Heat Kernel Signature: A Concise Signature Based on Heat Diffusion

Leo Guibas, Jian Sun, Maks Ovsjanikov

This talk is based on:

Jian Sun, Maks Ovsjanikov, Leonidas Guibas¹ *A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion* Proceedings of SGP 2009, to appear

Maks Ovsjanikov, Jian Sun, Leonidas Guibas¹ *Global Intrinsic Symmetries of Shapes* Computer Graphics Forum (Proc. of SGP) 2008

Intrinsic Comparison of Points

Isometry Invariant Symmetries

 $T: M \to M$, s.t. $d_M(x,y) = d_M(T(x),T(y)) \ \forall \ x,y$

Intrinsic Comparison of Points

Isometry Invariant Symmetries

 $T: M \to M$, s.t. $d_M(x,y) = d_M(T(x),T(y)) \ \forall \ x,y$

Multi-Scale Intrinsic Comparison of Points

Isometry Invariant Symmetries

 $T: M \to M$, s.t. $d_M(x,y) = d_M(T(x),T(y)) \ \forall \ y \in \mathcal{N}(x)$

Multi-Scale Intrinsic Comparison of Points

Isometry Invariant Symmetries

 $T: M \to M$, s.t. $d_M(x,y) = d_M(T(x),T(y)) \ \forall \ y \in \mathcal{N}(x)$

Find "similar" points at multiple scales.

intrinsic

Invariant to isometric deformations

robust

Not sensitive to perturbations of the shape

efficient

Easily computable across many scales

Old Idea

Define a multiscale signature for every point Compare points by comparing their signatures

informative

Capture information around the point

commensurable

Easy to compare across points

Talk Overview

- Background
 heat kernel on a Riemannian manifold
- Heat Kernel Signature
 definition and basic properties
 informative theorem
 computation
- Applications
 multi-scale matching
 shared structure discovery

Conclusions

Heat Kernel

Heat Equation on a Manifold

If u(x,t) is the amount of heat at point x at time t.

$$rac{\partial u}{\partial t} = \Delta u$$

Δ : Laplace-Beltrami operator.

Given an initial distribution f(x). Heat at time t:

$$f(x,t)=e^{-t\Delta}f$$

Heat Equation on a Manifold

Heat kernel $k_t(x,y)$:

$$f(x,t) = \int_{\mathcal{M}} k_t(x,y) f(y) dy$$

 $k_t(x,y)$: amount of heat transferred from x to y in time t.

Heat Equation on a Manifold

 $k_t(x, y)$: prob. density function of Brownian motion on M.

$$\mathbb{P}\left(W_x^t \in C\right) = \int_C k_t(x, y) dy$$

Intuitively: weighted average over all paths possible between x and y in time t.

Related to Diffusion Distance:

$$D_t(x,y) = k_t(x,x) - 2k_t(x,y) + k_t(y,y)$$

a robust multi-scale measure of proximity.

S. Lafon

Invariant under isometric deformations

If $T: X \to Y$ is an isometry then:

$$k_t(X,Y) = k_t(T(x),T(y))$$

Conversely: characterizes the shape up to isometry.

If $k_t(X,Y) = k_t(T(x),T(y)) \ \forall \ x,y,t$ then:

T is an isometry.

This is because:

$$\lim_{t\downarrow 0} (t \log k_t(x,y)) = -\frac{1}{4} d_{\mathcal{M}}^2(x,y) \ \forall \ x,y$$

where $d_{\mathcal{M}}(\cdot, \cdot)$ is the geodesic distance.

• Multi-Scale:

For a fixed x, as t increases, heat diffuses to larger and larger neighborhoods.

Therefore, $k_t(x, \cdot)$ is determined (reflects the properties of) a neighborhood that grows with t.

Robust:

 $k_t(x,\cdot)$ is a probability density function, a weighted average over all paths, which should not be sensitive to local perturbations.

Robust:

 $k_t(x,\cdot)$ is a probability density function, a weighted average over all paths, which should not be sensitive to local perturbations.

Only paths through the modified area *P* will change.

Defining a signature

Let $k_t(x,\cdot)$ be the signature of x at scale t.

The heat kernel has all the properties we want.

Except easy comparison!

 $k_t(x,\cdot)$ is a function on the entire manifold.

Nontrivial to align the domains of such functions across shapes, or even for different points of the same shape.

Define:

 $\mathsf{HKS}(x,t) = k_t(x,x)$ signature of x at scale t.

Now HKSs of two points can be easily compared since they are defined on a common domain (time)

HKS is a restriction of the heat kernel, and thus:

- isometry-invariant
- o multi-scale
- o robust

Question: How informative is it?

Relation to scalar curvature for small t:

$$k_t(x,x) = \frac{1}{4\pi t} \sum_{i=0}^{\infty} a_i t^i \quad a_0 = 1, a_1 = \frac{1}{6}K$$

Can be interpreted as multi-scale intrinsic curvature.

The set of all HKS on the shape almost always defines it up to isometry!

