
Differential Geometry
Lia Vas

Surfaces

When studying curves, we studied how the curve twisted and turned in space. We now turn
to surfaces, two-dimensional objects in three-dimensional space and examine how the concept of
curvature translates to surfaces.

In Calculus 3, you have encounter surfaces defined as graphs of real valued functions of two
variables z = f(x, y). This function also can take the form x = f(y, z) or y = f(x, z). In some cases,
on the other hand, this function is given implicitly as F (x, y, z) = 0. For example, a sphere of radius
a is given by x2 + y2 + z2 = a2 and it is impossible to get a single two variable function that would
describe the whole sphere. Cylinder x2 + y2 = a2 is another such example. Let us review some
examples from Calculus 3.

Planes. The general equation of a plane is

ax+ by + cz + d = 0.

A plane is uniquely determined by a point in
it and a vector perpendicular to it. The equation
that describes any point x = (x, y, z) in the plane
through a point x0 = (x0, y0, z0) perpendicular to
a vector a = (a, b, c) is

a · (x− x0) = 0

The above vector equation of the plane has the following scalar form.

a(x− x0) + b(y − y0) + c(z − z0) = 0.

Surfaces of revolution. z = f(
√
x2 + y2). To get graph of such surface, graph the function

z = f(y) in yz-plane and let it rotate about z-axis. For example

• A cone z = a
√
x2 + y2 is obtained by rotating the line z = ay.

• A paraboloid z = ax2 + ay2 is obtained by rotating the parabola z = ay2.

• A half-sphere z =
√
a2 − x2 − y2 is obtained by rotating the half-circle z =

√
a2 − y2.

Cone Paraboloid Hemisphere
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Cylindrical surfaces. These surfaces are given by an equation in which one variable is not
present. For example, z = f(y). To graph this surface, graph the function z = f(y) in yz-plane and
translate the graph in direction of x-axis. For example,

• The graph of y2 + z2 = 4 is a cylinder obtained by translating the circle y2 + z2 = 4 of radius
2 centered at the origin in yz-plane along x-axis.

• The graph of x2 + y2 = 4 is a cylinder obtained by translating the circle x2 + y2 = 4 of radius
2 centered at the origin in xy-plane along z-axis.

Cylinder x2 + y2 = 4 Cylinder y2 + z2 = 4

Parametric Surfaces

In cases when a surface is given as an implicit function F (x, y, z) = 0, it may be useful to describe
the three variables x, y and z but using some other parameters u and v. In that case, we have that

x = x(u, v) y = y(u, v) z = z(u, v).

These equations are called parametric equations of the surface and the surface given via parametric
equations is called a parametric surface.

Thus, a parametric surface is represented as a vector function of two variables, i.e. the domain D
consisting of all possible values of parameters u and v is contained in R2. The range of the surfaces
is contained in the three dimensional space R3.

Thus, a surface x is a mapping of D into R3. This is denoted by x : D → R3. The vector function
x can also be represented as

x(u, v) = (x(u, v), y(u, v), z(u, v)).

Notice an analogy with curves. We can think of curves as one-dimensional objects in three-
dimensional space and surfaces as two-dimensional objects in three dimensional space. Thus, a curve
can be described using a single parameter t. Surface, on the other hand, is described using two
parameters u and v.

Mapping Dimension Parameter(s) Equations

Curve γ : (a, b) ⊆ R→ R3 1 t γ(t) = (x(t), y(t), z(t))

Surface x : D ⊆ R2 → R3 2 u, v x(u, v) = (x(u, v), y(u, v), z(u, v))
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The curves given in the form z = f(x, y) can always be parametrized as x = (x, y, f(x, y)). For
example, the plane 2x+3y+z = 6 can be represented by x = (x, y, 6−2x−3y). Some other surfaces
require fancier parametrizations. Recall the following change of coordinates used in Calculus 3 that
provided parametric representations of some frequently used surfaces.

Cylindrical coordinates.

x = r cos θ, y = r sin θ, z = z.

Here x and y are converted using polar coor-
dinates and the only change in z may come just
from changes in x and y. Note that

x2 + y2 = r2

in these coordinates.

Using cylindrical coordinates we obtain parametrizations in the following examples.

