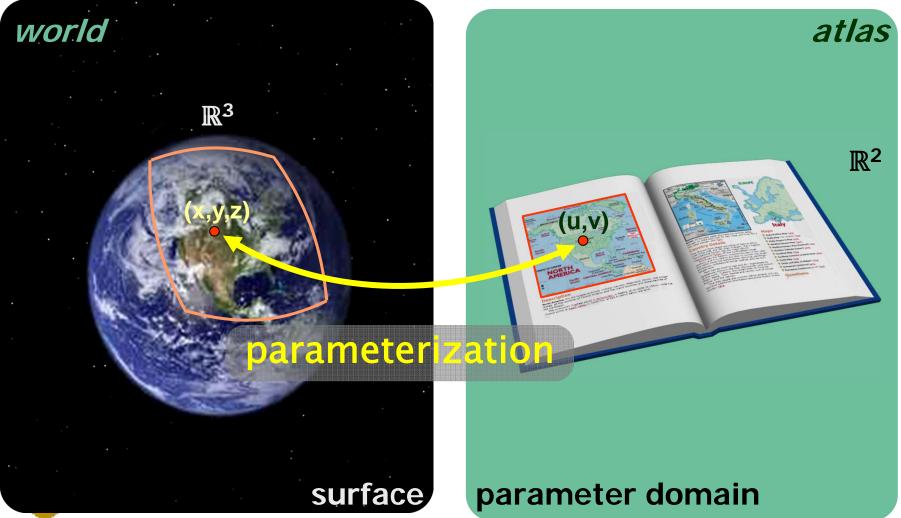


Parameterization

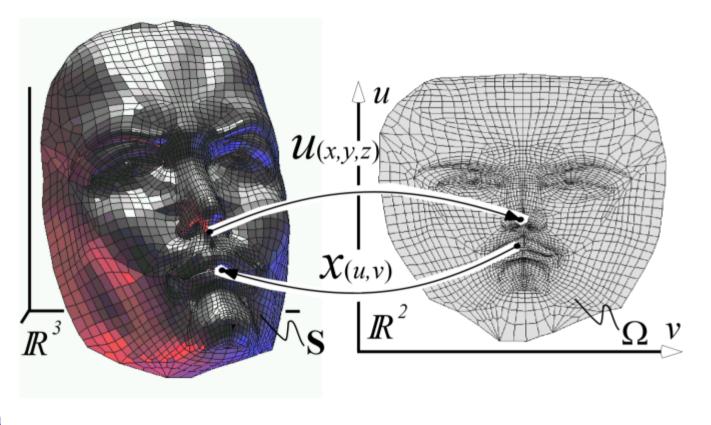
What is Parameterization?

