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Continuous Laplacian

Gradient, Divergence, and the Laplacian:

Given a function F:R2R, the gradient of F is the 

vector field F:R2R2 defined by the partial 

derivatives:
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Continuous Laplacian

Gradient, Divergence, and the Laplacian:

Given a function F:R2R, the gradient of F is the 

vector field F:R2R2 defined by the partial 

derivatives:

Intuitively: At the point p0, the vector F(p0) points 

in the direction of greatest change of f.
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Examples:

22),( yxyxF  xyyxF ),(

Continuous Laplacian

Examples:

 yxyxF 2,2),(   xyyxF ,),( 



2

Continuous Laplacian

Gradient, Divergence, and the Laplacian:

Given a function F:R2R, the gradient of F is the 

vector field F:R2R2 defined by the partial 

derivatives:

Formally: Fixing the point p0, for any direction v0, 

the 1D function:

has derivative:
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Continuous Laplacian
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Continuous Laplacian
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Continuous Laplacian

Examples:
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Continuous Laplacian

Gradient, Divergence, and the Laplacian:

Given a vector field F=(F1,F2):R
2R2, the 

divergence of F is the functionF:R2R defined 

by the partial derivatives:
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Continuous Laplacian

Gradient, Divergence, and the Laplacian:

Intuitively: At the point p0, the divergence F(p0) 

is a measure of the extent to which the flow 

(de)compresses at p0.

Continuous Laplacian

Gradient, Divergence, and the Laplacian:

Intuitively: At the point p0, the divergence F(p0) 

is a measure of the extent to which the flow 

(de)compresses at p0.

Continuous Laplacian

Gradient, Divergence, and the Laplacian:

Given a function F:R2R, the Laplacian of F is 

the functionF:R2R (or 2F) defined by the 

partial derivatives:
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Continuous Laplacian

Gradient, Divergence, and the Laplacian:

Given a function F:R2R, the Laplacian of F is 

the functionF:R2R (or 2F) defined by the 

partial derivatives:
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Continuous Laplacian

Gradient, Divergence, and the Laplacian:

Given a function F:R2R, the Laplacian of F is 

the functionF:R2R (or 2F) defined by the 

partial derivatives:

Intuitively: The Laplacian of F at  the point p0

measures the extent to which the value of F at p0

differs from the average value of F its neighbors.
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Continuous Laplacian

Gradient, Divergence, and the Laplacian:

Given a function F:R2R, the Laplacian of F is 

the functionF:R2R (or 2F) defined by the 

partial derivatives:

Formally: The Laplacian of F can be defined by 

considering the family of smoothed functions:
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Continuous Laplacian

Gradient, Divergence, and the Laplacian:

Given a function F:R2R, the Laplacian of F is 

the functionF:R2R (or 2F) defined by the 

partial derivatives:

Formally: The Laplacian of F can be defined by 

considering the family of smoothed functions:

Then the Laplacian has the property that:
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Continuous Laplacian

Applications to Smoothing:

If we want to perform a small amount of function 

smoothing on the function F, we can update the 

function F by setting:

tyxeyxFyxtG /)( 22

),(),,( 

F
t

G

t






0

),(),(),( yxFyxFyxF  

Continuous Laplacian
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Continuous Laplacian

Why Do We Care?

A key component of human perception is the 

detection of local changes.

Continuous Laplacian

Why Do We Care?

A key component of human perception is the 

detection of local changes.

It may be easier to work in the space of “local 

changes” than in the space of “absolute” values. 

Continuous Laplacian

Why Do We Care?

A key component of human perception is the 

detection of local changes.

It may be easier to work in the space of “local 

changes” than in the space of “absolute” values. 

Instead of trying to model a sound/image/shape 

F, it may be easier to model the way the values of 

F change.

Continuous Laplacian

Example

Modeling in image space

Color:

Color of the sky at the 

horizon on a partially 

overcast day in the 

North of Spain.

Continuous Laplacian

Example

Modeling in Laplacian space

Color Difference:

Difference between 

the color of the sky 

and the color of the 

clouds at sunset.

Continuous Laplacian

Challenge:

Given a “difference based” representation, 

convert it back to a “value based” representation.
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Continuous Laplacian

Challenge:

Given a “difference based” representation, 

convert it back to a “value based” representation.