1. The paraboloid z = x2 + y2 can be represented as x = r cos θ, y = r sin θ, z = r2, since
x2 + y2 = r2 in cylindrical coordinates so z = r2. In this course, we write this parametrization
shortly as

x = (r cos θ, r sin θ, r2).

Note that this paraboloid can also be parametrized by (x, y, x2 + y2).

2. The cone z =
√
x2 + y2 can be represented by x = (r cos θ, r sin θ, r).

3. The cylinder x2 + y2 = 4 is such that the r value is constant and equal to 2. Thus, the two
remaining parameters, θ and z can be used for representation of this cylinder as x = 2 cos θ,
y = 2 sin θ, z = z or, written shortly as x = (2 cos θ, 2 sin θ, z).

4. Similarly, the cylinder y2 + z2 = 4 can be parametrized by x = (x, 2 cos θ, 2 sin θ).

Spherical coordinates. If P = (x, y, z) is a point in space and O denotes the origin, let

• r denotes the distance of the point P =
(x, y, z) from the origin O. Thus,

x2 + y2 + z2 = r2;

• θ is the angle between the projection of vec-

tor
−→
OP = (x, y, z) on the xy-plane and the

vector
−→
i = (1, 0, 0) (positive x axis); and

• φ is the angle between the vector
−→
OP and

the vector
−→
k = (0, 0, 1) (positive z-axis).
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With this notation, spherical coordinates are (r, θ, φ). The conversion equations are

x = r cos θ sinφ y = r sin θ sinφ z = r cosφ.

In this parametrization, the north pole of a sphere centered at the origin corresponds to value
φ = 0, the equator to φ = π

2
and the south pole to φ = π. To match the geographical latitude (for

which north and south pole correspond to π
2

and −π
2

and equator to φ = 0), the angle φ is often

considered to be the angle between the equator and the vector
−→
OP. In this case, cosφ and sinφ are

switched in the equations of the spherical coordinates and we obtain

x = r cos θ cosφ y = r sin θ cosφ z = r sinφ.

The angle θ corresponds to the geographical longitude and the angle φ corresponds to the geographical
latitude.

For example, the sphere x2 + y2 + z2 = 9 has representation as x = (3 cos θ sinφ, 3 sin θ sinφ,
3 cosφ) or, using the second version, as x = (3 cos θ cosφ, 3 sin θ cosφ, 3 sinφ).

The upper half of the sphere x2 + y2 + z2 = 9 can be parametrized on several different ways.

• Using x, y as parameters x = (x, y,
√

9− x2 − y2) for x2 + y2 ≤ 9.

• Using cylindrical coordinates x = (r cos θ, r sin θ,
√

9− r2) for 0 ≤ θ ≤ 2π, and 0 ≤ r ≤ 9.

• Using spherical coordinates x = (3 cos θ sinφ, 3 sin θ sinφ, 3 cosφ) for 0 ≤ θ ≤ 2π and 0 ≤ φ ≤
π
2
.

Tangent Plane

For a parametric surface

x = (x(u, v), y(u, v), z(u, v)),

the derivatives xu and xv are vectors in the tan-
gent plane. Thus, their cross product

∂x

∂u
× ∂x

∂v
= (xu, yu, zu)× (xv, yv, zv)

is perpendicular to the tangent plane.
If a surface is given by implicit function

F (x, y, z) = 0, then this cross product also corre-
sponds to the gradient ∇F of F.

Practice Problems.

1. Find an equation of the plane through the point (6, 3, 2) and perpendicular to the vector
(−2, 1, 5). Check if (2,−1, 0) and (1,−2, 1) are in that plane.

2. Sketch the following surfaces.

(a) z = 6− 2x− 3y (b) z =
√

9− x2 − y2 (c) z = 1
x2+y2

(d) z = y2
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3. Find the equation of the tangent plane to a given surface at the specified point.

(a) Hyperbolic paraboloid z = y2 − x2, at (−4, 5, 9)

(b) Ellipsoid x2 + 2y2 + 3z2 = 21, at (4,−1, 1).

(c) Parametric surface given by x = u+ v y = 3u2 z = u− v, at (2, 3, 0)

(d) The cylinder x2 + z2 = 4, at (0, 3, 2).

Solutions. (1) −2(x− 6) + 1(y − 3) + 5(z − 2) = 0⇒ −2x+ y + 5z = 1. No. Yes.
(2) (a) Plane (b) Upper hemisphere centered at the origin of radius 3.