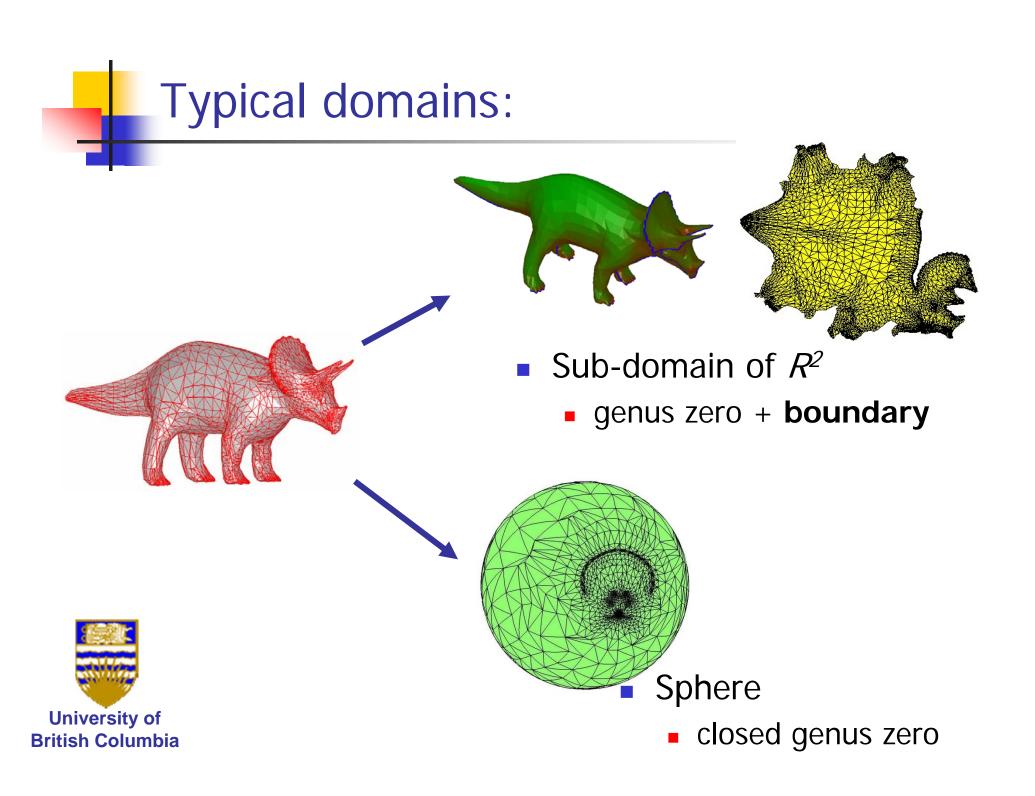


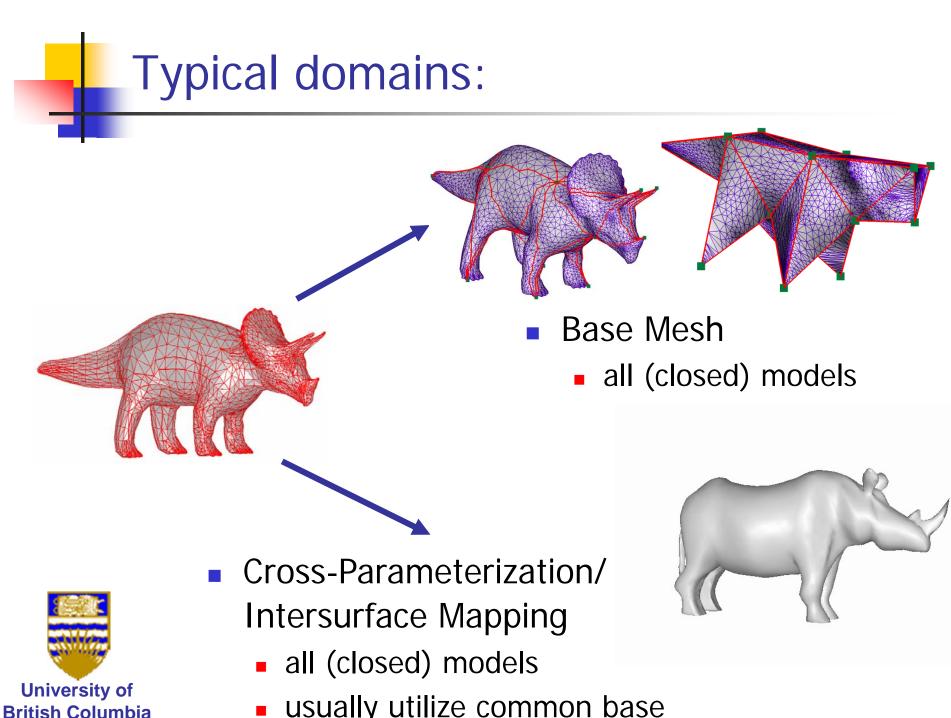
University of British Columbia

Problem Definition

• Given a surface (mesh) S in R^3 and a domain D find $F:D \leftrightarrow S$ (one-to-one)





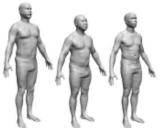


usually utilize common base

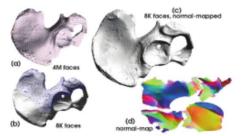
Why Do We Need It?

