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Abstract

This paper presents an automatic method of creating surface models
at several levels of detail from an original polygonal description of
a given object.  Representing models at various levels of detail is
important for achieving high frame rates in interactive graphics
applications and also for speeding-up the off-line rendering of
complex scenes.  Unfortunately, generating these levels of detail is
a time-consuming task usually left to a human modeler.  This paper
shows how a new set of vertices can be distributed over the surface
of a model and connected to one another to create a re-tiling of a
surface that is faithful to both the geometry and the topology of the
original surface.  The main contributions of this paper are:  1) a robust
method of connecting together new vertices over a surface, 2) a way
of using an estimate of surface curvature to distribute more new
vertices at regions of higher curvature and 3) a method of smoothly
interpolating between models that represent the same object at
different levels of detail.  The key notion in the re-tiling procedure is
the creation of an intermediate model called the mutual tessellation
of a surface that contains both the vertices from the original model
and the new points that are to become vertices in the re-tiled surface.
The new model is then created by removing each original vertex and
locally re-triangulating the surface in a way that matches the local
connectedness of the initial surface.  This technique for surface re-
tessellation has been successfully applied to iso-surface models
derived from volume data, Connolly surface molecular models and
a tessellation of a minimal surface of interest to mathematicians.

CR Categories and Subject Descriptors:  I.3.3 [Computer Graph-
ics]:  Picture/Image Generation – Display algorithms; I.3.5 [Com-
puter Graphics]:  Computational Geometry and Object Modelling
– Curve, surface, solid, and object representations.

Additional Key Words and Phrases:  model simplification, auto-
matic mesh generation, constrained triangulation,  levels-of-detail,
shape interpolation.

1  Introduction

This paper shows how a simplified polygonal model can be automati-
cally created from an initial polygonal description of an object.  We
use the term re-tiling to describe the process of simplifying a
polygonal model.  The notion of representing a model at multiple
levels of detail is a common thread that runs through much work in
computer graphics and image processing.  These levels of detail can
be found in a number of forms, such as multiple collections of
polygons, different collections of bicubic surface patches or vari-
ously filtered levels of a raster image.  There are several benefits to
having more than one representation of an object.  One benefit is that
it is often unnecessary to use a fully-detailed model of an object
during rendering if the object will cover a small portion of the screen.
Using a smaller model can significantly shorten the time it takes to
render an image.  It is this ability to increase the rendering rate,
especially for interactive applications, that motivates the work pre-
sented in this paper.  Another benefit of having more than one
representation of an object is that this is often a graceful way to avoid
sampling problems when rendering an image.  Probably the best-
known example of this in computer graphics is the texture anti-
aliasing work of Lance Williams [Williams 83].  A third reason for
using multiple levels of detail is that features of an object can be
classified by following the features through successively more
coarse representations of the object.  This method of feature recog-
nition appears in much of the recent work being done in image
processing and pattern recognition.  Computer graphics has yet to
make much use of feature tracking and elimination, and we will
return to this issue in the future work section of this paper.

Polygonal descriptions of objects are currently the most widely-used
forms of model representation in computer graphics.  One reason for
this is the availability of graphics workstations that can rapidly
render polygons.  Another reason is that there are a large numbers of
techniques for translating a given model into a polygonal dataset.  For
these and other reasons, it is likely that polygonal representations of
objects will continue to be important to computer graphics.  This
serves as motivation for finding automatic methods of creating new
polygonal models of the same object that have a fewer number of
polygons than the original description.

Because there is such a wide range of objects that can be represented
by polygonal tessellations, it may be impossible to find one technique
that can do a good job of re-tiling any given polygon dataset.  For
instance, techniques that are successful at reducing the number of
polygons in a model of a building may not necessarily be applicable
to re-tiling of medical datasets such as those derived from CT scans.
This paper’s re-tiling method is best suited to models that represent
curved surfaces.  Examples of such models include iso-surfaces from
medical data and from molecular graphics, smooth mathematically-
defined manifolds and digitized or hand-modelled organic forms



such as animals or people.  This technique is poorly suited to models
that have well-defined corners and sharp edges such as buildings,
furniture and machine parts.

This paper begins with an overview of related work in creating levels
of detail, and, in particular, work that deals with polygonal models.
The rest of the paper describes the basic steps taken to re-tile a given
model and several extensions to this basic method.  The first section
on re-tiling describes how to distribute a given number of points
evenly over a polygonal surface.  These points will eventually
become the vertices of the new model.  Next, the notion of mutual
tessellation followed by vertex removal is presented as a robust
method of completely replacing the original set of vertices with the
new points.  This is how a completely new triangulation of the model
is created.  The next section shows how local estimates of maximum
curvature can be used to concentrate more new vertices at regions
that need more points to faithfully represent the surface.  The paper
then describes how the polygons from a more fine representation of
an object can be flattened onto the surface of a more coarse polygonal
model.  Using this method, we can interpolate between this flattened
version of the model and the original high-detail representation to
give a smooth transition between the coarse and the fine versions of
an object.  The next section describes how re-tiled models can aid the
interactive task of radiation treatment planning.  The final section
discusses future topics of research in representing multiple levels of
detail in polygonal models.

