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3D Representations

Property

Intuitive specification
Guaranteed continuity
Guaranteed validity
Efficient boolean operations
Efficient rendering
Accurate

Concise

Structure




Examples:

» Feature detection
Segmentation
Labeling
Registration
Matching
Retrieval

es

“How can we find 3D models best matching a query?”

Definition from Merriam-Webster’s Dictionary:

¢ a: the visible makeup characteristic of a
particular item or kind of item
b : spatial form or contour
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Shape is independent of similarity transformation
(rotation, scale, translation, mirror)

Shape Similarity

Need a shape distance function d(A,B) that:

e matches our intuitive notion of shape similarity
e can be computed robustly and efficiently

Perhaps, shape distance function should be a metric:
e Non-negative: d(A,B) =0 for all Aand B
e Identity: d(A,B) = 0 if and only if A=B
e Symmetry: d(A,B) = d(B,A) for all A and B
e Triangle inequality: d(A,B) + d(B,C) = d(A,C)




Example Distance Functions

Lp norm:

Hausdorff distance:

Others (Fréchet, etc.)

Shape Matching

Compute shape distance function for pair of 3D models

e Can matching two objects
¢ Can find most similar object among a small set

Are these the same chair?




Shape Retrieval

Find 3D models with shape most similar to query
e Searching large database must take less than O(n)

Is this blue chair
in the database?

Shape Retrieval

Build searchable shape index
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Shape Retrieval

Find 3D models with shape similar to query

3D Database

Challenge

Need shape descriptor that is:

3D Database




Challenge

Need shape descriptor that is:
Concise to store
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3D Shape
Query Desc?ﬁ)tor

Challenge

Need shape descriptor that is:

e Concise to store
Quick to compute
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3D Database




Challenge

Need shape descriptor that is:
¢ Concise to store
¢ Quick to compute
Efficient to match

Challenge

Need shape descriptor that is:

e Concise to store
¢ Quick to compute
e Efficient to match

Discriminating
-B-
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Challenge

Need shape descriptor that is:

e Concise to store
¢ Quick to compute
e Efficient to match
e Discriminating
Invariant to transformations

Challenge

Need shape descriptor that is:

¢ Concise to store
Quick to compute
Efficient to match
Discriminating
Invariant to transformations
Insensitive to noise

Different Transformations
(trand ation, scale, rotation, mirror)

Gt

Image cou rtes-y'(')f
Ramamoorthi et'a.

Scanﬁed Surface




Eil:

C h al | en g e Images courtesy of

Viewpoint & Stanford

Need shape descriptor that is:
e Concise to store
Quick to compute
Efficient to match
Discriminating . e e
Invariant to transformations Different Genus
Insensitive to noise

Insensitive to topology fé ‘//'

Different Tessellations

Gt

Challenge oot/ s

Need shape descriptor that is:
e Concise to store

Quick to compute
Efficient to match
Discriminating
Invariant to transformations
Insensitive to noise
Insensitive to topology
Robust to degeneracies
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Taxonomy of Shape Descriptors

Structural representations
e Skeletons
e Part-based methods
e Feature-based methods

Statistical representations
¢ Voxels, moments, wavelets, ...
e Attributes, histograms, ...
e Point descriptors

Taxonomy of Shape Descriptorgeso s

Structural representations
e Skeletons
e Part-based methods
e Feature-based methods
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Taxonomy of Shape Descriptor§ 3 s

Structural representations

e Skeletons
¢ Part-based methods
e Feature-based methods

Taxonomy of Shape Descriptors

Statistical representations
e Voxels, moments, wavelets, ...
e Attributes, histograms, ...
¢ Point descriptors
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Statistical Shape Descriptors

Alignment-dependent Alignment-independent

* Voxels e Shape histograms
o Wavelets e Harmonic descriptor

Moments e Shape distributions
Extended Gaussian Image

Spherical Extent Function
Spherical Attribute Image

Feature Vectors Imege cour e

Mao Chen

Map shape onto point in multi-dimensional space
¢ Similarity measure is distance in feature space

Feature 1

L
e Filecabinets

[ ]
Feature 2
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Eol

Feature Vectors mage courSy o

Cluster, classify, recognize, and retrieve similar
feature vectors using standard methods

Wheat feature vectors?

o
e Filecabinets

@
Feature 2

Voxels

Use voxel values as feature vector (shape descriptor)

e Feature space has N3 dimensions
(one dimension for each voxel)

* d(AB) = [[A-B]]y

Example:
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Image cou rtes;y'df
Voxels Misha K azHilén

Can store distance transform (DT) in voxels

e ||A-DT(B)||, represents sum of distances from every
point on surface of A to closest point on surface of B

Y

Distance Transform

Gt

Image cou rtes-y'(')f
Voxels Misha K azHthn
Can store distance transform (DT) in voxels

e ||A-DT(B)||, represents sum of distances from every
point on surface of A to closest point on surface of B

Distance Transform
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Image cou rtes-y'df
Voxels Daniel Keim, SIGMOD 1889