Texture Mapping

Morphing



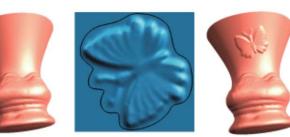
Databases University of British Columbia



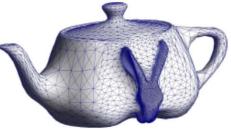
Normal Mapping

Mesh Completion

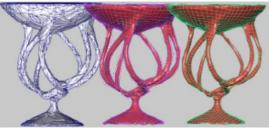
Remeshing



Detail Transfer



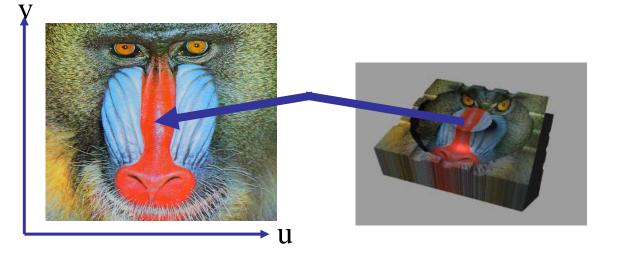
Editing



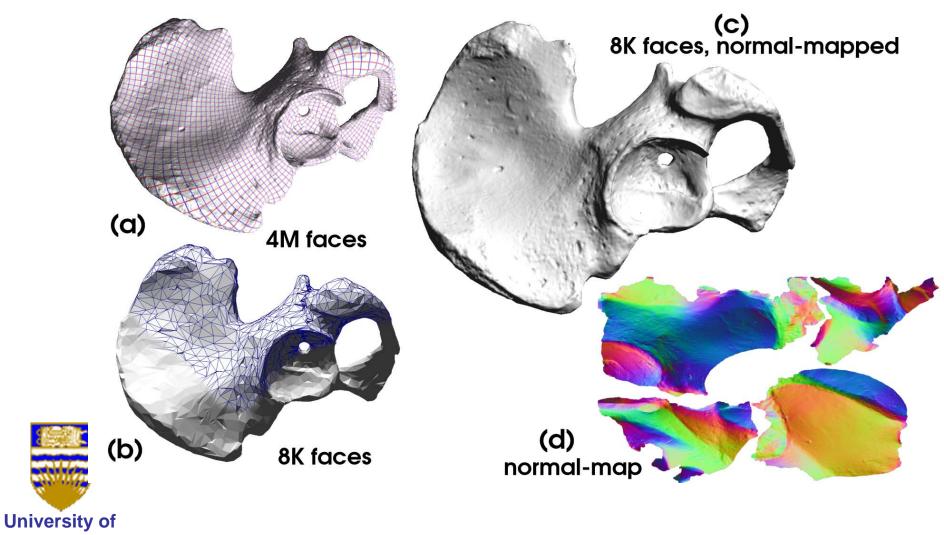
Surface Fitting

Texture Mapping

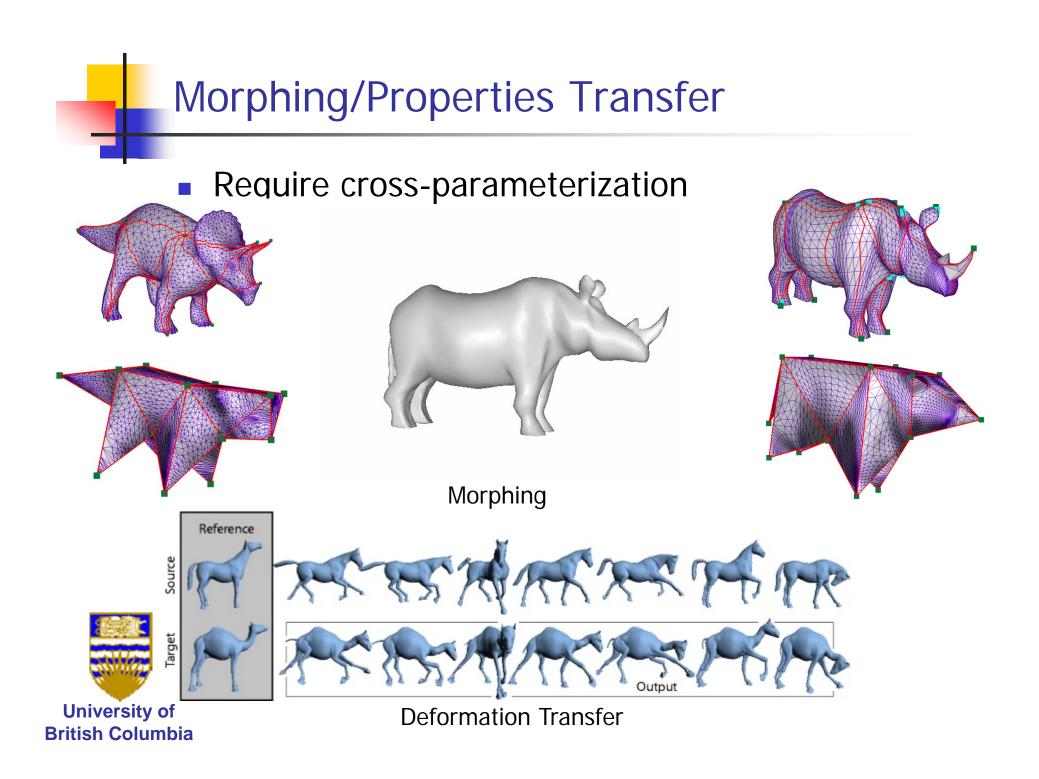
- Define color for each point on object surface
- Map 2D texture to model surface:
 - Texture pattern defined over 2D domain (u,v)
 - Assign (u,v) coordinates to each point on surface