2  Previous Work

James Clark’s paper on hierarchical geometric models describes the
benefits of using more than one representation of a model for image
rendering [Clark 76].  Clark points out that objects that cover a small
area of the screen can be rendered from a simplified version of the
object and that this allows more efficient rendering of a scene.  This
same benefit of having both simple and complex representations of
an object is given by Frank Crow in his paper on an image generation
environment [Crow 82].  Crow gives the example of a chair that is
represented in high detail, medium detail and very low detail.  The
three models in his example were created by hand, but Crow suggests
that creating the lower levels of detail is a process that should be
automated.  A guaranteed frame-rate is essential in flight simulators,
and for this reason models of objects such as airplanes are often made
at several levels of detail by hand [Cosman & Schumacker 81].

The creation of lower levels of detail has been automated for some
well-behaved polygonal datasets.  Lance Williams showed how a
regular mesh of quadrilaterals can be used to represent surfaces such
as a human face, and how such meshes can be filtered down to smaller
resolutions in the same manner as he used for texture filtering
[Williams 83].  This is similar to how flight simulators use coarse
versions of terrain data when a ground feature is far away and use a
more detailed terrain model when the feature is closer to the viewer.
The flight simulator literature describes how new features of the
terrain can be gradually introduced as the viewer moves closer by
first adding new vertices in the plane of a terrain polygon and then
moving each vertex’s elevation smoothly until it reaches the correct
elevation [Zimmerman 87].  With a gridded terrain model it is easy
to know which vertices need to be joined to form new polygons when
a new vertex is added or when an old vertex is removed.  This problem
is more difficult for polygonal models with arbitrary topology.

Another polygonal data format that has been automatically re-tiled is
the laser-scanned data from Cyberware Laboratories of Monterey,
California.  Their digitizing method results in a large collection of
regularly joined quadrilaterals.  Schmitt and co-workers have
adaptively fit bicubic patches to such models by starting with a rough
approximation of the surface and then adaptively refining the surface

at locations where the model is not yet well fit [Schmitt 86].  This
method generates models at varying levels of detail by specifying a
set of increasingly fine tolerance levels for the surface fit.  Extensions
to this method have been explored to adapt the technique to creating
polygonal models and to more closely bound the error [DeHaemer &
Zyda 91].  DeHaemer and Zyda’s methods reduced a 112,128
polygon image of a human head to 12,821 polygons.  As with terrain
data, the Cyberware format makes it easy to decide which vertices
become neighbors when a vertex is added or removed.

To reduce the large numbers of polygons often found in medical data,
Kevin Novins implemented a method of identifying and removing
vertices that are in relatively flat portions of a polygonal object
[Novins 92].  His program examines the variance in surface normals
of triangles that share a given vertex and uses this to decide which
vertices to remove.  When a vertex is removed, the region immedi-
ately surrounding the vertex is re-triangulated.  The user gives a
target number of vertices and the program removes vertices until this
number is reached.  Schroeder and his co-workers have also used an
approach of vertex removal and local re-triangulation for simplifying
polygonal models [Schroeder et al 92].  They remove vertices that are
within a distance tolerance of a plane that approximates the surface
near the vertex.  Their method also identifies sharp edges and sharp
corners and makes sure that such features are retained in order to
better represent the original data.  They show how these techniques
can be used to drastically reduce the number of polygons in large
medical and terrain models and still retain feature detail.

There is a large body of literature on automatic mesh generation for
use in finite element techniques.  An overview of this work is given
in [Ho-Le 88].  Here the problem is how to sub-divide the surface or
volume of an object to provide a mesh over which some physical
properties of the material can be simulated, such as heat dissipation
or stress and strain.  It is assumed that all the edges and faces of a
model are to be accurately reflected in the re-meshed version of the
object.  This is the main difference between meshes used in finite
element methods versus smooth surface models for rendering in
computer graphics.  The exact placement of vertices and edges in a
polygonal representation of a cat are not as important as the place-
ment of the edges separating the copper and iron portions of a
machine part being analyzed for heat conductivity.  There are some
issues, however, that do touch upon the problems that are found in
mesh generation in both domains.  For example, many finite element
meshing routines use local re-meshing operators to improve the
shapes of triangles in an initial mesh.  Similar local operations can be
used to improve re-tilings for computer graphics.

There is a good deal of material in computational geometry that is
relevant to the re-tiling problem.  Specifically, the properties of
Voronoi regions and the associated Delaunay triangulation are
relevant to the question of “goodness” of triangle shape in a triangu-
lation of a collection of points [De Floriani et al 85].