Poisson Equation:

Given some know “difference function” G, solve 

for the function F with the property that:
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Continuous Laplacian

Question: For a given function G Is there a unique 

function F with the property that:
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Continuous Laplacian

Question: For a given function G Is there a unique 

function F with the property that:

Equivalently (by linearity of the Laplacian), is 

there a unique function F with the property that:
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Continuous Laplacian

Question: For a given function G Is there a unique 

function F with the property that:

Equivalently (by linearity of the Laplacian), is 

there a unique function F with the property that:

Answer: No! (In general)
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Continuous Laplacian

Examples F(x,y)=0:
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Continuous Laplacian

Examples F(x,y)=0:

1.

2.

3.

4.   kyekxbkxayxF
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Continuous Laplacian

Examples F(x,y)=0:

1.

2.

3.

4.   kyekxbkxayxF

dcybxaxyyxF
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ayxF
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Continuous Laplacian

Examples F(x,y)=0:

1.

2.

3.

4.

A function F with the property that F(x,y)=0 is 

called Harmonic.
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Continuous Laplacian

Given a bounded region , and a function, G

defined inside of , there are many ways to 

define a function F inside of  so that F(x,y)=G.

 G

Continuous Laplacian

Given a bounded region , and a function, G

defined inside of , there are many ways to 

define a function F inside of  so that F(x,y)=G.

Given a function f defined on the boundary, 

then there is a unique function F such that:

 G
f





),(for       ),(),(
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Outline

Continuous Laplacian

Discrete Laplacian
 Finite Differences

 Matrix Representation

Normal Equation
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Discrete Laplacian

In general, solving the continuous formulation of 

the Poisson equation:

is difficult as it would require explicit integration.

However, we can approach the problem of 

solving the Poisson equation by discretizing.
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Discrete Laplacian

Rather than thinking of functions as defined over 

the continuous domain, we will think of functions 

as a discrete set of samples over a regular grid: 
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Discrete Laplacian

In order to formulate the Poisson equation, we 

use finite differences to define the gradient and 

the divergence of an array.

Discrete Laplacian (1D)

Set-Up:

In the 1D case, a scalar function and a vector 

field are equivalent:
1. The gradient is a map from an N-dimensional space 

to an N-dimensional space, and

2. The divergence is a map from an N-dimensional 

space to an N-dimensional space.

Discrete Laplacian (1D)

We define the discrete gradient f[ ] as:

][]1[][ ififif 

f[ ]

f[ ]

1-1

Discrete Laplacian (1D)

We define the discrete gradient f[ ] as:

And we define the discrete divergence f[ ] as: 

][]1[][ ififif 

]1[][][  ififif


f[ ]

f[ ]

f[ ]

f[ ]

1-1

-11
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Discrete Laplacian (1D)

Expressed in matrix notation, we get:

so that the gradient and divergence operators are 

negative transposes of each other.
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Discrete Laplacian (1D)

Thus the discrete Laplacian f[ ] becomes:

]1[][2]1[][  ifififif

f[ ]

f[ ]
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Discrete Laplacian (1D)

And in matrix notation, we get:

Note:

Since the matrices corresponding to  and  are 

negative transposes of each other, the product of 

the two matrices (the Laplacian) is symmetric.

 
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Discrete Laplacian (2D)

Set-Up:

In the 2D case, a scalar function and a vector 

field are different:
1. The gradient is a map from an NxN-dimensional 

space to an 2NxN-dimensional space, and

2. The divergence is a map from an 2NxN-

dimensional space to an NxN-dimensional space.

Discrete Laplacian (2D)

We define the “gradient” f[ ][ ] as:

 ]][[]1][[],][[]][1[]][[ jifjifjifjifjif 

Discrete Laplacian (2D)

We define the “gradient” f[ ][ ] as:

 ]][[]1][[],][[]][1[]][[ jifjifjifjifjif 

-1 1

f[ ][ ]
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Discrete Laplacian (2D)

We define the “gradient” f[ ][ ] as:

 ]][[]1][[],][[]][1[]][[ jifjifjifjifjif 

-1

1

f[ ][ ]

Discrete Laplacian (2D)

We define the “gradient” f[ ][ ] as:

And we define the “divergence” f[ ][ ] as: 

yjifyjifxjifxjifjif ].1][[].][[].][1[].][[]][[ 


 ]][[]1][[],][[]][1[]][[ jifjifjifjifjif 

Discrete Laplacian (2D)

We define the “gradient” f[ ][ ] as:

