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Goal

Intrinsic Comparison of Points

Isometry Invariant Symmetries
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Goal

Multi-Scale Intrinsic Comparison of Points

Isometry Invariant Symmetries

T:M— M, s.t. dy(z,y) =d1(T(2), T(y)) Yy € N(x)
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Goal

Find “similar” points at multiple scales.

intrinsic

Invariant to isometric deformations

robust

Not sensitive to perturbations of the shape

efficient

Easily computable across many scales



Old Idea

Define a multiscale signature for every point
Compare points by comparing their signatures

informative

Capture information around the point

commensurable

Easy to compare across points




Talk Overview

© Background

heat kernel on a Riemannian manifold

© Heat Kernel Signature
definition and basic properties
informative theorem
computation

© Applications
multi-scale matching
shared structure discovery

Conclusions



Heat Kernel




Heat Equation on a Manitfold

If u(z,t) is the amount of heat at pointz at time¢ .

ou
_=A
ot “

A : Laplace-Beltrami operator.

Given an initial distribution f(z). Heat at time ¢ :

fla,t) = e 0f




Heat Equation on a Manitfold

Heat kernel ki (z,vy) :

fa )= [ kil@v)f@)dy

k:(x,y): amount of heat transferred from z to y in time t.

feee

t = 0.001 t =0.02 t=40




Heat Equation on a Manitfold

kt(x,y) : prob. density function of Brownian motion on M.
P (Wsﬁ € C) = /O ki(z,y)dy

Intuitively: weighted average over all paths possible
between z and y in time ¢.

Related to Diffusion Distance:

Dy(z,y) = ke(z, @) — 2ke(z,9) + he(y,9) o - e e
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Heat Kernel Properties

Invariant under isometric deformations

If T:X —Y is anisometry then:
ke(X,Y) = ki(T(2), T(y))

Conversely: characterizes the shape up to isometry.
If ke(X,Y) =k (T(x),T(y)) V z,y,t then:
T 1s an isometry.

This is because: .

lim (tlog k = _——d2 (z,y) ¥ =,
tw( g ki(x,y)) 4M(fc y) YV x,y

where dam(,+) is the geodesic distance.



Heat Kernel Properties

@ Multi-Scale;

For a fixed z, as t increases, heat diffuses to larger
and larger neighborhoods.

Therefore, k¢(x, -) is determined (reflects the
properties of) a neighborhood that grows with ¢.
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Heat Kernel Properties

@ Robust:
kt(x,-) is a probability density function, a weighted
average over all paths, which should not be sensitive
to local perturbations.

k' (z,C) =P(W; € C)



Heat Kernel Properties

@ Robust:
kt(x,-) is a probability density function, a weighted
average over all paths, which should not be sensitive
to local perturbations.

KM (z,0) = P(W} € )

Only paths through the modified area P will change.



Defining a signature

Let k¢(zx,-) be the signature of = at scale¢.

The heat kernel has all the properties we want.
Except easy comparison!

k:(z,-) is a function on the entire manifold.

Nontrivial to align the domains of such functions across
shapes, or even for different points of the same shape.



Heat Kernel Signature



Heat Kernel Signature

Define:

HKS(z,t) = ki(x,z) signature of = at scalet.

Now HKSs of two points can be easily compared since
they are defined on a common domain (time)

HKS is a restriction of the heat kernel, and thus:
© 1sometry-invariant
© multi-scale

© robust

Question: How informative is it?



Heat Kernel Signature

Relation to scalar curvature for small ¢ :
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Heat Kernel Signature

Can be interpreted as multi-scale intrinsic curvature.

t = 0.004 t =0.008 t = 0.02 t
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Informative Theorem

The set of all HKS on the shape almost always defines it
up to isometry!

