
Differential Geometry
Lia Vas

Measuring Lengths – The First Fundamental Form

Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is
given by parametric equations x = (x(u, v), y(u, v), z(u, v)) such that x, y, z are one-to-one continuous
functions with continuous inverses, continuous derivatives and such that ∂x

∂u
× ∂x

∂v
6= 0. We pointed

out that it may not be possible to describe the whole surface with a single coordinate patch but it
is always be possible to cover the entire surface by “patching” several different coordinate patches
together.

An additional condition that we have to ensure is that two patches must agree on the region on
which they overlap. This is guaranteed by a condition stating that if x = x(u, v) is one coordinate
patch defined on domain D and x̄ = (ū, v̄) is another defined on domain D̄, that then the composite
functions x−1 ◦ x̄ and x̄−1 ◦ x are one-to-one and onto continuous functions on the intersection of D
and D̄ with continuous derivatives. If this condition is satisfied, we say that the patches overlap
smoothly.

This leads us to a more formal definition of a
surface. We say that M is a surface if there is a
collection of coordinate patches such that:

1. The coordinate patches cover every point of
M and they overlap smoothly.

(2) Every two different points on M can be cov-
ered by two different patches.

Coordinate patch

(3) The collection of patches is maximal collection with conditions (1)–(3) (i.e. if a patch overlaps
smoothly with every patch in collection is itself in collection).

Let us consider the following examples now.
Examples. (1) Recall that the equation of a sphere of radius a in spherical coordinates is

x = (a cos θ cosφ, a sin θ cosφ, a sinφ). The angle θ corresponds to the geographical longitude and
takes values between π and −π.

The values of θ from [−π, 0] are usually consid-
ered as west and are referred to by their absolute
value. For example, the longitude of Philadelphia
75◦10′ west corresponds to θ = −75◦10′. The val-
ues of θ from [0, π] are considered to be east. The
angle φ corresponds to the geographical latitude
and takes values between −π

2
and π

2
. The values

of φ from [−π
2
, 0] are considered as south and are

referred to by their absolute value. The values of
φ from [0, π

2
] are considered to be north.

Spherical coordinates
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For example, the latitude of Philadelphia 39◦57′ north corresponds to φ = 39◦57′.
The length of ∂x

∂θ
× ∂x

∂φ
is computed to be a2| cosφ|. Thus, the cross product is not nonzero if

cosφ = 0. So at point at which φ = π
2

which is the north pole and at point at which φ = −π
2

which is
the south pole. At these two points the geographical longitude is not uniquely defined. Also, if we
consider the values of θ to be between −π and π, at the meridian at θ = π (the international date
line), the mapping is not one-to-one (reflected in the fact that the time on the international date line
is both tomorrow and today).

Because of this fact, the coordinate patch given by spherical coordinates is not sufficient to cover
the entire sphere. Thus, in addition to the given coordinate patch with −π < θ < π and −π

2
< φ < π

2
,

we may consider another patch given by 0 < θ < 2π. In this case, the 180◦-meridian is covered but
the map at Greenwich meridian is not one-to-one. Note that we would still have to add another
patches to cover the two poles.

(2) Consider the representation of sphere of radius a as x2 +y2 +z2 = a2. Solving for z, we obtain
two coordinate patches z = ±

√
a2 − x2 − y2. These maps represent proper coordinate patches just

over the interior of the circle x2 + y2 = a2 so they do not cover equator so we need more patches.
Solving for y, we obtain another two patches y = ±

√
a2 − x2 − z2 that cover the front and the back

of the sphere but do not cover the circle x2 + z2 = a2. Combining these four patches, we covered
everything but the intersections of two circles, the points (0, a, 0) and (0,−a, 0). Finally, to completely
cover the sphere, we can patch the two holes with x = ±

√
a2 − y2 − z2. Thus, we can cover the entire

sphere in six proper coordinate patches.

A curve on a surface x(u, v) is given by γ(t) = x(u(t), v(t)). Two important special cases are
the following.

• Taking v to be a constant v0, one obtains the curve γ1(u) = x(u, v0). This curve is called a
u-curve. The velocity vector ∂x

∂u
is in the tangent plane.

• Taking u to be a constant u0, one obtains the curve γ2(v) = x(u0, v). This curve is called a
v-curve. The velocity vectors ∂x

∂v
is in the tangent plane.

The condition ∂x
∂u
× ∂x

∂v
6= 0 guarantees that the vectors ∂x

∂u
and ∂x

∂v
are a basis of the tangent

plane.

Surfaces are often represented by by graphing a mesh determined by u and v curves. For example,
this is how graphs in Matlab are obtained.

Meridians and Parallels
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Examples.