(c) Rotate z = 1
y2

about z-axis.

(d) Cylindrical surface, translate the parabola z = y2 in yz-plane along x-axis.
(3) (a) x = (x, y, y2 − x2)⇒ xx × xy = (2x,−2y, 1). Alternatively, consider F = z − y2 + x2 and

find the gradient ∇F to be (2x,−2y, 1). At x = −4, y = 5 this vector is (−8,−10, 1). So the tangent
plane is −8(x+ 4)− 10(y − 5) + z − 9 = 0⇒ −8x− 10y + z = −9 or 8x+ 10y − z = 9.

(b) Consider F = x2+2y2+3z2−21 = 0 and find∇F = (2x, 4y, 6z). At (4,−1, 1),∇F = (8,−4, 6).
The equation of the plane is 8(x−4)−4(y+1)+6(z−1) = 0⇒ 8x−4y+6z = 42⇒ 4x−2y+3z = 21.

(c) x = (u + v, 3u2, u − v) ⇒ xu × xv = (−6u, 2,−6u). Then note that at (2, 3, 0), the values
of parameters are u = 1 and v = 1 so the normal vector is (-6,2,-6) The equation of the plane is
−6(x− 2) + 2(y − 3)− 6(z − 0) = 0⇒ −6x+ 2y − 6z = −6⇒ 3x− y + 3z = 3.

(d) You can parametrize the cylinder as x = (2 cos t, y, 2 sin t) and calculate xt × xy to be
(−2 cos t, 0,−2 sin t). Note that at (0, 3, 2), the values of parameters are t = π

2
and y = 3 so the

normal vector is (0, 0,−2). The equation of the plane is 0(x− 0) + 0(y − 3)− 2(z − 2) = 0⇒ z = 2.

Curvature and Theorema Egregium

For the concept of the curvature of curve γ to be defined, we had to ensure that we can define a
unit-length tangent vector at every point. This condition was ensured by requiring that the derivative
dγ
dt
6= 0. Analogously, for surfaces we want to insure that the tangent plane at every point is defined

(i.e. that is not collapsed into a line or a point). Since the normal vector to the tangent plane of a
parametric surface x is given by ∂x

∂u
× ∂x

∂v
, we want to impose a condition that guarantees that this

vector is non-zero i.e.,
∂x

∂u
× ∂x

∂v
6= 0.

Coordinate Patches. The condition ∂x
∂u
× ∂x

∂v
6= 0 guarantees that the vectors ∂x

∂u
and ∂x

∂v
are not

on the same line. Thus, they are linearly independent and they constitute a basis of the tangent
plane and every other vector in the tangent plane can be represented as a linear combination of
these two vectors. 1

1Linear Algebra background. Consider two vectors v1 and v2 that do not lie on the same line. In this case,
we say that v1 and v2 are linearly independent. Consider also the plane determined by these two vectors. For
arbitrary vector v in the plane, we can consider the projection of v in direction of v1. This projection is a multiple
of v1. Let a denote the multiplication factor. Consider also the projection of v in direction of v2 and let b denote the
the multiplication factor. Thus,

v = av1 + bv2

The sum av1 + bv2 is called a linear combination of v1 and v2. This shows that every vector in the plane that we
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Thus, we shall consider just surfaces such that around every point parametric equations x =
x(u, v), y = y(u, v), z = z(u, v) with the following properties can be found.

• The functions x = x(u, v), y = y(u, v), z = z(u, v) are continuous in both variables (thus,
there are no gaps or holes), one-to-one with continuous inverses (this last condition guarantees
“properness”).

• The partial derivatives of x = x(u, v), y = y(u, v), z = z(u, v) are continuous (thus, there are
no corners or sharp turns).

• The cross product ∂x
∂u
× ∂x

∂v
is not equal to 0 (thus, the tangent plane at each point is not

collapsed into a line or a point).

We refer to those surfaces as proper coordinate patches. Note that it may not be possible to
describe the whole surface with a single coordinate patch but it will always be possible to cover
the entire surface by “patching” several different coordinate patches together. So, you can think of
coordinate patches as basic surfaces that create arbitrary surface. At the moment, we will not go
into the formal definition of “patching” but we will return to it later.