Theorem: If X and Y are two compact manifolds, such
that Ax and Ay have only non-repeating eigenvalues.
Then a homeomorphim T': X — Y is an isometry if
and only if

HKS(z) = HKS(T'(z)) V =



Informative Theorem

Intuition: Heat Kernel is related to the eigenvalues and
eigenfunctions of the LB-operator:

HKS(z,t) = fj e~ Mt pZ ()
=0

If eigenvalues do not repeat, we can recover {A;} and {¢2-2 (z)}
from HKS(z). E.g. A\g =0, and

$5(z) = lim HKS (3, )

and X =inf {a, s.t. ItIJIB e (HKS(z, t) — qb%(a:)) o= O}



Informative Theorem

Intuition: Heat Kernel is related to the eigenvalues and
eigenfunctions of the LB-operator:

O
HKS(z,t) = Y e Mt¢f ()
=0
After recovering the eigenvalues, and squared
eigenfunctions, we only need to recover their signs.
We use the properties of nodal domains of eigenfunctions.

Since the eigenvalues + eigenfunctions define the manifold,
the theorem follows.



Informative Theorem

How general is the theorem?

If there are repeated eigenvalues, it does not hold:

/J_.

O 0

On the sphere, HKS{z) = HKS(y) V¥ z,y but
there are non-isometric maps between spheres.

Uhlenbeck’s Theorem (1976): for “almost any” metric on a
2-manifold X, the eigenvalues of Ax are non-repeating.



Computing HKS
On a compact manifold:
N
ke(z,y) = > e g (2)d; (y)

1=0
Ai, &; i eigen value/function of Laplace-Beltrami operator.

Heat equation on a mesh:
ou £

— = [ = e
£y u = ul(t) =e ““ug

We use Belkin et al. mesh Laplace: L = A=W

A : diagonal area matrix
W symmetric positive definite weight matrix.



Computing HKS

If L=A"1w:

N
u®) = e Hug =S| el (2)pi(y)
1=0

7 |;

u(y)A(y)

Ai, &; : ith eigen value/vector of L .

Discretization of f(z,t) = ]

4

kt($, y)

f(y)dy .

N
Use ki(z,y) = > e Yo(x)di(y)

1=0

Especially suitable for large ¢.

Once the eigen-decomposition is computed can obtain

HKS at any scale.



Computing HKS

Taylor approximation:

—tL
) = = (2 )(w,y)

Aly) — AQw)

Can use this for small t.

Questions:
O Better approximation of matrix exponential (e.g. Pade)?

© Can compute the diagonal of exponential only?

Moler, C. B. and C. F. Van Loan, "Nineteen Dubious Ways to Compute the
Exponential of a Matrix," SIAM Review 20, 1978, pp. 801-836.



Sampling in Time

Two heuristics for making HKSs commensurable:

© For a fixed point z, sample HKS on a logarithmic
scale at times t; .

© For a fixed time t scale each HKS, by the sum over

all points of M.
HKS(z) = { ki, (@, “’)?z €1,2,.., 100}
> ;e b
t; = o'ty

Compare using L2 norm of the HKS vectors.



Applications



Multiscale Matching

Comparing points through their HKS signatures:
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Multiscale Matching

Comparing points through their HKS signatures:

Medium scale Full scale



Multiscale Matching

Finding similar points:
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Multiscale Matching

Finding similar points:
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Medium scale Full scale




Multiscale Matching

Finding similar points — robustly:
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Medium scale Full scale



Multiscale Matching

Finding similar points across multiple shapes:

Medium scale Full scale



Feature Detection

Persistent feature detection:
Find points that are maxima of HKS:

kt(ﬂ&', w)

for large enought.

Motivation: high curvature points at large scale.




Shared Structure

2D MDS embedding of feature points on three shapes
according to distances of their HKS
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Shared Structure

2D MDS embedding of feature points on 175 shapes
according to distances of their HKS.

o /QJ '/a-

Feature points found on a few poses of
the dancer model by Vlasic et al.

ey
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MDS of features from
all 175 poses using a
full range of scales



Open Questions

Convergence of the discrete heat kernel to the
continuous one?

Precise robustness statements (geometric/topological).

Precise multi-scale analysis.

Less restrictive Informative Theorem?
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