RC 17697 (#77951) 2/19/92
Computer Science 4 pages

Research Report

Multi-Resolution 3D Approximations
for Rendering Complex Scenes

Jarek R. Rossignhac and Paul Borrel

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

Published as

"Multi-resolution 3D approximations for rendering complex scenes ",
Jarek Rossignac and Paul Borrel.

In Geometric Modeling in Computer Graphics , pp. 455-465, Springer
Verlag, Eds. B. Falcidieno and T.L. Kunii, Genova, Italy, June 28-July
2, 1993.

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for
publication. It has been issued as a Research Report for early dissemination of its contents and will be distributed
outside of IBM up to one year after the date indicated at the top of this page. In view of the transfer of copyright to
the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications
and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies
of the article (e.g., payment of royalties).

Research Division
Almaden ° T.J. Watson ¢ Tokyo ¢ Zurich

1]

Jarek Rossignac
Published as
"Multi-resolution 3D approximations for rendering complex scenes ", Jarek Rossignac and Paul Borrel.
In Geometric Modeling in Computer Graphics , pp. 455-465, Springer Verlag, Eds. B. Falcidieno and T.L. Kunii, Genova, Italy, June 28-July 2, 1993.

Multi-resolution 3D approximations for rendering complex scenes

Jarek Rossignac and Paul Borrel

Interactive Geometric Modeling, IBM T.J. Watson Research Center, P.O. Box 704,
Yorktown Heights, New York 10598. Phone: 914-784-7630, Fax: -6273,
Email: jarek@watson.ibm.com and borrel@watson.ibm.com

Abstract

We present a simple and effective technique for approxi-
mating arbitrary polyhedra. It is based on triangulation
and vertex-clustering, and produces a series of 3D ap-
proximations that resemble the original object from all
viewpoints, but contain an increasingly smaller number
of faces and vertices. Using the appropriate level of
simplification when displaying small, distant, or back-
ground objects improves graphic performance without a
significant loss of perceptual information, and thus ena-
bles realtime inspection of complex scenes.

CR Categories and Subject Descriptions: 1.3.3
[Computer Graphics]: Picture/Image generation — disp/ay
algorithms; 1.3.5 [Computational Geometry and Object
Modeling]: Solid Representation;

Additional Keywords and Phrases: Engineering Visual-
ization, Simplification, Approximations, Data Com-
pression.

1. Introduction

The interactive 3D navigation through scenes defined by
millions of polygons is vital for industrial CAD applica-
tions, such as the design reviews for large mechanical
assemblies. Yet, it cannot even be supported on emerg-
ing multi-processor high-end graphic servers (see [2] for
recent progress). Since the galloping hardware develop-
ments will only stimulate the demand for support of even
larger data-sets, a distinction must be made between (1)
the accurate geometric models necessary for represent-
ing mechanical parts and (2) specialized representations
of these parts tailored for efficient graphics.

Previously developed graphics performance improve-
ments that deal with scene complexity by quickly elimi-
nating objects that do not project on the screen, or by
displaying crude approximations of objects whose
projection is very small, are insufficient and exhibit im-
portant short-comings. Pre-computed hierarchical spatial
directories [8] help to quickly prune portions of the model
lying outside of the viewing space, but have no effect
when the entire scene fits in that space. The graphics
performance increases achieved by rendering isolated
dots, mini-max boxes, or other geometrically simple
bounds instead of distant or small objects are often offset
by a significant loss of visual information and by dis-
tracting abrupt shape changes that occur when objects
slowly approach the viewer. Geometric approximations
with minimal rendering cost and a close resemblance
with the original solids from all directions are the key to
an acceptable solution for realtime graphics of complex
scenes. Furthermore, a sequence of approximations of-
fering different trade-offs between visual accuracy and
graphic performance will prove effective for revealing
details as objects approach the viewpoint, only if the
transitions between one approximation and the next are
barely noticeable.