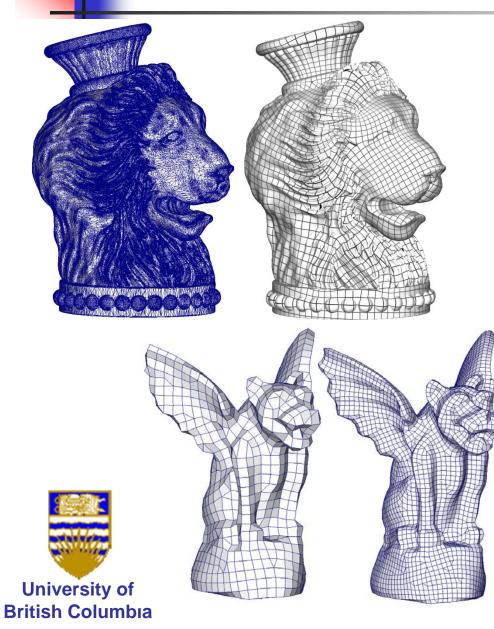
Normal/Bump mapping

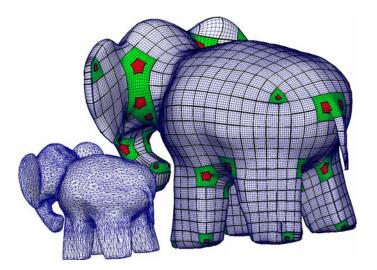


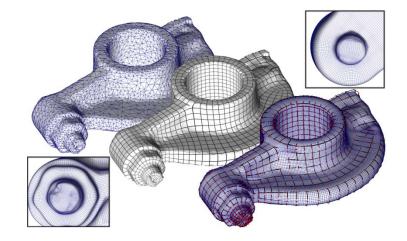
British Columbia



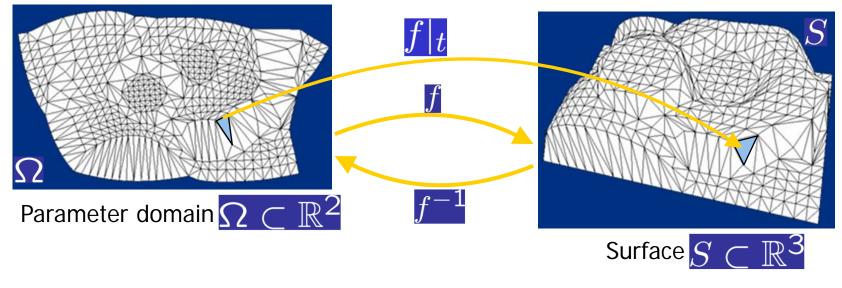
Remeshing & Surface Fitting







Theory/Background

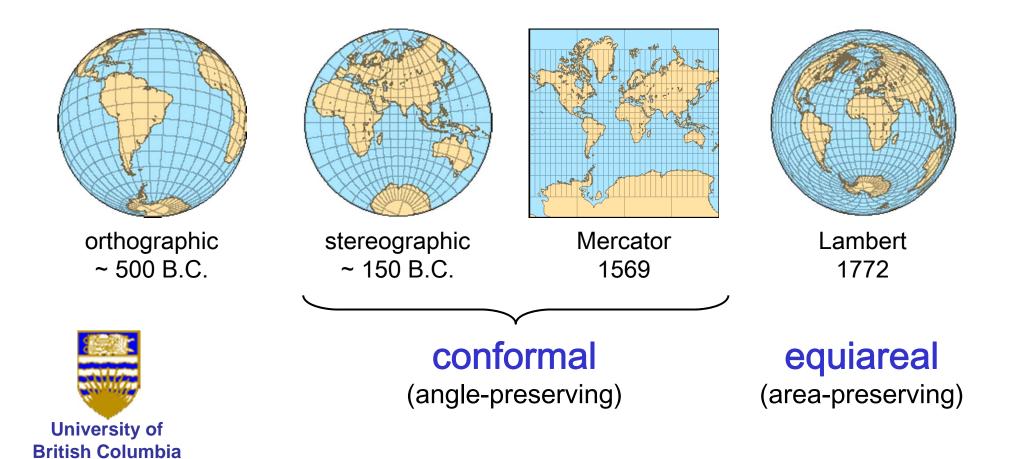