We present the informal idea of curvature at a
point P0 on the surface. We shall make this idea
more precise during the course of the semester.

1. Take an arbitrary vector v of unit length in
the tangent plane at P.

(2) Consider the plane determined by v and the
normal vector of the tangent plane. This
plane is perpendicular to the tangent plane
and intersects the surface in a curve γ. The
curve γ is called the normal section at P
in the direction of v.

consider can be expressed as a linear combination of v1 and v2. In this case, we say that v1 and v2 generate the
plane.

Linearly independent vectors that generate a plane are called a basis. Consideration of projections above demon-
strates that any two linearly independent vectors in a plane constitute a basis of the plane.

For example, vectors (1, 0) and (0, 1) are a basis of xy-plane (space R2): these two vectors are not colinear and every
vector (x, y) is the linear combination x(1, 0) + y(0, 1).

The same concepts can be defined in three-dimensional space. any three vectors v1, v2 and v3 that do not lie on
the same plane are said to be linearly independent. Any other vector v can be expressed as a sum of its projections
in directions of v1, v2 and v3

v = av1 + bv2 + cv3

i.e. as a linear combination of v1, v2 and v3. Thus, v1, v2 and v3 generate the space. Linearly independent
vectors that generate the space are called a basis. By considering projections, any three linearly independent vectors
in space are a basis of the space.

For example, vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) are a basis of R3 : they are not in the same plane, and every
vector (x, y, z) is the linear combination x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

Another example of a basis of R3 are the vectors T, N and B of the moving frame of a curve at any of its points.
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(3) Compute the curvature κ of γ at P. The normal curvature in the direction of v denoted
by κn(v) is taken to be

κn(v) = ±κ.

If the normal vector of the curve and the normal vector of the tangent plane have the same
direction, then κn(v) = κ and κn(v) = −κ otherwise.

Examples. (1) Normal curvature of a plane in any direction is 0. This is because any plane
perpendicular to the given plane intersects it in a straight line so all normal sections are lines and,
thus, have zero curvature.

(2) Absolute value of the normal curvature of a sphere with radius a is 1
a
. This is because any

plane perpendicular to the sphere at a point on it intersects the sphere in a great circle through
the point. So, all normal sections are circles of radii a with the curvature of 1

a
. Thus, the normal

curvature is ± 1
a
.

(3) Consider the cylinder x2 + y2 = a2.

At any point, a plane perpendicular to the
tangent plane which is not parallel to the central
axis intersects the cylinder in an ellipse. The el-
lipse does not have constant curvature so, in this
case, the normal curvature is not constant also.
In the case when we choose the plane that is par-
allel to the central axis, the normal section is a
straight line and so the curvature in that case is
zero.

We can improve this analysis if, instead of considering arbitrary normal sections, we choose to
consider normal sections in two specifically chosen directions. Namely, an arbitrary vector v in the
tangent plane can be represented as a linear combination of two specific vectors of the tangent plane:
v1 parallel to the central axis and v2 perpendicular to v1. The normal plane corresponding to v1 has
a straight line as the normal section and so the curvature in direction of v1 is 0. The normal plane
corresponding to v2 has a circle of radius a for the normal section and so the curvature in direction
of v2 is 1

a
. The absolute value of the normal curvature in direction of any other vector v will have a

value between these two values so

0 ≤ |κn(v)| ≤ 1

a
.

This calculation can still be made more explicit by representing v as cos θv1 + sin θv2 where θ
is the angle between v1 and v measured in positive direction (just as for polar coordinates when
considering~i and ~j). Then it can be calculated that the normal section is an ellipse with semi-axes a
and a

| cos θ| and that |κn(v)| at the relevant point is cos2 θ
a
. Since cos2 θ is taking values between 0 and

1, this agrees with our earlier observation that 0 ≤ |κn(v)| ≤ 1
a
.

Principal curvatures. The example with cylinder is interesting because it turns to be more
general than one would imagine. Namely, for every point on any surface, one can choose orthogonal
unit vectors v1 and v2 called principal directions and the normal curvatures determined by them
will correspond to the maximal and minimal values of the normal curvature κn(v).
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These two values are denoted by κ1 and κ2
and are called principal curvatures.

The product of the principal curvatures is
called

the Gaussian curvature K = κ1κ2.