Since a major factor of the shading cost for a polyhedron
is the number of vertices that must be processed by the
graphics pipeline when rendering the object’s faces [7],
approximations should strive to reduce the number of
vertices and faces while preserving the overall aspect of
the model.

We present here a new simplification technique that op-
erates on boundary representations of an arbitrary
polyhedron and generates a series of simplified models
with a decreasing number of faces and vertices. The re-
sulting models do not necessarily form valid boundaries
of 3D regions—for example, an elongated solid may be
approximated by a curve segment. However, the error
introduced by the simplification is bounded (in the
Hausdorf distance sense) by a user-controlled accuracy
factor and the resulting shapes exhibit a remarkable vis-
ual fidelity considering the data-reduction ratios.

2. Alternative solutions

Most polyhedra are used to approximate more general
shapes and are constructed as tesselations of curved
faces. Approximations with fewer vertices and faces can
thus in principle be produced by using coarser tesselation
parameters. Indeed, emerging high-end graphic archi-
tectures support adaptive tesselation for trimmed NURBS
surfaces [6]. However, in practice, polyhedral represen-
tations often result from Boolean operations (poorly sup-
ported for curved geometries) or from procedural models
which are not available to the graphics system and are
too expensive 1o regenerate in realtime. Consequently,
re-tesselation of curved surfaces is not an acceptable al-
ternative for simplifying the vast majority of existing
polyhedral models.

Recursive difference techniques [4] replace a solid S by
the difference, H — D, between its convex hull H and a
delta solid, D = H — S, and apply recursively this process
to (a subdivision of) the connected components of D. The
resulting CSG tree may be truncated, replacing all delta
solids at a given recursion depth d by their convex hull.
The truncation removes cavity or protrusion details, de-
pending on the parity of d. Unfortunately, this process
does not simplify convex objects; tends to increase the
number of faces; and, for small values of d, produces
approximations whose overall shape considerably differs
from the original solids.

Line simplification algorithms (also called “line
generalization”) used in Cartography [5] apply recursive
subdivision to approximate a plane polygonal curve by a
small number of vertices lying on that curve. The maxi-
mum deviation between the curve and an “anchor-
floater” line joining the end-points is evaluated. If the
deviation exceeds a given threshold, the curve is split at
the maximal deviation point for further iterations, other-
wise, the curve is replaced by the line segment. We have
designed a 3D extension of this approach requiring the
construction and triangulation of the topology of the ob-

ject’s boundary. After considering its algorithmic com-
plexity and storage requirements, we have opted for the
simpler and more efficient solution described in the re-
mainder of this paper. Fig. 1 illustrates the simplification
process on a small assembly of mechanical parts.

Fig. 1: The solids are triangulated (top) and simplified (bottom).

3. Single simplification process

The original model of each object is represented by a
vertex table V containing vertex coordinates and a face
table F containing references to V, sorted and organized
according to the edge-loops bounding the face. The sim-
plification involves the processing steps presented below
and summarized in Fig. 2. They manipulate the data-
structure of Fig. 3.

[vertces sv |

Fig. 2: Overview of the simplification process.

3.1 Grading

A weight is computed for each vertex of V and stored in
the W table. The weight defines the relative perceptual
importance of the vertex. The subjectivily of our ap-

L] L o Original

Work arrays

Fig. 3: Data-structures and their interdependencies.

proach is confined to the choice of criteria for weight
evaluation. We favor (1) vertices that have a higher
probability of lying on the object’s silhouettes from an
arbitrary viewing direction and (2) vertices that bound
large faces that should not be affected by the removal
of small details. The first factor may be efficiently esti-
mated using the inverse of the maximum angle between
all pairs of incident edges on the candidate vertex. The
second factor may be estimated using the length of the
longest among all of the edges incident upon the vertex.

3.2 Triangulation

Each face is decomposed into triangles supported by its
original vertices. (We use a simple greedy cutting proc-
ess to obtain nearly optimal results, although more effi-
cient and optimal techniques are available [1]. The
resulting T table contains 3 vertex-references per entry.

