j1 ki

in jn kn

This simple data structure could be organized in three C++ classes: Tri-
angle, Node, and TriangleMesh. The class TriangleMesh would consist
of two arrays, one of Triangle’s and the other of Node’s. The following

diagram indicates that Triangle has (three) pointers to Node.

Triangle Node

This data structure is fine for simple visualization of the triangles.
However, it is not good when we need neighbourhood information. We
might for example wish to estimate normals at the vertices for use in
Gouraud shading. This requires finding all triangles which contain a give
vertex. The only way to find these triangles is to check all triangles in the
triangle array. Thus if there are N triangles, finding one neighbourhood
costs O(N) time. Repeating this for each node, and since the number of
nodes is about N/2, we end up with an O(N?) algorithm for estimating all
the normals. For IV in the region of 10° this is not an option.

The solution is to enrich the data structure by adding further pointers.
One possibility is to add three pointers to the neighbouring triangles in the

Triangle class.

Vi

There are then six data members in the Triangle class:
ijk tlt2 t3

with the convention that the first/second/third triangle pointer refers to

the triangle opposite the first/second/third vertex. The dependencies are:
Node

Triangle

-

If we traverse the vertices by traversing the triangles, and for each
triangle checking which of the three vertices have been visited, we can use
the three triangle pointers to find all incident triangles to each vertex. Thus,
for example, all normals in the mesh can now be estimated in O(NN) time.
Note that when building this enhanced data structure from the original, all
the triangle pointers can be found in O(N) time.

A further help to traversing vertices is to add pointers to the Node
class. One can simply add a list of pointers to all incident triangles. An-
other option which uses less space is to add just one pointer to one of the

containing triangles.

The enhanced Node class now take the form
XxXyz t
and the data structure now has the dependencies:

Triangle Node

-

It is now easy to write a getNeighbours(int i) routine which returns

(in O(1) time) an ordered list of the neighbouring nodes of the given i-th

node.
There are many possible data structures for triangle meshes, and all

have advantages and disadvantages. Many data structures include an ad-

ditional Edge class and one or more of the dependencies:

Node

Triangle o Edge

Some data structures use ‘half-edges’ instead of edges.

Mesh simplification

Frequently we encounter triangle meshes with very large numbers of tri-
angles and vertices; these data sets often come from scanning millions of
points from real objects. It is therefore important to be able to reduce or

simplify the mesh if necessary.

A common way to simplify a mesh is to apply an incremental algo-
rithm, removing one vertex at a time and repairing the hole left by the
removal. Ideally, we want to remove as many vertices as we can so that the
remaining coarse mesh is still a good enough approximation to the original

fine mesh.

There are three common ways to remove a vertex and repair the hole:

vertex removal, edge collapse and half-edge collapse.

%

.

i
.

Half edge collapse

we see that

there will be £k — 2 in

Vertex removal simply means retriangulating the hole left by remov-
the repaired mesh. Note that the number of edges incident on p was also k
10

the Euler characteristic Y = v — e + f is unchanged, reflecting the fact that
vertex removal is an Euler operation; it does not change the topology of

and is now k£ — 3. Since the number of vertices is reduced by 1,

ing a vertex p. If there were k triangles sharing p,
the mesh. We will not study Non-Euler operations.

An edge collapse takes two neighbouring vertices p and ¢ an collapses
the edge betwen them to a new point r. As a result, two triangles be-
come degenerate and are removed from the mesh. This is again an Euler
operation.

A third, and popular, Euler operation is a half-edge collapse in which
for some ordered pair of neighbouring vertices (p, ¢), we ‘move’ p to q. Again
two triangles become degenerate and are removed. It can be thought of as
a special case of edge collapse where the new position r is taken to be q. It
is also the special case of vertex removal in which the triangulation of the
k-sided hole is generated by connecting all neighbouring vertices with gq.
Removal criteria. In each removal step, the best candidate for removal is
determined by some user-specified criterion. For example, we might remove
that vertex which results in the smallest distance between the previous mesh
and the new one. We might instead remove vertices where the density of
vertices is highest, in order to get an even distribution of vertices. A third
alternative is to try to maintain good aspect ratios in the triangles (avoiding
long thin triangles). One could try to combine several of these criteria.
Implementation. For our chosen removal criterion we compute, for each
vertex p, some measure sig(p) of the how significant the vertex p is. Once
we have sig(p) for every vertex p in the mesh, we can remove any vertex p.,
such that

sig(p.) = min sig(p).

Most (efficient) criteria are local, so that sig(p) depends only on p and its

(immediate) neighbours.

11

Use of heap. A naive implementation of the decimation algorithm com-
putes sig(p) for each p in the current mesh after every removal. If there are
N vertices in the orginal mesh, this costs O(N?) operations. An enormous
improvement is to employ a heap data structure, exploiting the fact that
sig(p) remains constant for the vast majority of the vertices p in the current
mesh. As a preprocess, we compute sig(p) for all vertices p in the fine mesh
and place the vertices p in a heap together with the sig(p) values. A heap is
organized as a binary tree, with the vertex p with the smallest sig(p) value
at the root of the heap.