In the example with the cylinder, the fact that
at every point of the cylinder there is a direc-
tion in the tangent plane that has normal section
which is a straight line is reflected in the fact that
K = 0.

Note also that the cylinder can be slit and unrolled into a flat sheet of paper without stretching
or tearing and without affecting the length any curve. A surface with this property will also have
K = 0. This means that the geometry of the cylinder locally is indistinguishable from the geometry
of a plane. In cases like this, we say that the two surfaces are locally isometric. Note that globally
cylinder is very different from the plane, though.

Following similar reasoning, we can deduce that a cone has Gaussian curvature 0. A sphere of
radius a has both the principal curvatures equal to 1

a
, so the Gaussian curvature is 1

a2
.

Let us consider now the surface given by z = y2 − x2 called hyperbolic paraboloid.

This surface has a saddle point at the origin,
and the principal directions are in direction of x
and y axis. The normal sections in these direc-
tions are two parabolas with normal vectors N1

and N2 having the opposite directions. Thus, if
the normal vector of the tangent plane has the
same direction as N1 then it has the opposite di-
rection to N2 and vice versa. So, one principal
curvature is positive and the other is negative re-
sulting in a negative Gaussian curvature at
the origin.

Hyperbolic paraboloid has K < 0

It can be shown that K is negative throughout this curve. At this point, we note a significant
difference between the curvature of a curve and the normal (and Gaussian) curvature of a surface:
while the curvature of a curve is defined to have just positive values, principal and Gaussian curvatures
of surfaces can have negative values.

The calculation of curvature involves the surface to be embedded in the space so that normal
vectors and normal sections could be considered. Thus, for “locals” on the surface, these considera-
tions would be incomprehensible. To understand this argument, consider the fact that for people on
the surface of earth, the earth appears to be flat, or the fact that in our three-dimensional world, we
have hard time comprehending the four-dimensional plane perpendicular to our three-dimensional
space (just as a one-dimensional curve has two-dimensional normal plane).

A concept involving only measurements on the surface (conducted by “locals”) is said to be
intrinsic while a concept whose definition involves objects external to the surface is said to be
extrinsic. Thus, using the definition we presented, a curvature is an extrinsic concept.
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If one is to generalize the concept of curvature
to higher dimensions, in particular the curvature
of our physical space, we would have to be able
to describe curvature intrinsically.

In particular, to determine the curvature of
our physical space, we do not want to rely on four-
dimensional space. Also, to define the curvature
of Einstein four-dimensional space-time universe,
we do not want to rely on five-dimensional space. “Locals” view surface to be flat

Fortunately for “locals”, the crowning achievement of theory of surfaces states that the curva-
ture can be calculated intrinsically. This means that the Gaussian curvature of a surface can
be determined entirely by measuring angles, distances and their rates on the surface itself, without
further reference to the particular way in which the surface is embedded into the three-dimensional
space. This result, proved by Carl Friedrich Gauss, is considered to be one of foundational results
in differential geometry. It is usually referred to as Theorema Egregium (Latin for remarkable or
extraordinary theorem).

In mathematical language, the theorem also implies that the Gaussian curvature is invariant
under local isometry. This means that any bending of a surface (without stretching or tearing) does
not impact the Gaussian curvature. The principal curvatures do not share the property of Gaussian
curvature given by Theorema Egregium – the principal curvatures do vary with bending. The fact
that their product does not vary with bending makes Theorema Egregium even more remarkable.

We devote the remainder of our study of differential geometry to accomplishing the following
three goals.

Goal 1 Develop apparatus that completely describes surfaces. This will be analogous to Serret-Frenet
apparatus and moving frame of a curve and will lead us to first and second fundamental forms.

Goal 2 Understand the statement of Theorema Egregium in mathematical terms. This will require
consideration of geodesics and the curvature tensor.

Goal 3 Theorema Egregium allows the concept of curvature to be generalized to higher dimensions.
Two-dimensional surfaces generalize to n-dimensional manifolds, defined for any n and the
concept of the curvature of a surfaces generalizes to the curvature of a manifold. This will
enable you to understand the language used in special and general relativity. It will also enable
you to generalize the content of this course to higher dimensions.

Theorema Egregium also implies that if two surfaces have different values of Gaussian curvature,
than one cannot be transformed into another without tearing or crumpling. To further motivate our
study, we list several corollaries of this fact.