- Parameterization $f: \Omega \to S$
 - f is piecewise linear
 - $f|_t$ is linear (barycentric)

- *f* is bijective
 - at least locally

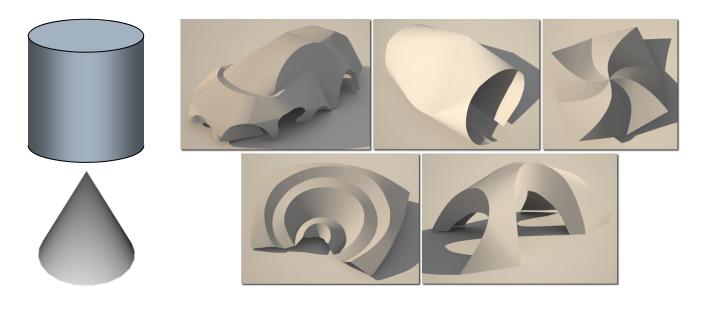
Example – Mappings of the Earth

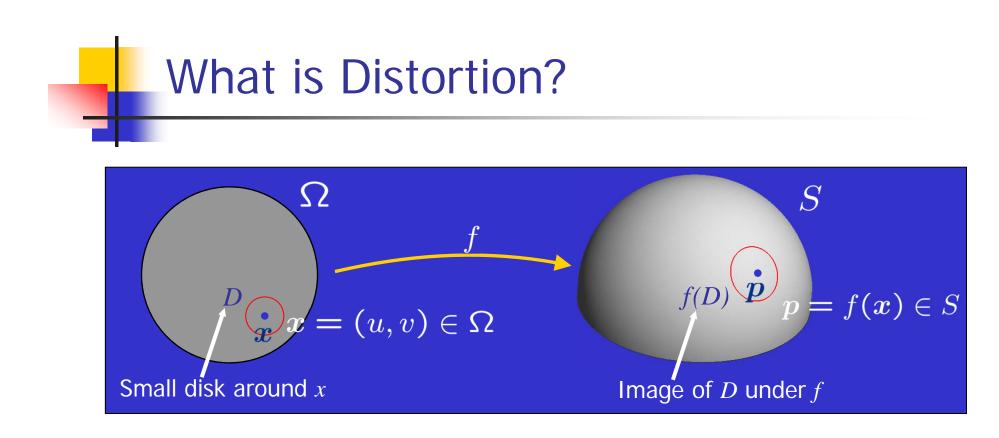
Usually, surface properties get distorted