3  Choosing New Vertices for Re-Tiling

3.1  Input Surface and the Results of Re-Tiling

The re-tiling method described in this paper begins with a polygonal
surface and creates a triangulation of this surface with a user-
specified number of vertices.  There are few restrictions on the initial
polygonal surface.  The polygons may be either concave or convex,
and may in fact have holes.  The major restriction is on the number
of polygons that share any given edge.  The method described below
is suitable for polygonal models in which each edge is shared by
either one or two polygons.  If a model satisfies this restriction, the
algorithm is guaranteed to produce a new model with the same
topology as the original model.  The method will not introduce tears



in the surface and will not connect regions of the surface that were
unconnected in the original model.  The next two sections outline the
basic re-tiling method.

3.2  Positioning Vertices by Point Repulsion

The first step in re-tiling is to choose a set of points that will, at a later
step, become the vertices of a new triangular tessellation of the
surface.  These new points are chosen to lie in the planes of the
original polygons, and some of them may in fact be coincident with
the vertices of the original model.  The underlying assumption of this
re-tiling approach is that the original polygonal surface gives a good
indication of the location of the surface to be represented, but that the
original placement of vertices on this surface may be poor choices for
vertex positions of a re-tiled version of the surface.  Allowing the new
vertices to be placed anywhere on the surface lets them be placed in
a manner that will give well-shaped triangles in the new representa-
tion of the surface.  Placing the points fairly uniformly over the
surface, as described in this section, is the portion of the re-tiling
responsible for faithfully representing the geometry, the location and
curvature, of the re-tiled surface.  Joining these points together to
form a triangular mesh, described in the following section, is that part
of the re-tiling method responsible for faithfully representing the
original surface’s topology,  that is, which parts of the surface
connect to which other parts of the surface.

The basic method of placing these new points on the surface is taken
directly from work on mesh generation for texture synthesis [Turk
91], and is described briefly below.  This method places points
uniformly over a given polygonal surface by distributing points at
random over the surface and then having each point repel all of its
neighbors.  Sometimes, however, it is not desirable to have the
distribution of points be uniform over the surface.  This subject is
addressed in a later section of this paper.

The re-tiling begins by having a given number of points (specified by
the user) placed randomly over the surface of the polygonal model.
Each point is placed by first making a random, area-weighted choice

from among all the polygons in the model and placing the point at a
random position on this polygon.  Once all the points have been
randomly placed on the surface, a relaxation procedure is applied to
move each point away from all other nearby points.  The basic
operation of this relaxation procedure is to fold or project nearby
points onto a plane tangent to the surface at one point, to calculate the
repelling force that each nearby point has on the given point and then
to move this point over the polygonal surface based on the force
exerted against it.  A point that is pushed off one polygon is moved
onto an adjacent polygon.  For the sake of speed, the repelling force
that one point has on another is a force that falls off linearly with
distance, and thus becomes zero at a fixed radius.  Because points
farther apart than this distance do not affect one another, the search
for nearby points can be made constant-time by placing all of the
points in a three-dimensional grid data structure.  The upper right
portion of Figure 1 shows 400 points that have been positioned on a
polygonal surface by this relaxation procedure.  The original model,
with its polygons outlined in black, is shown in the upper left of the
same figure.  This model is a tessellation of a radiation dose level
surface that has been used to help visualize radiation treatment
beams.  The original model contains 1513 vertices.

4  Re-Tiling by Mutual Tessellation

4.1  Some Pitfalls of Re-Tiling

Once the points that will become new vertices (the candidate
vertices) have been placed on the model’s surface, the next task is to
find how these vertices can be connected together to form a triangular
mesh that reflects the topology of the original surface.  This is a
difficult task because of the many pitfalls that a complicated surface
can present.  The need for a robust algorithm cannot be overly
stressed.  One problem case in connecting the candidate vertices is
when two portions of a surface that are far from one another as
measured over the surface are actually near to each other in 3-space
because the surface folds back on itself (see Figure 2a).  Any
algorithm for connecting together the candidate vertices must not

Re-tiling iso-dose

Figure 1:  Re-tiling of a radiation iso-dose surface.  Upper left: Original surface.  Upper right: Candidate vertices
after point-repulsion.  Lower left: Mutual tessellation.  Lower right: Final tessellation.



join together a pair of vertices that reside on two such separated
regions (the thin lines in Figure 2a).  Another pitfall is the creation of
small surface “bubbles”, where two sets of polygons are created that
both tile the same portion of a surface (see Figure 2b).  Groups of
polygons that meet at a sharp corner also present difficulties when re-
tiling.

Two distinct approaches were tried for connecting the candidate
vertices before the method described below (mutual tessellation) was
found.  Both of these earlier methods failed because they relied on
heuristics to choose which candidate vertices were neighbors and
which of these neighbors should be connected together to form
triangles.  The first of these failed methods used a planar approxima-
tion to a point’s Voronoi region to determine neighbors.  The second
failed technique used a global greedy algorithm.  This method added
a new edge to the list of edges in the re-tiling if it was the shortest edge
not already on the list and if it did not intersect any other edge in
planar approximation to the surface in the area near the edge.  Below
we will see how a local greedy algorithm is used to give a robust re-
tiling method.