• A sphere (with K > 0) and a plane (with K = 0) cannot be morphed one into another. Thus,
a piece of paper cannot be bent onto a sphere without crumpling.

• As opposed to the cylinder (with K = 0), the sphere (with K > 0) cannot be unfolded into a
flat surface. Thus, if one were to step on an empty egg shell, its edges have to split in expansion
before being flattened. An orange peel can be flattened just with tearing or stretching.
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As a consequence of previous observations, the
Earth cannot be displayed on a map without
distortion. Thus, no perfect map of Earth can
be created, even for a portion of the Earth’s
surface and every cartographic projection nec-
essarily distorts at least some distances. This
fact is of enormous significance for cartogra-
phy. Every distinct map projection distorts in
a distinct way. The study of map projections
is the characterization of these distortions. Mercator projection

A frequently used projection, Mercator projection, preserves angles but fails to preserve area
(that is why the areas around north and south pole look disproportionately large compared to
the areas further away from the poles).

Normal and Transverse Mercator projections

The controversy surrounding the Mercator projections arose from political implications of map
design since representing some countries larger than the others may implied that some are less
significant.

Another projection used in some cases is Gall-
Peters projection (you can see it in some world
maps on airplanes). On this projection areas
of equal size on the globe are also equally sized
on the map. This has a consequence that areas
around the equator looks elongated when com-
pared to areas with larger geographical width.

Gall-Peters projection

Mercator and Gall-Peters with their deformations

• When trying to preserve precious toppings on a slice of pizza, you are using Theorema Egregium
too: you bend a slice horizontally along a radius so that non-zero principal curvatures are
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created along the bend, dictating that the other principal curvature at these points must be
zero. This creates rigidity in the direction perpendicular to the fold and it prevents the toppings
from falling off.

• Theorema Egregium also implies that we can measure the curvature of the Earth without
leaving the surface (for example in an airplane to observe the curving) just measuring the
distances and angles on the surface of the Earth.

Practice Problems.

1. The mean curvature is defined as the mean of the principal curvatures H = κ1+κ2
2

. Determine
the absolute value of the mean curvature of the surfaces discussed in this section: plane, sphere
of radius a and cylinder x2 + y2 = a2.

2. Find the Gaussian curvature of the hyperbolic
paraboloid z = y2−x2 at the origin using that
the principal directions are the directions of
positive x and y axis.

3. Find the Gaussian curvature of ellipsoid x2

a2
+

y2

b2
+ z2

c2
= 1 at the end points of the three semi-

axes (±a, 0, 0), (0,±b, 0) and (0, 0,±c). Ellipsoid

4. A quadratic surface is any surface given by equation ax2 + by2 + cz2 + dxy + exz + fyz +
gx + hy + iz + j = 0. By making a suitable change of variables to eliminate some terms, any
quadratic surface can be put into a certain normal form. It turns out that there are 16 such
normal forms. Of these 16 forms, five are non-degenerate, and the remaining are degenerate
forms: cones (x

2

a2
+ y2

b2
− z2

c2
= 0), cylindrical surfaces (elliptic, hyperbolic and parabolic cylinder),

planes, lines, points or even no points at all. Using argument similar to those used to show
that the Gaussian curvature of a cylinder is 0, deduce that K of all the degenerate quadratic
surfaces is 0.

The five non-degenerate surfaces are: ellipsoid (x
2

a2
+ y2

b2
+ z2

c2
= 1), elliptical paraboloid (x

2

a2
+ y2

b2
=

z), hyperbolic paraboloid (x
2

a2
− y2

b2
= z), hyperboloid of one sheet (x

2

a2
+ y2

b2
− z2

c2
= 1) and

hyperboloid of two sheets (x
2

a2
+ y2

b2
− z2

c2
= −1).

Elliptical and hyperbolic paraboloids and hyperboloids of one and two sheets
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Determine the sign of Gaussian curvature for five non-degenerate quadratic surfaces.

5. A torus is a surface obtained by revolving one circle along the other circle creating a doughnut-
like shape. Consider revolving a circle (x−a)2+z2 = b2 in xz-plane along the circle x2+y2 = a2

in xy-plane.

Assume that a > b so that “the doughnut”
that you obtain really has a hole in the mid-
dle.