And we define the “divergence” f[ ][ ] as: 

yjifyjifxjifxjifjif ].1][[].][[].][1[].][[]][[ 


 ]][[]1][[],][[]][1[]][[ jifjifjifjifjif 
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Discrete Laplacian (2D)

We define the “gradient” f[ ][ ] as:

And we define the “divergence” f[ ][ ] as: 

yjifyjifxjifxjifjif ].1][[].][[].][1[].][[]][[ 


 ]][[]1][[],][[]][1[]][[ jifjifjifjifjif 

f[ ][ ]
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Discrete Laplacian (1D)

Thus the discrete Laplacian f[ ][ ] becomes:

]1][[]][1[]][[4]1][[]][1[]][[  jifjifjifjifjifjif

f[ ][ ] f[ ][ ]

Discrete Laplacian (1D)

Thus the discrete Laplacian f[ ][ ] becomes:

As in the 1D case, the gradient and divergence 

operators are negative transposes of each other 

so the Laplacian matrix is symmetric.

]1][[]][1[]][[4]1][[]][1[]][[  jifjifjifjifjifjif
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Outline

Continuous Laplacian

Discrete Laplacian

Normal Equation

Normal Equation

Question: Since we want to model using  “local 

changes”, why not stop with the gradient?

Why not represent a model by its gradient field G

and then solve for the function F such that:

),(),( yxGyxF

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Normal Equation

Question: Since we want to model using  “local 

changes”, why not stop with the gradient?

Why not represent a model by its gradient field G

and then solve for the function F such that:

Answer: If we discretize 2D space using a regular 

NxN grid, the function F becomes an N2 vector, 

while the gradient field G becomes a 2N2 vector.

 The linear system is over-constrained and 

there may not be any solutions.

),(),( yxGyxF

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Normal Equation

In general, for m>n, given an m-dimensional 

vector b and an nxm matrix A, we do not expect 

there to be an n-dimensional vector x such that:

A x b=m

n

Normal Equation

In general, for m>n, given an m-dimensional 

vector b and an nxm matrix A, we do not expect 

there to be an n-dimensional vector x such that:

However, we can still try to solve for the vector x

that minimizes the norm of the residual:

A x b=m

n

2

0

0

minarg bAxx
x



Normal Equation

Writing out the square norm as:

2

0

0

minarg bAxx
x



bAxbAxbAx  00

2

0 ,
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Normal Equation

Writing out the square norm as:

we are looking for the value of x minimizing:

2

0

0

minarg bAxx
x



bAxbAxbAx  00

2

0 ,

bbbAxAxAx

bAxbAxx

,,2,

,)(
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Normal Equation

To minimize (x), we need to find the value of x

at which the gradient is equal to zero:
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x



bAAxA

x

tt 22

)(0





bbbAxAxAxx ,,2,)( 

Normal Equation

To minimize (x), we need to find the value of x

at which the gradient is equal to zero:

2

0

0

minarg bAxx
x



bAAxA

x

tt 22

)(0





bbbAxAxAxx ,,2,)( 

Normal Equation

Since A is an nxm matrix, and since b is an m

dimensional matrix:
 AtA is an nxn matrix

 Atb is an n-dimensional vector

2

0

0

minarg bAxx
x



bbbAxAxAxx ,,2,)( 

AxAbA tt 

Normal Equation

Since A is an nxm matrix, and since b is an m

dimensional matrix:
 AtA is an nxn matrix

 Atb is an n-dimensional vector

 Minimizing the residual amounts to solving a 

set of n equations in n unknowns.

2

0

0

minarg bAxx
x



bbbAxAxAxx ,,2,)( 

AxAbA tt 

Normal Equation

Implications:

If we want to represent a model by its gradient 

field G then we can still solve for the function F

minimizing:
2

0 ),(),(minarg
0

yxGyxFF
F



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Normal Equation

Implications:

If we want to represent a model by its gradient 

field G then we can still solve for the function F

minimizing:

To do this, we need to apply the transpose of the 

gradient and solve:

2

0 ),(),(minarg
0

yxGyxFF
F




),(),( yxFyxG tt 


Normal Equation

Implications:

But we know that the transpose of the gradient is 

the negative divergence so this gives:

),(

),(),(

yxF

yxFyxG






Normal Equation

Implications:

But we know that the transpose of the gradient is 

the divergence so the equation becomes:

So even when the difference constraints are 

given as the gradients of the model, we are still 

required to solve the Poisson equation.

),(

),(),(

yxF

yxFyxG