4.2  Mutual Tessellation

The key notion in creating a re-tiling of the surface is to form an
intermediate polygonal surface, called a mutual tessellation, that
incorporates both the old vertices of the original surface and the new
points that are to become vertices in the re-tiled surface.  After the
mutual tessellation is made, the old vertices are removed one at a time
and the surface is re-tiled locally in a manner such that the new
triangles accurately reflect the connectedness of the original surface.
Creating the mutual tessellation is a straightforward task.  Each
polygon of the original model is replaced by a collection of triangles
that exactly tiles the polygon but that also incorporates the candidate
vertices that lie in the polygon.  This re-triangulation of a given
polygon is performed by first gathering together the vertices of the
polygon along with the candidate vertices that lie on this polygon.
This collection of points (original vertices and candidate vertices) is
then triangulated, subject to the constraint that the edges of the
original polygon are to be included in the final triangulation.  The
triangulation is performed in the plane of the given polygon.  For

example, a square polygon containing exactly one candidate vertex
would be removed from the model and replaced by a set of four
triangles that all meet at the one candidate vertex.  If the square face
contained n candidate vertices then it would be replaced by a set of
2n+2 triangles.

The method of constrained triangulation used for this paper is greedy
triangulation, but this is just one of several ways to form such a
triangulation [Preparata & Shamos 85].  There is no chance for
misrepresenting the original surface at this stage because each
polygon is replaced by a set of triangles that exactly tile the original
polygon.  An added benefit to using mutual tessellation is that the
original surface can include concave polygons or even polygons with
holes since constrained triangulation algorithms easily handle these
cases.

The lower left object of Figure 1 shows the mutual tessellation of the
original model shown in the upper left portion of the figure.  The
candidate points that have been used to create this tessellation are
those shown in the upper right of the same figure.

4.3  Removing Old Vertices

The next task is to remove the old vertices in a way that guarantees
that the newly-created triangles follow the topology of the original
surface.  This can be done by invoking the same triangulation routine
that was used to create the mutual tessellation.  Given an old vertex
R to be removed, we collect together all vertices that share a triangle
with R.  Call this collection of neighboring vertices V, and give the
name T to the set of triangles that the vertices in V share with the
vertex R.  Then this collection of neighboring vertices, without the
vertex R, are projected onto a plane that is tangent to the surface at R.
Now a few tests are made to see if this region can be re-tiled without
compromising the topology of the surface.  These tests are described
later.  If the tests check out, then the vertices V are triangulated along
with the additional constraints that all edges of the triangles in T that
do not contain R must be included in the final triangulation.  Call
these additional constraint edges the set E.  This set of edges E form
a closed polygon surrounding the vertex R.  The triangulation is
performed along with the final constraint that no new edges are to be
introduced outside of the polygon formed by the edges in E.

Figure 3a shows a vertex R to be removed and its set V of neighbors:
A, B, C, D, E, F and G.  In this example there are seven triangles in
the set T, and the set E consists of the edges AB, BC, CD, DE, EF, FG
and GA.  Figure 3b shows the result of removing R and triangulating
the neighbors in V to give five new triangles.  These new triangles
completely replace the triangles in the set T, and all the triangles in
T are removed from the model.  Notice that performing this triangu-
lation in a plane assures us that the new triangles match the topology
of that local portion of the original surface.  The newly-created
triangles are constrained to have a common border that is just the
edges in E, so they will be adjacent to the same triangles that used to
border the triangles in T.
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Figure 3:  Removing a vertex from a mutual tessellation.

(a) (b)

Figure 2:  Problems encountered when connecting new vertices.  (a) Connecting regions that fold back near one another.
(b) “Bubbles” resulting from incorrect joining of vertices.



The lower right portion of Figure 1 shows the result of removing all
the old vertices from the mutual tessellation that is shown in the lower
left.  Figure 4 illustrates how several models of various levels of
detail can be generated using the above re-tiling method.  The model
in the upper left of Figure 4 is the original model, a polygonal
representation called a Connolly surface of a manufactured carbohy-
drate.  The models shown in the upper right, lower left and lower right
are increasingly more detailed re-tilings of the original surface, and
they contain 201, 801 and 3676 vertices respectively.  The original
model contains 3675 vertices.  Notice that the most detailed re-tiled
version of the model has more evenly-sized polygons than the
original model.  This demonstrates how successful the point-re-
pulsion method is at placing points uniformly over a surface.  Figure
5 shows a Phong-shaded rendering of the same four models.