1. On a sphere x = (a cos θ cosφ, a sin θ cosφ, a sinφ), the φ-curves are circles of constant longitude
meridians and the θ-curves are circles of constant latitude, parallels.

2. Helicoid. The surface parametrized by (r cos θ, r sin θ, aθ) has θ-curves helices spiraling about
cylinder of radius r0 and r-curves lines (r cos θ0, r sin θ0, aθ0) passing through z-axis in a plane
parallel to xy-plane. The surface resembles the spiral ramps like those found in garages.

3. Surfaces of revolution. A surface of rev-
olution of curve α = (r(t), z(t)) in yz-plane
(or, equivalently, xz-plane) about z-axis can
be given by (r(t) cos θ, r(t) sin θ, z(t)). The θ-
curves are circles of radii r(t0) in horizontal
planes passing z(t0). They are also called cir-
cles of latitude or parallels by analogy with
sphere. The t-curves have the same shape as
the curve α except that they line in vertical
planes at longitude θ0. They are called merid-
ians.

4. The class of surfaces generated by moving a line along some direction are called ruled surfaces
which we turn to in more details now.

Ruled surfaces can be described by the prop-
erty that through every point there is a line com-
pletely contained in the surface. This line is called
a ruling. If α(t) is a curve that cuts across all
the rulings and β(t) is the direction of ruling (you
can think that the surface is obtained by moving
vector β along the curve α), the surface can be
described by

x(t, s) = α(t) + sβ(t)

The s-curves are ruling lines α(t0) + sβ(t0).
In case that β is a constant vector, the t-curves
represent curve α translated in space. Hyperboloid as a ruled surface

Examples of ruled surfaces.

1. A plane can be considered to be a ruled surface letting α(t) be a line and β(t) be a constant
vector.

2. A cone is a ruled surface with α constant, say point P . The point P is called the vertex of
the cone. In case that β makes a constant angle with fixed line through P (called the axis) of
the cone), we obtain the right circular cone. For example, the cone z =

√
x2 + y2 can be

parametrized by taking α = (0, 0, 0) and β = (cos t, sin t, 1) and getting (s cos t, s sin t, s).
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3. A cylindrical surface is defined as a ruled
surface with β constant vector. If α is a cir-
cle, the cylindrical surface is said to be circu-
lar cylinder. If β is a vector perpendicular
to the plane of circle α the circular cylinder is
said to be right.

For example, the cylinder x2 + y2 = a2 can be
considered as a ruled surfaces with α being the
circle in xy-plane and β = (0, 0, 1).

4. The helicoid (r cos θ, r sin θ, aθ) can be considered to be a ruled surface by taking α = (0, 0, aθ)
and β = (cos θ, sin θ, 0).

5. Another example of a ruled surface is a Möbius strip (or Möbius band). A model can be
created by taking a paper strip and giving it a half-twist (180◦-twists), and then joining the
ends of the strip together to form a loop.

The Möbius strip has several curious properties: it is a surface with only one side and only
one boundary. To convince yourself of these facts, create your own Möbius strip and play with it
(or go to Wikipedia and study the images there).

Another interesting property is that if you cut
a Möbius strip along the center line, you will get
one long strip with two full twists in it, not two
separate strips. The resulting strip will have two
sides and two boundaries. So, cutting created a
second boundary. Continuing this construction
you can deduce that a strip with an odd-number
of half-twists will have only one surface and one
boundary while a strip with an even-number of
half-twists will have two surfaces and two bound-
aries.

Möbius strip

For more curious properties and alternative construction of Möbius strip, see Wikipedia.
A Möbius strip can be obtained as a ruled surface by considering α to be a unit-circle in xy-plane

(cos t, sin t, 0). Through each point of α pass a line segment of unit length with midpoint α(t) in
direction of β(t) = sin t

2
α(t) + cos t

2
(0, 0, 1). The ruled surface x(t, s) = α(t) + sβ(t) is a Möbius

strip.
There are many applications of Möbius strip in science, technology and everyday life. For example,

Möbius strips have been used as conveyor belts (that last longer because the entire surface area of the
belt gets the same amount of wear), fabric computer printer and typewriter ribbons. Medals often
have a neck ribbon configured as a Möbius strip that allows the ribbon to fit comfortably around
the neck while the medal lies flat on the chest. Examples of Möbius strip can be encountered: in
physics as compact resonators and as superconductors with high transition temperature; in chemistry
as molecular knots with special characteristics (e.g. chirality); in music theory as dyads and other
areas.
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The First Fundamental Form

The first fundamental form describes the way of measuring the distances on a surface. An appa-
ratus that enables one to measure the distances is called metric. This is why the first fundamental
form is often referred to as the metric form.

