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Chapter 14

Basics of The Differential
Geometry of Surfaces
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14.1. Introduction

Almost all of the material presented in this chapter is based on
lectures given by Eugenio Calabi in an upper undergraduate
differential geometry course offered in the Fall of 1994.

What is a surface? A precise answer cannot really be given
without introducing the concept of a manifold.

An informal answer is to say that a surface is a set of points in
R3 such that, for every point p on the surface, there is a small
(perhaps very small) neighborhood U of p that is continuously
deformable into a little flat open disk.
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Thus, a surface should really have some topology. Also, lo-
cally, unless the point p is “singular”, the surface looks like a
plane.

Properties of surfaces can be classified into local properties and
global properties .

In the older literature, the study of local properties was called
geometry in the small , and the study of global properties was
called geometry in the large.

Local properties are the properties that hold in a small neigh-
borhood of a point on a surface. Curvature is a local property.

Local properties can be studied more conveniently by assum-
ing that the surface is parameterized locally.
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Thus, it is important and useful to study parameterized patches.

Another more subtle distinction should be made between in-
trinsic and extrinsic properties of a surface.

Roughly speaking, intrinsic properties are properties of a sur-
face that do not depend on the way the surface in immersed
in the ambiant space, whereas extrinsic properties depend on
properties of the ambiant space.

For example, we will see that the Gaussian curvature is an
intrinsic concept, whereas the normal to a surface at a point
is an extrinsic concept.

In this chapter, we focus exclusively on the study of local
properties.
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By studying the properties of the curvature of curves on a sur-
face, we will be led to the first and to the second fundamental
form of a surface.

The study of the normal and of the tangential components
of the curvature will lead to the normal curvature and to the
geodesic curvature.

We will study the normal curvature, and this will lead us to
principal curvatures, principal directions, the Gaussian curva-
ture, and the mean curvature.

In turn, the desire to express the geodesic curvature in terms
of the first fundamental form alone will lead to the Christoffel
symbols.

The study of the variation of the normal at a point will lead
to the Gauss map and its derivative, and to the Weingarten
equations.
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We will also quote Bonnet’s theorem about the existence of
a surface patch with prescribed first and second fundamental
form.

This will require a discussion of the Theorema Egregium and
of the Codazzi-Mainardi compatibility equations.

We will take a quick look at curvature lines, asymptotic lines,
and geodesics, and conclude by quoting a special case of the
Gauss-Bonnet theorem.
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14.2. Parameterized Surfaces

In this chapter, we consider exclusively surfaces immersed in
the affine space A3.

In order to be able to define the normal to a surface at a
point, and the notion of curvature, we assume that some inner
product is defined on R3.

Unless specified otherwise, we assume that this inner product
is the standard one, i.e.

(x1, x2, x3) · (y1, y2, y3) = x1y1 + x2y2 + x3y3.

A surface is a map X: Ω → E3, where Ω is some open subset
of the plane R2, and where X is at least C3-continuous.

Actually, we will need to impose an extra condition on a sur-
face X so that the tangent plane (and the normal) at any
point is defined. Again, this leads us to consider curves on X.
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A curve C on X is defined as a map

C: t 7→ X(u(t), v(t)),

where u and v are continuous functions on some open interval
I contained in Ω.

We also assume that the plane curve t 7→ (u(t), v(t)) is regular,
that is, that (

du

dt
(t),

dv

dt
(t)

)
6= (0, 0)

for all t ∈ I.

For example, the curves v 7→ X(u0, v) for some constant u0

are called u-curves , and the curves u 7→ X(u, v0) for some
constant v0 are called v-curves . Such curves are also called
the coordinate curves .
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The tangent vector
dC

dt
(t) to C at t can be computed using

the chain rule:

dC

dt
(t) =

∂X

∂u
(u(t), v(t))

du

dt
(t) +

∂X

∂v
(u(t), v(t))

dv

dt
(t).

Note that

dC

dt
(t),

∂X

∂u
(u(t), v(t)), and

∂X

∂v
(u(t), v(t))

are vectors, but for simplicity of notation, we omit the vector
symbol in these expressions.

It is customary to use the following abbreviations: the partial
derivatives
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∂X

∂u
(u(t), v(t)) and

∂X

∂v
(u(t), v(t))

are denoted by Xu(t) and Xv(t), or even by Xu and Xv, and
the derivatives

dC

dt
(t),

du

dt
(t), and

dv

dt
(t)

are denoted by Ċ(t), u̇(t) and v̇(t), or even as Ċ, u̇, and v̇.