We then start decimating. At each step, the vertex to remove is at the
root of the heap and so we remove it both from the mesh (and repair the
hole) and from the heap. We then only need to update the heap with the
new significance values of the vertices that were neighbours of p.

Popping the root of the heap costs only log(/N) operations (since the
heap has depth log(/V)), and similarly updating one sig value costs log(N).
Thus one whole vertex removal costs only log(/V) operations (assuming the
number of neighbours is bounded). Thus the total decimation algorithm
costs only O(N log(IN)) operations.

Note that when using half-edge collapses, we could assign a significance
to each ordered vertex pair (p, q), and the heap would contains these pairs

rather than the vertices themselves.

12

A final word of caution. Care has to be taken when removing vertices.

Consider removing vg in the figure below, leaving a four-sided hole, shaded.

It would be fine to triangulate the hole by connecting v; and vs. We
could not however use the alternative of connecting v, and vy, the reason
being that v2 and v4 are already neighbours in the mesh. Thus connecting
vy and vy would yield a non-simple graph (a graph is simple if no pair of
vertices belong to more than one edge). Most data structures for triangle
meshes are designed on the assumption that the graph is simple.

Such problems are easily avoided by simply not allowing such connec-
tions. The rule to remember in vertex removals is never connect two
vertices that are already connected.

Such possiblities tend to occur more and more frequently as the mesh
is simplified. Of course, if we simplify until there are only a handful of
vertices left, it may not be possible to make any further vertex removals,

e.g. if the mesh is a tetrahedron, with just four vertices.

13

Mesh optimization

Mesh optimization is conceptually simpler than mesh simplification. The
idea is simple. Without changing the vertices, can we change the connec-
tivity of the mesh in order to achieve a better quality surface? The usual
approach is edge swapping. FEach pair of triangles sharing a common
edge form a quadrilateral. The simplest change in connectivity we can
make is to swap the given diagonal of a quadrilateral with the other one. In
the figure below we swap the edge [v1,v3] with [vg,v4]. This has the effect
of replacing the two triangles [vq,vs,v3] and [v1,vs,v4] by [v1,v2,v4] and

[U27 vs3, U4] .
Vy Vg

Edge swap

\'%) Vo

As with vertex removal, care must be taken not to invalidate the mesh
by creating a non-simple graph. Thus if vo and vs on the left are already
connected by an edge outside the quadrilateral, we cannot perform the

swap.

14

By applying several edge swaps we gradually change the original mesh into
a better one. We choose some cost function we wish to minimize and
the swap criterion is then simply whether the swap decreases the cost
function. We keep on swapping edges which result in a decreased cost
function, until no further decreases are possible. Usually it is not possible
to guarantee that the global minimum can be reached by a sequence of
swaps, but the result is often a better mesh anyway.

For planar triangle meshes, there is a very well known swap criterion,
called the Delaunay criterion. We swap the edge [v1,v3] (of a convex
quadrilateral) if the vertex vz lies outside the circumcircle of the triangle

[v1, v2,v4], as is in the following figure.

Vg \Z

Vi

v Vo

This swapping procedure was proposed by Lawson and it is equivalent
to the max-min angle criterion; we swap if the minimum of the six angles
in the two triangles is increased.

The beauty of the Delaunay swap criterion is that it always leads to a
unique triangulation of the planar points (at least if there are no cocircular
points). When no more swaps can be made, the triangle mesh is a Delaua-

nay triangulation of the plane, i.e., a triangulation in which the interior

15

of the circumcircle of each triangle is empty (contains no other vertices of
the triangulation). A Delaunay triangulation has the property that the
minimum of all the angles of its triangles is maximized. Thus the Delauany
swap criterion tends to give ‘well-shaped’ triangles where possible.
Delaunay triangulation have several nice properties. A Delauanay tri-
angulation of a set of planar points is the dual graph of their Voronoi
diagram. The Voronoi diagram of a set of planar points py,...,pn is a
collection of tiles. There is one tile V; associated with each point p;. The
i-th tile V; is simply the set of all points in R? that are closer to p; than

any other point pj, i.e.,
Vi={z € R?: |lz — pil| < |lo —p;|| Vi # i},

The figure below shows the Delauanay triangulation (solid) of a set of planar

points and their Voronoi diagram (dashed).

16

For triangle meshes in R® the circumcircle criterion no longer makes sense,
and though the max-min angle criterion could be used, a unique solution is
no longer guaranteed.

In fact in the R® case we often use optimization criteria which reflect
the geometry of the surface. For example we might optimize the ‘smooth-
ness’ of the mesh, by minimizing the angle between the normal directions
of adjacent triangles, or by minimizing some discrete measure of curvature.
The figure below show various optimizations of a given toroidal-shaped tri-

angle mesh.

17