3.3 Clustering

Based on geometric proximity, the vertices of V are
grouped into clusters. Clusters are numbered by the or-
der in which they are created. The R table indicates, for
each vertex of V, the corresponding cluster number.
Conversely, the C table contains, for each cluster, a list
of references to the vertices falling into that cluster. We
have opted for a simple clustering process based on the
truncation of vertex coordinates. A box, or other bound,
containing the object is uniformly subdivided into cells.
Vertices falling within one cell form a cluster and will be
replaced by a unique vertex. The clustering procedure
takes as parameters the box in which the clustering
should occur and the maximum number of cells along
each dimension. The solid’s bounding box or a common
box for the entire scene may be used.

3.4 Synthesis

For each cluster, a representative vertex is computed
using the C, W, and V tables and is stored in the SV table
of simplified vertices. For data smoothing, the represen-
tative vertex may be defined as the center of mass of all
the vertices of the cluster weighted with the values
stored in W. For removing details without perturbing re-
tained faces, the vertex with maximal weight may be se-
lected. The synthesis maps each vertex, V(i), into the
representative vertex, SV(R(i)), of the corresponding

cluster. The mapping is typically many-to-one and thus
reduces the total number of vertices.

3.5 Elimination

Table R maps the vertices of the original triangles into
new representative vertices. When all three represen-
tative vertices are equal, the triangle degenerates into a
point. When exactly two representative vertices are equal
the triangle degenerates into an edge. Such edges and
points, when they do not bound any other triangle of the
simplified object, are stored in SE and SP tables, and
rendered as part of the solid’s approximation. Significant
graphics performance improvements are obtained by re-
moving, from the simplified model, all triangle-duplicates,
all edge-duplicates, all point-duplicates, all edges bound-
ing a triangle, all points bounding an edge, and all points
bounding a triangle. The elimination process performs
these tasks and produces three tables: the simplified tri-
angles, ST, the dangling edges, SE;‘and the isolated
points, SP. They respectively contain three, two, and one
reference to entries in the SV table.

The search for duplicates uses a temporary data-
structure, which associates, with each cluster, a list of
incident edges and, with each edge, a list of triangles.
Triangles are stored only once in this data-structure us-
ing their lowest-index vertex for locating the cluster, us-
ing the intermediate-index vertex for locating the edge
incident upon that cluster, and using the last vertex for
locating the triangle. Dangling edges are implicitly de-
fined as edges with empty triangle-lists. Isolated points
are defined as clusters with empty edge-lists.

3.6 Adjustment of normals

A final step computes new normals for all the triangles
in ST using its simplified vertex coordinates. The normals
are only used for rendering. Normals of back-facing tri-
angles are automatically inverted by the graphics
processor.

4. Series of increasing simplification

Approximate models of the same objects with increasing
degree of simplification may be obtained by executing the
above process several times, with decreasing clustering
resolutions.

A more efficient approach performs a first simplification
with the highest resolution, then recursively merges ad-
jacent clusters into new ones to produce the other sim-
plified models. An octtree used to store the
representative vertices for all the clusters of the first
simplification provides a convenient data-structure for
merging adjacent clusters.

A series of models with different degrees of simplification
is shown Fig. 4.

5. Rendering modes

Simplified models may be used in different ways, de-
pending on the application and the type of user inter-
action.

5.1 Preview on simplified models

If the full precision model does not fit in the graphic
workstation’s memory, a simplified version may be
loaded and used to specify interactively viewing angles
or walkthrough trajectories for a camera. Full precision

Fig. 4: The original solid (top) has 4804 triangular faces. The two
approximating models below have respectively 218 faces plus 1
dangling edge and 1 face plus 9 dangling edges.

images or walkthrough animations may be computed in
batch mode and viewed later.

5.2 Simplified models during motion

If the full precision model fits on the workstation and can
be displayed at acceptable but non-interactive rates, a
crude simplified model is constructed and stored. (It typ-
ically only increases the storage requirements by a few
percents.) The user may then toggle between the full re-

_ solution original data and a crude approximation of all the

objects, used mainly for realtime feedback during inter-
active navigation.