When the curve C is parameterized by arc length s, we denote

dC

ds
(s),

du

ds
(s), and

dv

ds
(s)

by C ′(s), u′(s), and v′(s), or even as C ′, u′, and v′. Thus, we
reserve the prime notation to the case where the parameriza-
tion of C is by arc length.
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� Note that it is the curve C: t 7→ X(u(t), v(t)) which is
parameterized by arc length, not the curve t 7→ (u(t), v(t)).

Using these notations, Ċ(t) is expressed as follows:

Ċ(t) = Xu(t)u̇(t) + Xv(t)v̇(t),

or simply as

Ċ = Xuu̇ + Xvv̇.

Now, if we want Ċ 6= 0 for all regular curves t 7→ (u(t), v(t)),
we must require that Xu and Xv be linearly independent.

Equivalently, we must require that the cross-product
Xu ×Xv be nonnull.
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Definition 14.2.1 A surface patch X, for short a surface X,
is a map X: Ω → E3 where Ω is some open subset of the plane
R2 and where X is at least C3-continuous.

We say that the surface X is regular at (u, v) ∈ Ω iff Xu×Xv 6=
−→
0 , and we also say that p = X(u, v) is a regular point of X.

If Xu × Xv =
−→
0 , we say that p = X(u, v) is a singular point

of X.

The surface X is regular on Ω iff Xu×Xv 6=
−→
0 , for all (u, v) ∈

Ω. The subset X(Ω) of E3 is called the trace of the surface X.

Remark : It often often desirable to define a (regular) surface
patch X: Ω → E3 where Ω is a closed subset of R2.

If Ω is a closed set, we assume that there is some open subset U

containing Ω and such that X can be extended to a (regular)
surface over U (i.e., that X is at least C3-continuous).
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Given a regular point p = X(u, v), since the tangent vectors
to all the curves passing through a given point are of the form

Xuu̇ + Xvv̇,

it is obvious that they form a vector space of dimension 2
isomorphic to R2, called the tangent space at p, and denoted
as Tp(X).

Note that (Xu, Xv) is a basis of this vector space Tp(X).

The set of tangent lines passing through p and having some
tangent vector in Tp(X) as direction is an affine plane called
the affine tangent plane at p.

Geometrically, this is an object different from Tp(X), and it
should be denoted differently (perhaps as ATp(X)?).
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The unit vector

Np =
Xu ×Xv

‖Xu ×Xv‖
is called the unit normal vector at p, and the line through p

of direction Np is the normal line to X at p.

This time, we can use the notation Np for the line, to distin-
guish it from the vector Np.

� The fact that we are not requiring the map X defining a
surface X: Ω → E3 to be injective may cause problems.

Indeed, if X is not injective, it may happen that p = X(u0, v0) =
X(u1, v1) for some (u0, v0) and (u1, v1) such that (u0, v0) 6=
(u1, v1).

In this case, the tangent plane Tp(X) at p is not well defined.
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Indeed, we really have two pairs of partial derivatives
(Xu(u0, v0), Xv(u0, v0)) and (Xu(u1, v1), Xv(u1, v1)), and the
planes spanned by these pairs could be distinct.

In this case, there are really two tangent planes T(u0,v0)(X) and
T(u1,v1)(X) at the point p where X has a self-intersection.

Similarly, the normal Np is not well defined, and we really
have two normals N(u0,v0) and N(u1,v1) at p.

We could avoid the problem entirely by assuming that X is
injective. This will rule out many surfaces that come up in
practice.

If necessary, we use the notation T(u,v)(X) or N(u,v) which
removes possible ambiguities.
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However, it is a more cumbersome notation, and we will con-
tinue to write Tp(X) and Np, being aware that this may be an
ambiguous notation, and that some additional information is
needed.

The tangent space may also be undefined when p is not a
regular point. For example, considering the surface
X = (x(u, v), y(u, v), z(u, v)) defined such that

x = u(u2 + v2),

y = v(u2 + v2),

z = u2v − v3/3,

note that all the partial derivatives at the origin (0, 0) are zero.

Thus, the origin is a singular point of the surface X. Indeed,
one can check that the tangent lines at the origin do not lie in
a plane.
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It is interesting to see how the unit normal vector Np changes
under a change of parameters.