Theorem: If X and Y are two compact manifolds, such that Δ_X and Δ_Y have only non-repeating eigenvalues. Then a homeomorphim $T: X \to Y$ is an isometry if and only if

$$\mathsf{HKS}(x) = \mathsf{HKS}(T(x)) \ \forall \ x$$

Intuition: Heat Kernel is related to the eigenvalues and eigenfunctions of the LB-operator:

$$HKS(x,t) = \sum_{i=0}^{\infty} e^{-\lambda_i t} \phi_i^2(x)$$

If eigenvalues do not repeat, we can recover $\{\lambda_i\}$ and $\{\phi_i^2(x)\}$ from HKS(x). E.g. $\lambda_0=0$, and

$$\phi_0^2(x) = \lim_{t \downarrow 0} \mathsf{HKS}(x,t)$$

and
$$\lambda_1 = \inf \left\{ a \text{ s.t. } \lim_{t \downarrow 0} e^{at} (\mathsf{HKS}(x,t) - \phi_0^2(x)) \neq 0 \right\}$$

Intuition: Heat Kernel is related to the eigenvalues and eigenfunctions of the LB-operator:

$$\mathsf{HKS}(x,t) = \sum_{i=0}^{\infty} e^{-\lambda_i t} \phi_i^2(x)$$

After recovering the eigenvalues, and squared eigenfunctions, we only need to recover their signs.

We use the properties of nodal domains of eigenfunctions.

Since the eigenvalues + eigenfunctions define the manifold, the theorem follows.

How general is the theorem?

If there are repeated eigenvalues, it does not hold:

On the sphere, $HKS(x) = HKS(y) \ \forall \ x, y$ but there are non-isometric maps between spheres.

Uhlenbeck's Theorem (1976): for "almost any" metric on a 2-manifold X, the eigenvalues of Δ_X are non-repeating.

Computing HKS

On a compact manifold:

$$k_t(x,y) = \sum_{i=0}^{N} e^{-t\lambda_i} \phi_i(x) \phi_i(y)$$

 $\lambda_i, \phi_i : i^{\text{th}}$ eigen value/function of Laplace-Beltrami operator.

Heat equation on a mesh:

$$\frac{\partial u}{\partial t} = Lu \implies u(t) = e^{-tL}u_0$$

We use Belkin et al. mesh Laplace: $L = A^{-1}W$

A: diagonal area matrix

W: symmetric positive definite weight matrix.

Computing HKS

If $L = A^{-1}W$:

$$u(t) = e^{-tL}u_0 = \sum_{y} \sum_{i=0}^{N} e^{-\lambda_i t} \phi_i(x) \phi_i(y) u(y) A(y)$$

 $\lambda_i, \phi_i : i^{\text{th}}$ eigen value/vector of L.

Discretization of $f(x,t) = \int_M k_t(x,y) f(y) dy$.

Use
$$k_t(x,y) = \sum_{i=0}^{N} e^{-\lambda_i t} \phi_i(x) \phi_i(y)$$

Especially suitable for large t.

Once the eigen-decomposition is computed can obtain HKS at any scale.

Computing HKS

Taylor approximation:

$$k_t(x,y) = \frac{e^{-tL}(x,y)}{A(y)} = \frac{1}{A(y)} \left(\sum_{j=0}^{\infty} \frac{(-t)^j}{j!} L^j \right) (x,y)$$

Can use this for small t.

Questions:

- O Better approximation of matrix exponential (e.g. Padé)?
- Ocan compute the diagonal of exponential only?

Moler, C. B. and C. F. Van Loan, "Nineteen Dubious Ways to Compute the Exponential of a Matrix," SIAM Review 20, 1978, pp. 801-836.

Sampling in Time

Two heuristics for making HKSs commensurable:

- \bigcirc For a fixed point x, sample HKS on a logarithmic scale at times t_i .
- For a fixed time t scale each HKS, by the sum over all points of M.

$$\mathsf{HKS}(x) = \left\{ \frac{k_{t_i}(x, x)}{\sum_j e^{-t_i \lambda_j}}, i \in 1, 2, ..., 100 \right\}$$

$$t_i = \alpha^i t_0$$

Compare using L2 norm of the HKS vectors.

Applications

Comparing points through their HKS signatures:

Comparing points through their HKS signatures:

Medium scale

Full scale

Finding similar points:

Medium scale

Full scale

Finding similar points:

Medium scale

Full scale

Finding similar points – robustly:

Medium scale

Full scale

Finding similar points across multiple shapes:

Medium scale

Full scale

Feature Detection

Persistent feature detection:

Find points that are maxima of HKS:

$$k_t(x,x)$$

for large enough t.

Motivation: high curvature points at large scale.

Shared Structure

2D MDS embedding of feature points on three shapes according to distances of their HKS

Shared Structure

2D MDS embedding of feature points on 175 shapes according to distances of their HKS.

Feature points found on a few poses of the dancer model by Vlasic *et al*.

MDS of features from all 175 poses using a full range of scales

Open Questions

- Convergence of the discrete heat kernel to the continuous one?
- Precise robustness statements (geometric/topological).
- Precise multi-scale analysis.
- Less restrictive Informative Theorem?

Thank You

- Acknowledgements: NSF grants ITR 0205671, FRG 0354543, FODAVA 808515, NIH grant GM-072970, and DARPA grant HR0011-05-1-0007
- Thanks: Qixing Huang, Yusu Wang