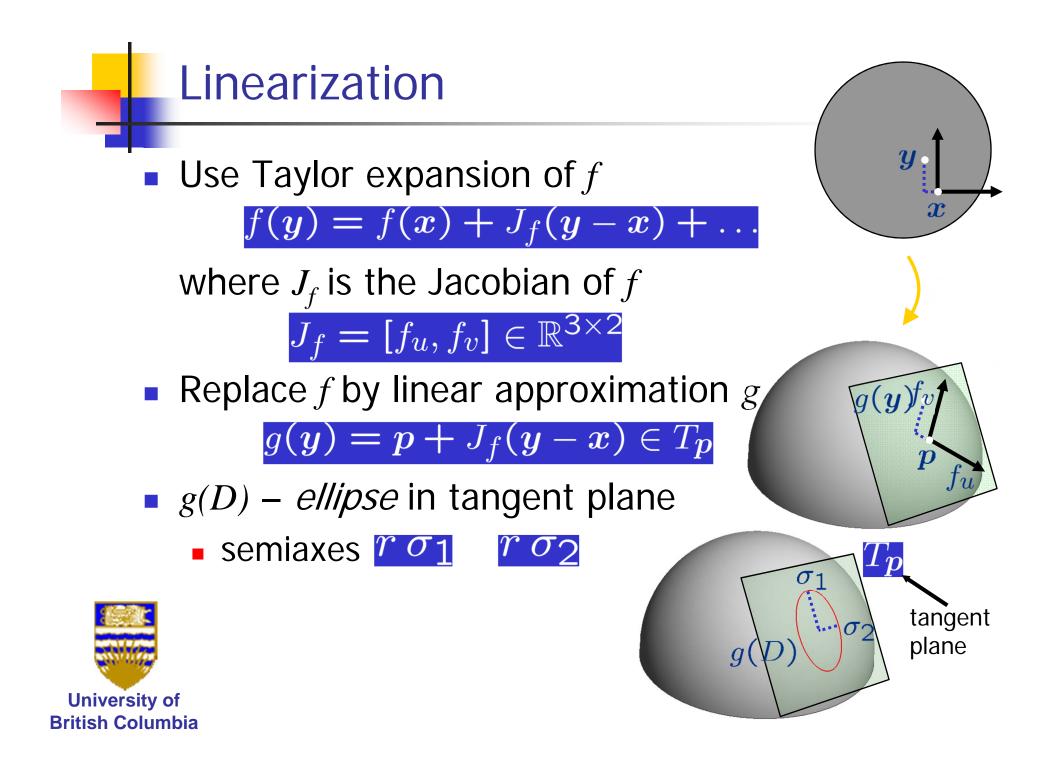
Distortion is (almost) Inevitable

- Theorema Egregium (C. F. Gauss)
 - "A general surface cannot be parameterized without distortion."
- no distortion = conformal + equiareal = isometric
- requires surface to be developable





- Distortion (at x): How different is f(D) from D
 - How to measure?