Assume that u = u(r, s) and v = v(r, s), where
(r, s) 7→ (u, v) is a diffeomorphism. By the chain rule,

Xr ×Xs =

(
Xu

∂u

∂r
+ Xv

∂v

∂r

)
×

(
Xu

∂u

∂s
+ Xv

∂v

∂s

)

=

(
∂u

∂r

∂v

∂s
−

∂u

∂s

∂v

∂r

)
Xu ×Xv

= det


∂u

∂r

∂u

∂s

∂v

∂r

∂v

∂s

Xu ×Xv

=
∂(u, v)

∂(r, s)
Xu ×Xv,
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denoting the Jacobian determinant of the map
(r, s) 7→ (u, v) as ∂(u,v)

∂(r,s) .

Then, the relationship between the unit vectors N(u,v) and
N(r,s) is

N(r,s) = N(u,v) sign
∂(u, v)

∂(r, s)
.

We will therefore restrict our attention to changes of variables
such that the Jacobian determinant ∂(u,v)

∂(r,s) is positive.

One should also note that the condition Xu×Xv 6= 0 is equiv-
alent to the fact that the Jacobian matrix of the derivative
of the map X: Ω → E3 has rank 2, i.e., that the derivative
DX(u, v) of X at (u, v) is injective.
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Indeed, the Jacobian matrix of the derivative of the map

(u, v) 7→ X(u, v) = (x(u, v), y(u, v), z(u, v))

is 

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∂z

∂u

∂z

∂v


and Xu×Xv 6= 0 is equivalent to saying that one of the minors
of order 2 is invertible.

Thus, a regular surface is an immersion of an open set of R2

into E3.
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To a great extent, the properties of a surface can be studied
by studying the properties of curves on this surface.

One of the most important properties of a surface is its cur-
vature. A gentle way to introduce the curvature of a surface
is to study the curvature of a curve on a surface.

For this, we will need to compute the norm of the tangent
vector to a curve on a surface. This will lead us to the first
fundamental form.
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14.3. The First Fundamental Form (Rieman-

nian Metric)

Given a curve C on a surface X, we first compute the element
of arc length of the curve C.

For this, we need to compute the square norm of the tangent
vector Ċ(t).

The square norm of the tangent vector Ċ(t) to the curve C at
p is

‖Ċ‖2 = (Xuu̇ + Xvv̇) · (Xuu̇ + Xvv̇),

where · is the inner product in E3, and thus,

‖Ċ‖2 = (Xu ·Xu) u̇2 + 2(Xu ·Xv) u̇v̇ + (Xv ·Xv) v̇2.
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Following common usage, we let

E = Xu ·Xu, F = Xu ·Xv, G = Xv ·Xv,

and

‖Ċ‖2 = E u̇2 + 2F u̇v̇ + G v̇2.

Euler already obtained this formula in 1760. Thus, the map

(x, y) 7→ Ex2 + 2Fxy + Gy2

is a quadratic form on R2, and since it is equal to ‖Ċ‖2, it is
positive definite.

This quadratric form plays a major role in the theory of sur-
faces, and deserves an official definition.
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Definition 14.3.1 Given a surface X, for any point p =
X(u, v) on X, letting

E = Xu ·Xu, F = Xu ·Xv, G = Xv ·Xv,

the positive definite quadratic form (x, y) 7→ Ex2+2Fxy+Gy2

is called the first fundamental form of X at p. It is often
denoted as Ip, and in matrix form, we have

Ip(x, y) = (x, y)

(
E F
F G

)(
x

y

)
.

Since the map (x, y) 7→ Ex2+2Fxy+Gy2 is a positive definite
quadratic form, we must have E 6= 0 and G 6= 0.

Then, we can write

Ex2 + 2Fxy + Gy2 = E

(
x +

F

E
y

)2

+
EG− F 2

E
y2.
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Since this quantity must be positive, we must have E > 0,
G > 0, and also EG− F 2 > 0.

The symmetric bilinear form ϕI associated with I is an inner
product on the tangent space at p, such that

ϕI((x1, y1), (x2, y2)) = (x1, y1)

(
E F
F G

)(
x2

y2

)
.

This inner product is also denoted as 〈(x1, y1), (x2, y2)〉p.

The inner product ϕI can be used to determine the angle of
two curves passing through p, i.e., the angle θ of the tangent
vectors to these two curves at p. We have

cos θ =
〈(u̇1, v̇1), (u̇2, v̇2)〉√
I(u̇1, v̇1)

√
I(u̇2, v̇2)

.
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For example, the angle between the u-curve and the v-curve
passing through p (where u or v is constant) is given by

cos θ =
F√
EG

.