5.3 Simplified background

In the above scheme, selected details of the scene may
be rendered with full precision, while the other objects,
considered as background information are rendered us-
ing simplified models (see Fig. 5).

5.4 Dynamic selection

Simplification levels may be selected adaptively depend-
ing on the viewpoint. Models that are further away from
the viewer are displayed with less details. The distance
to the viewer may be estimated using precomputed

Fig. 5: Only one table and its set of chairs are rendered with full
precision, the others sets are rendered using simplified models
(top), which reduces the rendering time by 80%. A detailed view
comparing the approximated and the original models is shown
(below).

Fig. 6: Five instances of the same assembly (top) are shown us-
ing different levels of approximation that depend on their dis-
tance to the viewer. For comparison, the five approximations are
shown with the same scale (below).

spherical or other simple bounds for each object. Fig. 6
* shows the same parts as in Fig. 4, but with different de-
grees of approximation selected automatically according
to the distance from the viewer.

5.5 Continuous evolution

When the more simplified models are derived from less
simplified ones, one can produce parametric models,
which simulate the metamorphosis between two consec-
utive simplification levels. We use the technique de-
scribed in [3], where each vertex of the polyhedron is
replaced by a linear parameterized trajectory. As the
obhject moves closer to the viewer, the common parame-
ter for computing all the vertices is smoothly adjusted.
The result simulates the migration of all the vertices to-
wards the representative vertex of their clusters. As the
model, moving towards the viewer, traverses a threshold
between two consecutive simplification levels, the sys-
tem automatically switches between consecutive in-
terpolating models at their common limit shape.

6. Conclusion

State of the art hardware graphic performance is insuffi-
cient for the realtime visualization of complex 3D objects.
We have presented a new technique, which automatically
computes one or several simplified graphic representa-
tions of each object that may be used selectively in lieu
of the original model to accelerate the display process
while preserving the overall perceptual information con-
tent of the scene. The described method clusters vertices
of the model and produces an approximate model where
original faces are approximated with fewer faces defined
in terms of selected vertices. Several simplified repres-
entations with different simplification factors may be
stored in addition to the original model. Actual viewing
conditions are used to establish automatically for each
object which representation should be used for graphics.

References

[1] Edelsbrunner, H., Tan, S.T., and Waupotitsch, A,
“A polynomial time algorithm for the mini-max
angle triangulation,” 6th ACM Symp. on Compu-
tational Geometry, pp. 44-52, 1990.

[2] Garlick, B.J., Baum, D.R.,, and Winget, J.M..
“Interactive viewing of large geometric data-
bases using multiprocessor graphics
workstations,” SIGGRAPH Course Noles, vol. 28,
pp. 239-245, 1990.

[3] Kaul, A. and Rossignac, J., “Solid-Interpolating
Deformations: Constructions and Animation of
PIPs,” Proceedings of EUROGRAPHICS 91, pp.
493-505, Vienna, September 91.

[4] Kim, Y.S., Convex decomposition and solid ge-
ometric modeling, PhD thesis, Dept. of Mechan-
ical Engineering, Stanford University, 1990.

[5] McMaster, R.B., “Automated Line Generation,”
Cartographica, vol. 24, no. 2, pp. 74-111, 1987.

(6] Rockwood, A., Heaton, K., and Davis, T., “Real-
time Rendering of Trimmed Surfaces,”
SIGGRAPH Proc. 1989, Computer Graphics, vol.
23, no. 3, pp. 107-116, 89.

[7] Silicon Graphics, Inc., Graphic Library - Refer-
ence Manual, Iris 4D VGX, 1990.

(8] Teller, S.J. and Séquin, C.H., “Visibility Proproc-
essing for interactive walkthroughs,” Computer
Graphics (Proc. SIGGRAPH), vol. 25, no. 4, pp.
61-69, July 1991.