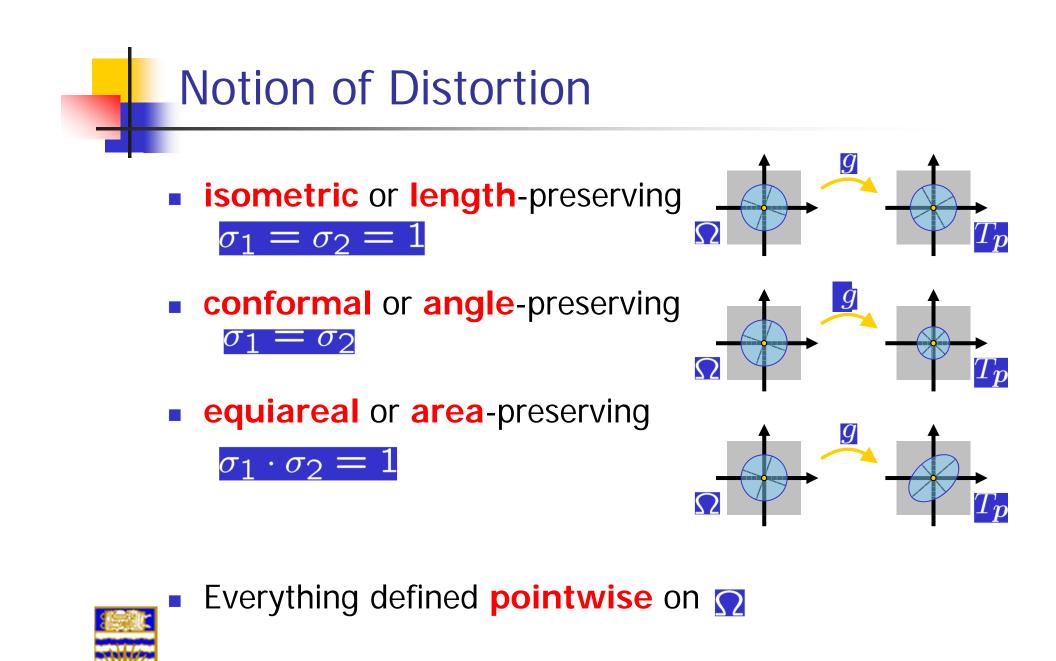


• Singular Value Decomposition (SVD) of J_f

$$J_f = U \Sigma V^T = U \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{pmatrix} V^T$$

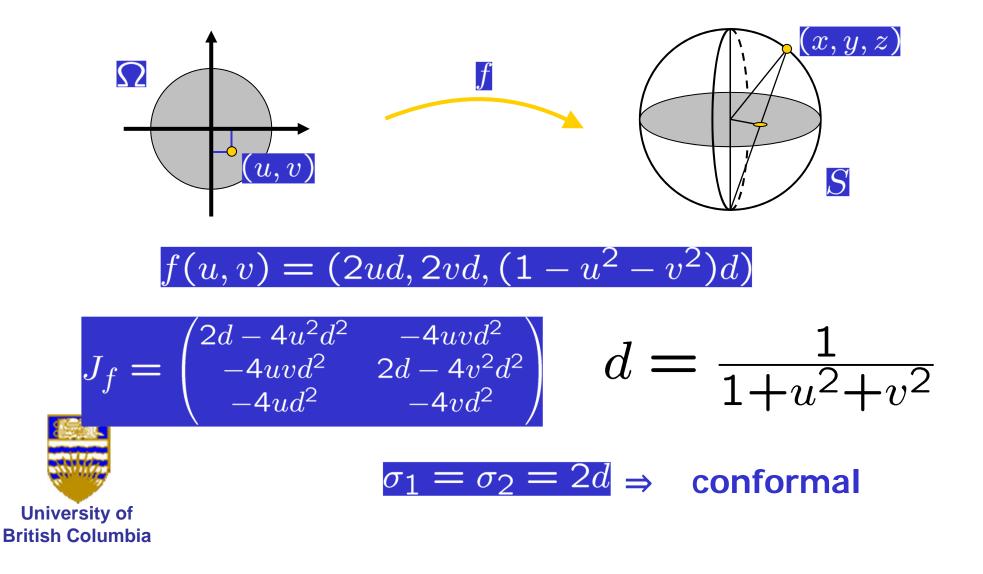
and scale factors (singular values)

 $\sigma_1 \ge \sigma_2 > 0$



University of British Columbia

Example – Stereographic Projection



• Local distortion measure function of σ_1 and σ_2

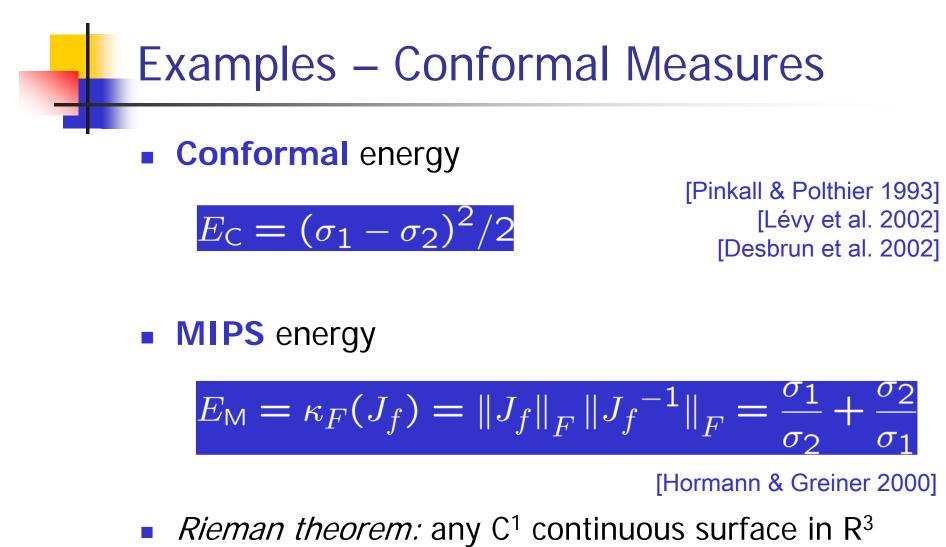
 $E\colon (\mathbb{R}_+\times\mathbb{R}_+)\to\mathbb{R}, \quad (\sigma_1,\sigma_2)\mapsto E(\sigma_1,\sigma_2)$