4.4  Topological Consistency Checks

As mentioned above, two checks must be made before removing an
old vertex.  If either of these two tests fail, then the vertex R must not
be removed.  A failing of either check is not a failing of the algorithm,
but is instead an indication that the vertex R needs to be retained in
the re-tiled model to faithfully represent the topology of the original
surface.  In practice, nearly all old vertices can be safely removed
from a mutual tessellation.  The first check is to see that the edges in
the set E do not intersect one another except at their endpoints (the
vertices in V) when projected into the plane for triangulation.  If any
pair of these edges do intersect, then R is not removed.  This check
assures us that the planar triangulation of the points in V will not fold
the surface near R.  If this check fails we can try projecting the
neighborhood of R onto planes at other orientations to see if the edges
in E intersect in these cases.  If there is a projection onto a plane in
which these edges do not intersect, we can remove R and perform the
triangulation in this plane.  The re-tiling code used to make the
images in this paper tries 13 alternate projections before giving up
and deciding that a vertex R should be retained.

The second check makes sure that we do not accidentally join the
portion of the surface surrounding R to another portion of the surface
in front of or behind this region.  This can occur when three or four
polygons form a narrow neck-like region.  For example, Figure 6
shows an old vertex R that we want to remove and the solid lines show

the triangles that surround R.  The dotted triangles BDF and BDG are
two triangles that form a portion of the surface on the other side of the
model.  Imagine that the six edges radiating from R are removed and
that the region is triangulated.  It is likely that one of the new triangles
will have BD as an edge, which would cause this edge to be shared
by three triangles.  It is also possible that the triangulation would
create the triangle BDF, so that this triangle would be present twice
in the model.  Neither of these situations should be permitted because
they would change the topology of the surface.  The potential for
these problems can be checked by examining triangles near R before
the triangulation.  If a situation like that of Figure 6 is detected, then
the region surrounding R is left alone.  This is the approach used to
create the re-tiled models in this paper.  Another solution is to
triangulate the region surrounding R and then see if any of the new
triangles would lead to a change in surface topology.  If they would,
then the vertex R is retained.

4.5  Triangle Shape

There is one additional, optional step that may be performed to assure
that the triangles in the re-tiling are well-shaped.  This clean-up step
examines each vertex of the re-tiled model and attempts to re-
triangulate in its neighborhood.  This is similar to the vertex removal
stage, except that the vertex is not removed but rather is included in
the re-triangulation.  Figure 7a shows the triangles surrounding a
vertex Q whose neighboring vertices are examined during the clean-

Wilma with edges Phong-shaded Wilma

Figure 4:  Re-tiling a molecular model.  Original model is shown
in the upper left.  Other models are re-tilings of the same object.
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Figure 6:  Problem that must be checked during vertex removal.

Figure 5:  Phong-shaded rendering of the models in Figure 4.



up stage.  Figure 7b shows the same vertices, along with Q, after local
re-triangulation.  Any reasonable approximation to a tangent plane to
the surface at the vertex Q can be used for the plane in which to
perform the triangulation.  Here again, the same two checks should
be performed to avoid re-tiling at a fold and to avoid creating edges
shared by three or more triangles.  One or two clean-up passes were
used in creating all the re-tiled models shown in this paper.  The same
greedy triangulation routine described earlier was used in this im-
provement step.

4.6  The Special Case of Boundaries

The re-tiling process can be augmented to handle polygonal models
where some of the edges belong to only one polygon.  Each of the
three steps of mutual tessellation, vertex removal and clean-up must
treat these boundary edges specially.  When incorporating candidate
vertices into a mutual tessellation, any candidate vertex that lies on
a boundary edge must be incorporated into the boundary of the
polygon that is being triangulated instead of into the interior of the
polygon.  This means that such a candidate vertex must be an end-
point in two of the constraint edges.  During the vertex-removal
stage, we choose not to remove an old vertex if it is at the corner of
a polygon where two boundary edges meet that are part of the same
polygon.  Likewise, a vertex will be retained if more than two
boundary edges meet at that vertex.  If exactly two boundary edges
from different polygons meet at a old vertex, that vertex may be
removed.  Figure 8a shows such a vertex R where the edges AR and
RE belong only to the triangles ABR and RDE, respectively.  Figure
8b shows the triangles formed after removing R.

4.7  Re-Tiling Robustness and Extensions

It is worth examining at this point how this re-tiling approach avoids
the possible pitfalls involved in connecting candidate vertices.  The
central strength of the above method is that it breaks the surface re-
tiling problem into many small planar triangulation problems.  Pla-
nar triangulation of vertices with constraints is a well-understood
problem from computational geometry.  Casting the problem into
two dimensions avoids the ambiguities found in three dimensions
when trying to determine if a point is inside a polygon or whether two
edges intersect.  Constraining each triangulation sub-problem to
include the edges E surrounding a vertex R that is being removed
guarantees us that the collection of newly-created triangles will have
the same common boundary as the old triangles T.  This common
boundary is just E, the set of constraint edges.  These same observa-
tions apply to the triangulations performed during the clean-up step.
One way to think of the re-tiling process is that the mutual tessellation
allows the vertices and polygons of the original model to act as guides
for how different portions of the surface will be connected to one
another in the re-tiled model.

