

Shape Similarity

Need a shape distance function d(A,B) that:

- matches our intuitive notion of shape similarity
- can be computed robustly and efficiently

Perhaps, shape distance function should be a metric:

- Non-negative: $d(A,B) \ge 0$ for all A and B
- Identity: d(A,B) = 0 if and only if A=B
- Symmetry: d(A,B) = d(B,A) for all A and B
- Triangle inequality: $d(A,B) + d(B,C) \ge d(A,C)$

Challenge

Need shape descriptor that is:

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating

Ø Invariant to transformations

- Insensitive to noise
- Insensitive to topology
- Robust to degeneracies

Different Transformations (translation, scale, rotation, mirror)

Challenge

Need shape descriptor that is:

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating
- Invariant to transformations

Ø Insensitive to noise

- Insensitive to topology
- Robust to degeneracies

Scanned Surface

Taxonomy of Shape Descriptors

Structural representations

- Skeletons
- Part-based methods
- Feature-based methods

Statistical representations

- Voxels, moments, wavelets, ...
- Attributes, histograms, ...
- Point descriptors

Taxonomy of Shape Descriptor menta & Osada Structural representations • Skeletons • Part-based methods • Feature-based methods Statistical representations • Voxels, moments, wavelets, ... • Attributes, histograms, ... • Point descriptors

Taxonomy of Shape Descriptor

Structural representations

- Skeletons
- Part-based methods
- Feature-based methods

Statistical representations

- Voxels, moments, wavelets, ...
- Attributes, histograms, ...
- Point descriptors

Taxonomy of Shape Descriptors

Structural representations

- Skeletons
- Part-based methods
- Feature-based methods

Statistical representations

- Voxels, moments, wavelets, ...
- Attributes, histograms, ...
- Point descriptors

Statistical Shape Descriptors

Alignment-dependent

- Voxels
- Wavelets
- Moments
- Extended Gaussian Image
- Spherical Extent Function
- Spherical Attribute Image

Alignment-independent

- Shape histograms
- Harmonic descriptor
- Shape distributions

Feature Vectors Map shape onto point in multi-dimensional space • Similarity measure is distance in feature space Tables Desks File cabinets Feature 2

Wavelets

Descriptor 1:

• Given an NxNxN grid, generate an NxNxN array of the wavelet coefficients for the standard Haar basis functions

Descriptor 2:

- Truncate: Find the m largest coefficients and set all others equal to zero
- Quantize: Set the non-zero coefficients to +1 or −1 depending on their sign

Jackie Chan Example

Original Image (256x256)

Wavelets

Distance Function 1:

• The query metric is defined by:

$$d(A,B) = \sum_{i,j,k} w_{i,j,k} ||A[i,j,k] - B[i,j,k]||$$

where A[i,j,k] and B[i,j,k] are the truncated and quantized coefficients and $w_{i,j,k}$ are weights, fine tuned to the database.

Wavelets

Distance Function 2:

• The query metric can be approximated by:

$$d(A,B) = \sum_{i,j,k:A(i,j,k)\neq 0} w_{i,j,k} (A[i,j,k] \neq B[i,j,k])$$

to enable efficient indexing and search.

Moments

Define shape by moments of inertia:

$$m_{pqr} = \int_{surface} x^p y^q z^r dx dy dz$$