Overall distortion

$$E(f) = \int_{\Omega} E(\sigma_1(u, v), \sigma_2(u, v)) \, du \, dv \Big/ \mathsf{Area}(\Omega)$$

On mesh constant per triangle

$$E(f) = \sum_{t \in \Omega} E(t)A(t) \bigg/ \sum_{t \in \Omega} A(t)$$



- can be mapped conformally to fixed domain in R²
 - Nearly true for meshes

Stretch energies

$$E_2 = \frac{1}{\sqrt{2}} \|J_f\|_F = \sqrt{(\sigma_1^2 + \sigma_2^2)/2}$$

[Sander et al. 2001] [Sorkine et al. 2002]

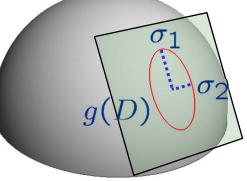
Detailed Example

Use Taylor expansion to replace f by linear approximation

$$g(\boldsymbol{y}) = \boldsymbol{p} + J_f(\boldsymbol{y} - \boldsymbol{x}) \in T_{\boldsymbol{p}}$$

where J_f is the Jacobian of f

 $J_f = [f_u, f_v] \in \mathbb{R}^{3 \times 2}$



Derivation:

Given a triangle T with 2D texture coordinates p_1, p_2, p_3 , $p_i = (s_i, t_i)$, and corresponding 3D coordinates q_1, q_2, q_3 , the unique affine mapping S(p) = S(s,t) = q is

$$S(p) = \left(\left\langle p, p_2, p_3 \right\rangle q_1 + \left\langle p, p_3, p_1 \right\rangle q_2 + \left\langle p, p_1, p_2 \right\rangle q_3 \right) / \left\langle p_1, p_2, p_3 \right\rangle$$

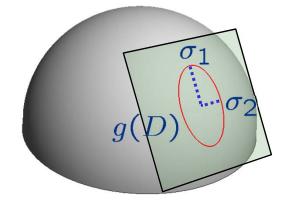
Detailed Example

 $S(p) = \left(\langle p, p_2, p_3 \rangle q_1 + \langle p, p_3, p_1 \rangle q_2 + \langle p, p_1, p_2 \rangle q_3 \right) / \langle p_1, p_2, p_3 \rangle$ **Jacobian** [S_s, S_t]:

$$\begin{split} S_{s} &= \partial S / \partial s = \left(q_{1}(t_{2} - t_{3}) + q_{2}(t_{3} - t_{1}) + q_{3}(t_{1} - t_{2}) \right) / (2A) \\ S_{t} &= \partial S / \partial t = \left(q_{1}(s_{3} - s_{2}) + q_{2}(s_{1} - s_{3}) + q_{3}(s_{2} - s_{1}) \right) / (2A) \\ A &= \left\langle p_{1}, p_{2}, p_{3} \right\rangle = \left((s_{2} - s_{1})(t_{3} - t_{1}) - (s_{3} - s_{1})(t_{2} - t_{1}) \right) / 2 \end{split}$$

Singular values:

$$\sqrt{\frac{1}{2}\left((a+c) + \sqrt{(a-c)^2 + 4b^2}\right)}}$$
$$\sqrt{\frac{1}{2}\left((a+c) - \sqrt{(a-c)^2 + 4b^2}\right)}$$



$$a = S_s \cdot S_s$$
, $b = S_s \cdot S_t$, and $c = S_t \cdot S_t$