There is the opportunity within the framework of mutual tessellation
and vertex removal to choose a measure of triangle quality for the
triangulation sub-problems.  The re-tilings shown in this paper were
made with a greedy triangulation routine, where the shortest edges
that do not intersect already chosen edges are picked to be included
in the final triangulation.  More specifically, although the triangula-
tion is always performed in a plane, the edge distances used in the
greedy algorithm are determined from each vertex’s unprojected 3-
space position.  This greedy algorithm has created well-shaped
triangles in the re-tilings that we have performed.  If another measure
of triangle goodness is desired then another triangulation routine can
be incorporated into the basic framework described above.  For
example, one might use a triangulation routine that attempts to
maximize the most acute angle in the potential collection of triangles
[De Floriani et al 85].

5  Surface Curvature

5.1  Curvature Approximation

The basic method of point-repulsion gives surface re-tilings in which
the new triangles are all roughly the same size across the model.  This
is quite adequate for surfaces that do not vary greatly in the amount
of curvature at different locations.  If, however, the variation in
surface curvature is relatively large, then the features of the surface
would be more accurately reflected in a re-tiling by increasing the
density of vertices in regions of high curvature.

Ideally, we would like to have an exact measure of curvature from the
object that the polygonal model is meant to represent.  Often,
however, this information is not available, either because the object
being represented is not available (e.g. the volume data was not

Figure 7:  Improving triangle shape by local re-triangulation. Figure 8:  Removing a vertex on the boundary of a surface.
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Figure 9:  Curvature. (a) Radius of curvature in the plane.
(b) Approximation to curvature in the plane at a vertex.



retained) or because there never was an exact description of the
object (e.g. a cat model was created freehand by a human modeler).
For these reasons it is useful to have a way to approximate surface
curvature from the polygonal data alone.  More precisely, we want to
know the maximum principle curvature at any given point on the
model.  See any text on differential geometry for a mathematical
description of principle curvature, such as [O’Neill 66].  Intuitively,
this is asking for the radius of the largest sphere that can be placed on
the more curved side of the surface at a given point without being held
away from the surface by the manner in which the surface curves.
Figure 9a shows the radius of curvature at two points along a curve
in the plane.

Figure 9b illustrates the curvature approximation used in this paper.
This figure shows the two-dimensional version of the curvature
estimate near a point P.  Here a circle has been drawn that is tangent
to the edge PA at its mid-point and that is also tangent to the longer
edge PB.  The radius of this circle is r = tan(θ)  P - A  / 2.  In this
figure, the line segment PC bisects the angle APB.  This figure will
act as a starting point for approximating the curvature of a polygonal
surface in 3-space at a vertex P.

In the three-dimensional case, the line segment PC is replaced by an
approximation to the surface normal N at the vertex P.  Then, each
edge in the polygon mesh that joins the vertex P to another vertex Q

i
is examined, and an estimate of the radius of curvature from each of
the n edges PQ

1
, PQ

2
,... PQ

n
 can be computed.  Let V be the

normalized version of the vector Q
i
 - P, that is, a unit vector parallel

to the edge PQ
i
.  Then an estimate for θ

i
 is arccos(N • V), and the

radius estimate for the edge PQ
i
 is r

i
 = tan(θ

i
)  P - Q

i 
 / 2.  The final

estimate r of minimum radius of curvature at the vertex P is the
minimum of all the r

i
.  This estimate of curvature is a little noisy for

some models, so we can smooth the estimate by averaging a vertex’s
radius r with that of all of its neighbors, and we can take this to be the
minimum radius of curvature at the vertex.  Figure 10 shows the
results of this estimate, where each surface is colored red in areas of
high curvature (small radius) and is colored blue in the regions that
are more nearly flat.

5.2  Concentrating Vertices at Locations of Higher Curvature

Using the above curvature estimate, we can modify the first step of
the point-placement method so that more points are distributed to
those places of higher curvature when the points are initially placed
on the surface.  Recall that the random point placement is area-
weighted, so that more points are initially placed on larger polygons.
We can increase the density of points on a particular polygon if the
polygon’s stored value of its area is increased while other polygons’
stored area values are held at their correct value.  Therefore, to double
the density of points on polygons of high curvature, we can multiply
the stored area value of these polygons by a factor of two before the
area-weighted point-placement step.

Armed with an estimate of curvature over the surface, we can use this
value to choose the radius of repulsion in the point-placement
routine.  We want points that are at very curved areas (small radius
of curvature) to push less on their nearby points than points that are
on nearly flat regions.  This will result in placing more points at the
more curved areas.  The curvature-adjusted radius of repulsion for a
point can be derived from an average of the curvature measures at
each of the vertices of the polygon that the point is on.  This average
is weighted by the distance of the point from each of the polygon’s
vertices.  When computing the force between two points close to one
another, the average of their curvature-adjusted radii of repulsion is
used instead of using one fixed radius of repulsion for all points.  The
top portion of Figure 11 shows the re-tiling from 800 points distrib-
uted by using the same repulsive radius over all points, and the
bottom portion shows the re-tiling given by 800 points that were
distributed using curvature-weighted repulsive radii.