Calculate the Gaussian curvature at any point
on the “outer” circle (obtained by revolving
the point (a + b, 0, 0) about z-axis) and at
any point on the “inner” circle (obtained by
revolving the point (a− b, 0, 0) about z-axis.

Torus

Solutions. (1) H = 0+0
2

= 0 for any plane, |H| =
1
a
+ 1

a

2
= 1

a
for the sphere of radius a, and

|H| = 0+ 1
a

2
= 1

2a
for the cylinder x2 + y2 = a2.

(2) In section on curves, we computed the curvature of parabola y = x2 at x = 0 to be 2. In
a similar manner we can obtain the curvature of parabola y = −x2 to be 2 as well. The normal
sections of z = y2 − x2 are two parabolas in xz and yz planes. In xz plane, y = 0 and so z = −x2
and in yz plane x = 0 and z = y2 both with curvatures 2. The two normal vectors have the opposite
direction so the the two principal curvatures are 2 and -2. Thus, κ1 = 2, κ2 = −2 and K = −4.

(3) Let us calculate the curvature of ellipse x2

a2
+ y2

b2
= 1 at (a, 0) and (0, b) first. Here the curve

can be parametrized as γ = (a cos t, b sin t). Then γ ′ = (−a sin t, b cos t, 0), γ ′′ = (−a cos t,−b sin t, 0)

γ ′×γ ′′ = (0, 0, ab). Thus |γ′| =
√
a2 sin2 t+ b2 cos2 t and |γ ′×γ ′′| = ab and so κ = ab

(a2 sin2 t+b2 cos2 t)3/2
.

At (a, 0) the value of parameter t is 0 and at (0, b) the value of parameter t is π
2
. Thus κ(0) = ab

b3
= a

b2

and κ(π
2
) = ab

a3
= b

a2
.

At (±a, 0, 0), the normal sections are in xy and xz planes. In xy plane the normal section is

the ellipse x2

a2
+ y2

b2
= 1 with curvature a

b2
at (±a, 0). In xz plane the normal section is the ellipse

x2

a2
+ z2

c2
= 1 with curvature a

c2
at (±a, 0). The normal vectors have the same directions so the two

principal curvatures have the same signs. Thus the Gaussian is K = a2

b2c2
.

At (0,±b, 0), the normal sections are in xy and yz planes. In xy plane the normal section is

the ellipse x2

a2
+ y2

b2
= 1 with curvature b

a2
at (0,±b). In yz plane the normal section is the ellipse

y2

b2
+ z2

c2
= 1 with curvature b

c2
.

The normal vectors have the same directions
so the two principal curvatures have the same
signs. Thus the Gaussian is K = b2

a2c2
. On similar

manner, we obtain that the Gaussian curvature
at (0, 0,±c) is K = c2

a2b2
.

(4) K > 0 for ellipsoid. For elliptical

paraboloid of the form z = x2

a2
+ y2

b2
K > 0. K < 0

for hyperbolic paraboloid and for hyperboloid of
one sheet, K > 0 for hyperboloid of two sheets.

Hyperbolical Paraboloids
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(5) At point (a + b, 0, 0), the normal sections are in xy plane and xz plane. In xy plane, the
normal section is the circle of radius a + b so its curvature is 1

a+b
. In xz plane the normal section is

the circle of radius b so its curvature is 1
b
. The normal vectors have the same direction. Hence, the

Gaussian curvature is positive and equal to 1
b(a+b)

.

At point (a− b, 0, 0), the normal sections are in xy plane and xz plane as well. In xy plane, the
normal section is the circle of radius a − b with curvature 1

a−b . In xz plane the normal section is

the circle of radius b with curvature 1
b
. The normal vectors have the opposite direction. Hence, the

Gaussian curvature is negative and equal to −1
b(a−b) .

Using this example, we can deduce that on the outer part of the torus (obtained by revolving the
right half of circle (x − a)2 + z2 = b2 about z-axis) the Gaussian curvature is positive and on the
inner part of the torus (obtained by revolving the left half of circle (x− a)2 + z2 = b2 about z-axis)
the Gaussian curvature is negative. This implies the not so obvious fact that the Gaussian curvature
on the “top” and “bottom” circles (obtained by revolving points (a, 0, b) and (a, 0,−b) about z-axis)
is zero.
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