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Three Derivations of Principal Component Analysis

Why are the PCA basis vectors the eigenvectors of the correlation matrix?

Derivation #1: by maximizing variance

¿From Ballard & Brown, Computer Vision: The (random) data vector is x; its component along a proposed axis u is (x · u).
The variance of this is E(x · u − E(x · u))2 (the variance is the expectation of the square of the data with its mean removed).

E(x · u − E(x · u))2 = E[(u · (x − Ex))2]

= uE[(x − Ex) · (x − Ex)T ]u

= uT Cu

C is the covariance or ’correlation’ matrix. The u that gives the maximum value to uT Cu (with the constraint that u is a unit
vector) is the eigenvector of C with the largest eigenvalue. The second and subsequent principal component axes are the other
eigenvectors sorted by eigenvalue.

#2: ...by error minimization

Find PCA basis vectors u that minimize E||x − x̂||2 for a partial expansion out to P components:

x̂ =

P∑

k=1

(x · uk)uk

x − x̂ =

N∑

k=P+1

(x · uk)uk

where N is the full set of vectors necessary to represent the data.

So, minimize the square of the last sum. The cross terms disappear because of the orthogonality of uk. For each term:

E((x · u)u)2 = Eu(x · u)(x · u)u

the outer u’s disappear because u · u = 1.
= E(x · u)(x · u) = uCu

But uCu = λ, so the truncation error is the sum of the lower eigenvalues! Why: we know that u are eigenvectors, so they
satisfy Cu = λu, also u · u = 1, so....

#3: ...by diagonalizing the correlation matrix

The correlation matrix of some data: C = E[xxT ]. The correlation matrix of the data x transformed by some transform T:
C ′ = E[Tx(Tx)T ] = E[TxxT T T ]. The inner xxT is the correlation matrix of the original data. Now suppose that the rows
of T are chosen to be the eigenvectors of this correlation matrix– then because of the orthogonality of the eigenvectors, the
resuling matrix C’ will be diagonal. Thus C’, the correlation matrix of the transformed data, is uncorrelated. So the basis that
diagonalizes the correlation matrix consists of the eigenvectors of the (original) correlation matrix.
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Correlation matrices

For a vector x, ExxT is a correlation matrix.

Say M is a matrix whose columns contain data vectors. I think both MM T and MMT can be interpreted as correlation
matrices.

MMT is the usual correlation matrix, a sum of outer products:

(MMT )i,j =
∑

k

xk [i]xk[j]

(MMT ) =
∑

k

xkxT
k ≈ ExxT = C

If xk are a sliding window through a signal, i.e. x0 contains samples 0..10, x1 samples 1..11, etc., then this corresponds to
estimating the autocovariance of the signal. If xk are images scanned into a vector, this gives the average (after dividing by N)
correlation of pixel i with pixel j.

The i, j entry of MT M is the dot of data vector i with data vector j. If a column of M contains various measurements for a
particular person then (MT M)i,j gives the correlation, averaged across tests, of person i with person j, while (MM T )i,j gives
the correlation, averaged across people, of test i versus test j.

PCA and SVD

SVD decomposes a possibly non-square matrix M into USV where U,V are square rotation-like matrices and S is a diagonal
matrix of singular values. The columns of U are the eigenvectors of MM T , the columns of V are the eigenvectors of MT M .

Computation Trick

If we are computing PCA on an image, M will be (e.g.) a million by N (N images), and MM T will be million2. Instead, first
find the eigenvectors of MT M (which is NxN ): MT Mx = λx. Then premultiply by M and interpret as (MMT )(Mx) =
λ(Mx), i.e., Mx are the desired eigenvectors, now given as a linear combination of the original data using weights which are
the eigenvector of the smaller system.
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