6  Interpolation Between Models

6.1  Nested Models

There is a natural nesting of levels of detail in polygonal datasets that
are arranged in a rectangular grid of cells, and this nesting of levels
can be used to smoothly interpolate between the different levels of
detail.  If the most detailed version of a terrain model is arranged in

Curvature colors Curvature re-tiling

Figure 11:  Top surface was created using the same radius of
repulsion across the model.  Bottom model used curvature to

determine the repulsion radius.

Figure 10:  Surface curvature.  Red specifies regions of higher
curvature and blue shows regions that are relatively flat.



a 256 × 256 array of cells, then a 128 × 128 version of the data can
be made by sampling the data at every other vertex of the original cell
mesh in each of the x and y directions.  Each of the vertices in this
reduced grid is also present in the more detailed grid.  This section
describes how a similar nesting of levels of detail can be made when
re-tiling arbitrary polygonal models and how we can smoothly
interpolate from one level of detail to another.  The technique we will
use to interpolate between the levels of detail is to flatten some of the
vertices and triangles of a higher-detailed model onto the triangles of
a model with less detail.

Assume we have a detailed polygonal model and we wish to create
three versions of this model that contain 200, 800 and 3200 vertices,
and that we want all the vertices in the lower-detailed models to be
present in the models with more detail.  The first step is to position
200 points on the original polygonal surface using point-repulsion.
The 800 vertex model can be created by fixing the positions of the
first 200 points, then placing 600 additional points on the object’s
surface and finally by allowing these new points to be repelled by one
another as well as by the 200 fixed points.  The most detailed model
is then made by fixing these 800 vertices and adding 2400 more in the
same manner in which we added the previous 600.  Now we have 200
vertices that have the same position in all three models and 800
vertices that are present in the same location in two of the models.

Figure 12 shows the positions of the points from three such levels of
detail that were created in the manner just described.  The large black
spots are the 200 initial points, the red spots are the 600 additional
points, and the cyan spots are the final 2400 points.  The original
object is a portion of a minimal surface of mathematical interest that
was modelled using 2040 vertices.  The spots in this figure were
rendered by changing the color at a given surface position if it is
inside a sphere centered at one of the 3200 points.  Now the issue is
to determine how to interpolate between pairs of these models.

6.2  Polygon Fragment Tracking for Interpolation

There are two sub-tasks involved in deciding how to interpolate
between a high- and a low-detail model.  First, for each vertex V that
is present only in the high-detail model, we need to choose a triangle
in the low-detail model onto which V may be flattened.  Once such
a triangle is determined for each such vertex V, we must split each
triangle T from the high-detail model by each edge in the low detail
model that intersects T.  Figure 13 shows a high-detail and a low-
detail model drawn together. Vertices A, B, C and D belong to the
low-detail model and the edges AB, BC, AC, CD and DA are the edges
that will be formed in the low-detail model.  These same vertices A,
B, C and D are also part of the initial high-detail model.  The thinner
edges in this figure are the edges of triangles in the high-detail model,
and the vertices V, W and X are three of the vertices that are only
present in the high-detail model.  We require a way of determining
that the vertex V can be flattened onto the low detail triangle ACD and
that W can be flattened onto ABC.  We also want to learn that the high-
detail triangle AWV crosses the low-detail edge AC, so that we can
split AWV into two triangles for later use in the interpolation proce-
dure.  The way to determine this information is to track each vertex
such as V and each triangle such as AWV through the entire process
of vertex removal as we change the high-detail model into the low-
detail model.

The nested point sets shown on the surface in Figure 11 were created
by moving from low to high detail.  That is, first the low-detail points
were placed, then the next higher level, etc.  This process is now
reversed by working from the high-detail model down to the low-
detail model to provide the information we will need to flatten the
high-detail triangles on the low-detail model.  We begin with the
vertices and triangles of the high-detail model and track how some
triangles are split and re-formed when the high-detail vertices are
removed from the model.  Call the set of triangles in the high-detail
model H, and let L denote the set of low-detail triangles that make up
the model we are working towards.  Ultimately, each triangle in L will

Model interpolation

Figure 14:  Clockwise from upper left is smooth interpolation
between low-detail and high-detail models.

Figure 13:  Fragment tracking when removing the
high-detail vertices from a model.
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Figrure 12:  Spots on minimal surface show the positions of
three nested candidate vertex sets.



have a pointer to a list of polygon fragments of several triangles from
H.  These polygon fragments retain the positions of their original 3-
space vertices from when they were a part of the high-detail model,
and they also save their final, flattened position on one of the triangles
in L.  Each of these polygon fragments will also remember what
original high-detail triangle they descended from, and this tag will be
used to determine which fragments may be re-united after the process
of vertex removal.