Thus, the u-curves and the v-curves are orthogonal iff F (u, v) =
0 on Ω.

Remarks : (1) Since(
ds

dt

)2

= ‖Ċ‖2 = E u̇2 + 2F u̇v̇ + G v̇2

represents the square of the “element of arc length” of the
curve C on X, and since du = u̇dt and dv = v̇dt, one often
writes the first fundamental form as

ds2 = E du2 + 2F dudv + G dv2.
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Thus, the length l(pq) of an arc of curve on the surface joining
p = X(u(t0), v(t0)) and q = X(u(t1), v(t1)), is

l(p, q) =

∫ t1

t0

√
E u̇2 + 2F u̇v̇ + G v̇2 dt.

One also refers to ds2 = E du2 + 2F dudv + G dv2 as a Rie-
mannian metric. The symmetric matrix associated with the
first fundamental form is also denoted as(

g11 g12
g21 g22

)
,

where g12 = g21.

(2) As in the previous section, if X is not injective, the first
fundamental form Ip is not well defined. What is well defined
is I(u,v).

In some sense, this is even worse, since one of the main themes
of differential geometry is that the metric properties of a sur-
face (or of a manifold) are captured by a Riemannian metric.



Introduction

Parameterized Surfaces

The First . . .

Home Page

Title Page

JJ II

J I

Page 675 of 681

Go Back

Full Screen

Close

Quit

Again, we will not worry too much about this, or assume X

injective.

(3) It can be shown that the element of area dA on a surface
X is given by

dA = ‖Xu ×Xv‖dudv =
√

EG− F 2 dudv.

We just discovered that, contrary to a flat surface where the
inner product is the same at every point, on a curved surface,
the inner product induced by the Riemannian metric on the
tangent space at every point changes as the point moves on
the surface.

This fundamental idea is at the heart of the definition of an
abstract Riemannian manifold.

It is also important to observe that the first fundamental form
of a surface does not characterize the surface.
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For example, it is easy to see that the first fundamental form
of a plane and the first fundamental form of a cylinder of
revolution defined by

X(u, v) = (cos u, sin u, v)

are identical:
(E, F, G) = (1, 0, 1).

Thus ds2 = du2+dv2, which is not surprising. A more striking
example is that of the helicoid and of the catenoid.

The helicoid is the surface defined over R× R such that

x = u1 cos v1,

y = u1 sin v1,

z = v1.

This is the surface generated by a line parallel to the xOy

plane, touching the z axis, and also touching an helix of axis
Oz.
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It is easily verified that (E, F, G) = (1, 0, u2
1 + 1). The figure

below shows a portion of helicoid corresponding to
0 ≤ v1 ≤ 2π and −2 ≤ u1 ≤ 2.
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Figure 14.1: An helicoid
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The catenoid is the surface of revolution defined over R × R
such that

x = cosh u2 cos v2,

y = cosh u2 sin v2,

z = u2.

It is the surface obtained by rotating a catenary around the
z-axis.

It is easily verified that

(E, F, G) = (cosh2 u2, 0, cosh2 u2).
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The figure below shows a portion of catenoid corresponding
to 0 ≤ v2 ≤ 2π and −2 ≤ u2 ≤ 2.
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Figure 14.2: A catenoid
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We can make the change of variables u1 = sinh u3, v1 = v3,
which is bijective and whose Jacobian determinant is cosh u3,
which is always positive, obtaining the following parameteri-
zation of the helicoid:

x = sinh u3 cos v3,

y = sinh u3 sin v3,

z = v3.

It is easily verified that

(E, F, G) = (cosh2 u3, 0, cosh2 u3),

showing that the helicoid and the catenoid have the same first
fundamental form.
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What is happening is that the two surfaces are locally isomet-
ric (roughly, this means that there is a smooth map between
the two surfaces that preserves distances locally).

Indeed, if we consider the portions of the two surfaces corre-
sponding to the domain R×]0, 2π[, it is possible to deform iso-
metrically the portion of helicoid into the portion of catenoid
(note that by excluding 0 and 2π, we made a “slit” in the
catenoid (a portion of meridian), and thus we can open up
the catenoid and deform it into the helicoid).

We will now see how the first fundamental form relates to the
curvature of curves on a surface.
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