Can build hierarchical search structure
e e.g., interior nodes store MIV and MSV

. entry 1 entry 2
search object

MIV MSV

Voxel Retrieval Experiment

Test database is Viewpoint household collection
1,890 models, 85 classes

153 dining chairs

@ 2000 ViaupOmCorpontion ov s izt

8 chests
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Evaluation Metric

Precision-recall curves

e Precision = retrieved_in_class / total_retrieved
e Recall = retrieved_in_class / total_in_class
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Evaluation Metric

Precision-recall curves
e Precision=0/0
e Recall=0/5
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Evaluation Metric

Precision-recall curves
e Precision=1/1
e Recall=1/5
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Evaluation Metric

Precision-recall curves
e Precision=2/3

e Recall=2/5 ‘ - Aﬁ’ﬁ
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Evaluation Metric

Precision-recall curves
e Precision=3/5

e Recall =3/5 ; - mﬁ
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Evaluation Metric

Precision-recall curves
e Precision=4/7

e Recall =4/5 ‘ aﬁa
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Evaluation Metric

Precision-recall curves
e Precision=5/9
e Recall=5/5

o
©

o
o

Precision
)

5 .

Matches

0.2 04 0.6 0.8 1
Recall

Voxel Retrieval Experiment

Test database is Viewpoint household collection
1,890 models, 85 classes

153 dining chairs 12 dining tables

Coppright @200 Visurpoint

8 chests 28 bottles 39 vases 36 end tables
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Voxel Retrieval Results

— Voxels
— Random

c
9
0
o
(¢b)
S
ol

Voxels

Properties

Discriminating
Insensitive to noise
Insensitive to topology
Robust to degeneracies
Quick to compute

« Efficient to match?

X Concise to store

X Invariant to transforms
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Image cou rtesy'éf
Wavel etS Jacobs, Finkelstein, & Salésin

Define shape with wavelet coefficients
We W 9" W=y ™
¢ 2w S8
8 - & . a

16,000 coefficients 400 coefficients 100 coefficients 20 coefficients

Jacobs, Finkelstein, & Salesm
Wavelets SIGGRAPHBS

Descriptor 1:

e Given an NxNxN grid, generate an NxNxN array of the
wavelet coefficients for the standard Haar basis functions
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Jacobs, Finkelstein, & Salasm
Wavelets SIGGRAPH®S

Descriptor 1:

e Given an NxNxN grid, generate an NxNxN array of the
wavelet coefficients for the standard Haar basis functions

Descriptor 2:

e Truncate: Find the m largest coefficients and set all
others equal to zero

¢ Quantize: Set the non-zero coefficients to +1 or -1
depending on their sign

Jackie Chan Example

Original Image (256x256)
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Truncated And Quantized to 5000

Truncated And Quantized to 1000
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Truncated And Quantized to 500
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Truncated 50

Truncated 10

I.ﬂ
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Torus Example
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Torus Truncated to 1000

Torus Truncated to 500
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Torus Truncated to 100

Torus Truncated to 50
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Jacobs, Finkelstein, & Salgsm
Wavelets SIGGRAPH®S

Distance Function 1:
e The query metric is defined by:

d(AB)=Y w Al j,k]-B[, j.K]
i,j.k
where A[i,j,k] and B[i,j k] are the truncated and

quantized coefficients and w;; , are weights,
fine tuned to the database.

Jacobs, Finkelstein, & SAESH
Wavelets SIGGRAPHBS

Distance Function 2:
e The query metric can be approximated by:

d(AB)= > w (Al jk]#Bli, k]
i,j,KA(,]j k)20

to enable efficient indexing and search.
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Jacobs, Finkelstein, & SAES
Wavelets SIGGRAPH®S

Properties

Insensitive to noise
Insensitive to topology
Robust to degeneracies
Quick to compute
Efficient to match
Concise to store

¢ Discriminating?

X Invariant to transforms

Moments

Define shape by moments of inertia:

m, = j xPy4z" dxdydz

surface
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Test database is Viewpoint household collection

1,890 models, 85 classes

153 dining chairs 25 livingroom chairs 16 beds

8 chests 28 bottles 39 vases

Moments Retrieval Results

— Voxels
—— Moments [Elad et al.]
— Random

Precision

0.4 0.6 0.8
Recall

12 dining tables

36 end tables
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Moments Retrieval Results

— Voxels
— Moments [Elad et al.]
— Random
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Moments

Properties

Insensitive to topology
Robust to degeneracies
Quick to compute
Efficient to match
Concise to store

X Insensitive to noise

X Invariant to transforms

X Discriminating
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Extended Gaussian Image

Define shape with histogram of normal directions

e Invertible for convex objects
¢ Spherical function

EGI Retrieval Experiment

Test database is Viewpoint household collection
1,890 models, 85 classes
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EGI Retrieval Results
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Properties

Insensitive to topology
Quick to compute
Efficient to match
Concise to store

X Insensitve to noise

X Robust to degeneracies

X Invariant to transforms

X Discriminating

Voxels

Moments [Elad et al.]
EGI [Horn 84]
Random

35



Spherical Extent Functions
(Vranic & Saupe, 2000)

Shape Histograms (sectors)
(Ankherst, 1999)
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