The polygon tracking process begins as follows.  First, each triangle
in the high-detail model is initialized with a list of polygon fragments
that contains just a single element, and this element is a copy of the
original triangle.  Each triangle also retains a list of flattened points
which is initially empty.  Several steps are followed when a high-
detail vertex is removed from the model, and these steps all take place
in the plane.  This lets us unambiguously determine where one edge
intersects another and when a point is inside a given triangle.  First,
when a high-detail vertex V is removed then the triangles surround-
ing V must be split by the new edges that are introduced by the re-
triangulation of the area surrounding V.  For instance, assume that the
four triangles surrounding V in Figure 13 will be replaced by two
triangles that share a new edges AX (dotted line).  This new edge splits
each of the old triangles AWV and VWX into two pieces.  The new
triangle AWX is given a list containing the two polygon fragments
that lie within AWX.  Similarly, the new triangle AXD keeps the other
two fragments and the undivided polygons AVD and VXD in its list.
Now we must determine which of the new triangles AWX or AXD the
old vertex V should be flattened onto.  In this example, the new,
flattened position of V is on triangle AXD.  This same process of
vertex removal, triangle splitting and vertex flattening is carried out
for all the high-detail vertices in the model.  The result is a set of low-
detail triangles L, each of which has a list of fragments from the
original triangles of the high-detail model.  Some of the fragments in
a list may be fragments of the same triangle of the high-detail model,
and such fragments may be coalesced to give fewer final polygons.
Such sibling fragments are found in the same list when a polygon is
split at an early stage in the fragment tracking process by an edge that
is later removed from the model.

6.3  Performing the Interpolation

When the above work is finished, we have a large collection of
polygon fragments that know where they came from in the original,
high-detail model and that also know what their current, flattened
position is on the surface of the low-detail model.  It is now a simple
task to interpolate the vertices of each of the polygon fragments
between these two positions.  At one end of the interpolation they will
all lie flat on the low-detail model, and together they will have exactly
the same shape as the low-detail model.  At the other end of the
interpolation, they have a shape identical with the high-detail model.
The process of interpolating between these two positions has the
effect of “inflating” the low-detail model into the model with more
triangles.  We have found that linear interpolation between these two
positions is sufficient to make smooth transitions between models.
There are no jumps or discontinuities during this interpolation.  This
provides a seamless way of switching from one level of detail to
another, and could be useful in both in interactive applications and for
rendering frames for animating a complex scene.  Figure 14 shows
this form of shape interpolation between two models that are re-tiled
versions of the minimal surface shown in Figure 12.

7  An Application of Re-Tiling

We have immediate plans to use re-tilings of polygonal surfaces in
research on radiation-treatment planning being done at the Univer-
sity of North Carolina at Chapel Hill.  Planning the placement of
radiation beams for the treatment of tumors is an intensely geometric

task [Chung 92].  The problem is how to aim several radiation beams
at a tumor while at the same time keeping too much radiation from
impinging on the organs surrounding the tumor.  James Chung has
prototyped a beam-placement application program where the user
wears a head-mounted display and places radiation beams around a
polygonal representation of the anatomy containing the tumor.  The
models used to represent the tumor and the surrounding organs
(lungs, kidneys, etc.) often contain many thousands of polygons.
There is a trade-off that can be made between the accuracy of
representation of the anatomy and the frame update rate of the
display.  One possible solution is to give the user direct control over
this update rate [Holloway 91].  The graphics engine would use a
more coarse set of polygonal models when the user wishes to make
broad motions (e.g. walking around the simulated patient) and would
then switch to the more detailed models when fine adjustments are
being made to the final beam placements.  We plan to make use of the
re-tiling techniques described here to provide the variously detailed
models.

8  Future Work

One possible extension of the re-tiling method would be to use
information about the direction of minimum and maximum curva-
ture at each point to help guide the local re-triangulation of the
surface.  The point-repulsion step could take direction of higher
curvature into account by having the points repel in a direction-
dependent manner.  This would amount to changing the shape of a
point’s field of repulsion from a circle to an ellipse.  The directional
curvature measure should also guide which edges between points are
created during triangulation.  Polygon edges should be created
preferentially along the direction of lesser curvature.

There are several more broad issues that should be addressed in
future work on re-tiling of polygonal models.  One issue is whether
there are better ways to estimate the surface curvature on a polygonal
model.  Another topic is finding measures of how closely matched a
given re-tiling is to the original model.  Can such a quality measure
be used to guide the re-tiling process?  Perhaps the biggest issue to
explore is the opportunity for elimination of features at very low
levels of detail.  How can small features of a model be automatically
identified and under what conditions is it acceptable to remove a
feature completely from a model?  For example, no triangles need to
be used to represent the shape of a person’s ear if the size of the person
in the final image will be three pixels high.
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