Since the basis of the tangent plane ∂x
∂u

and ∂x
∂v

will play a major role in the definition of the
metric form, we use the usual abbreviation and denote them by x1 and x2.

The condition x1 × x2 6= 0 guarantees that the tangent plane is not collapsed into a line or a
point i.e. that it is a two-dimensional plane. It also implies that the vectors x1 and x2 can be taken
to be a basis of the tangent plane.

In particular, this means that the velocity vector of every curve on the surface can be represented
via x1 and x2. Since the arc length of the curve can be found by integrating the length of the velocity
vector, such length will be computed by an integral involving x1 and x2. This leads to the
definition of the first fundamental form.

Let us start by considering the arc length of
a curve γ(t) = x(u(t), v(t)) on a surface x. The
velocity vector γ ′(t) is given by the chain rule
∂x
∂u

du
dt

+ ∂x
∂v

dv
dt

which, using our new abbreviation,
can be written as

γ ′(t) = x1
du

dt
+ x2

dv

dt
= u′x1 + v′x2.

Thus, the velocity vector is a linear combination
of the basis vectors x1 and x2 with coefficients u′

and v′.

The length on the curve is given by L =
∫ b
a
|γ ′(t)|dt. The square of length |γ ′(t)|2 is equal to the

dot product γ ′(t) · γ ′(t) = (u′x1 + v′x2) · (u′x1 + v′x2), thus

|γ ′(t)|2 = (u′)2 x1 · x1 + 2u′v′ x1 · x2 + (v′)2 x2 · x2.

Thus, the three dot products featured in this formula completely determine the arc length of any
curve on the surface. To further abbreviate the notation, the dot products are denotes as follows

g11 = x1 · x1, g12 = x1 · x2 = x2 · x1 = g21, g22 = x2 · x2

and are called the coefficients of the first fundamental form.
The traditional notation g11 = E, g12 = F, and g22 = G comes from Gauss. The more modern

notation g11, g12 = g21, and g22 is convenient for representing the relevant dot products as a matrix

[gij] =

[
g11 g12
g21 g22

]
.

Using this notation, |γ ′(t)|2 = g11(u
′)2 + 2g12u

′v′ + g22(v
′)2 so that the length of the curve γ on

the surface x is given by

L =

∫ b

a

|γ ′(t)|dt =

∫ b

a

(
g11(u

′)2 + 2g12u
′v′ + g22(v

′)2
)1/2

dt =

∫ b

a

(
g11 du

2 + 2g12 dudv + g22 dv
2
)1/2
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The expression under the root, g11 du
2 + 2g12 dudv + g22 dv

2 is called the first fundamental
form.

Examples.

1. The the xy-plane x = (x, y, 0) has the tangent plane equal to the plane itself. The basis vectors
are x1 = ∂x

∂x
= (1, 0, 0) and x2 = ∂x

∂y
= (0, 1, 0). Thus, the first fundamental form is g11 = 1,

g12 = 0 and g22 = 1. The matrix g is the identity matrix reflecting the fact that the metric on
xy-plane is the usual, standard metric. The arc length formula is the formula from Calculus 2
that computes the arc length of parametric curve (x(t), y(t)) as L =

∫ b
a

√
(x′)2 + (y′)2dt.

2. If a surface is given by the formula z = z(x, y), the basis vectors are x1 = (1, 0, z1) and x2 =
(0, 1, z2) where z1 and z2 denote the partial derivatives ∂z

∂x
and ∂z

∂y
. Thus, the first fundamental

form is g11 = 1 + z21 , g12 = z1z2 and g22 = 1 + z22 .

The nonzero vector x1 × x2 is perpendicular
to the tangent plane. Thus, the unit normal
vector of the tangent plane is given by

n = x1×x2

|x1×x2|

This vector should not be confused with the
normal vector N of a curve on a surface. In fact,
the vectors n and N may have different direction.

For example, let γ be a circle obtained by intersection of a sphere and a plane that does not contain
the center of the sphere. In this case, the radius of γ is less that the radius of the sphere and the
center of γ is different than the center of the sphere. If P is a point on γ then the direction of
n is determined by the line connecting P and the center of the sphere and the direction of N is
determined by the line connecting P and the center of γ.

Using Lagrange identity |x1 × x2|2 = (x1 · x1)(x2 · x2) − (x1 · x2)
2, we have that |x1 × x2|2 =

g11g22 − g212, the determinant of the matrix [gij]. The determinant g11g22 − g212 is usually denoted by
g. Thus,

|x1 × x2|2 = g and n =
x1 × x2√

g
.

The first fundamental form enables us to compute lengths and angles on a surface. Lengths

can be computed by the formula L =
∫ b
a

(g11 du
2 + 2g12 dudv + g22 dv

2)
1/2
. The angle between two

curves on a surface can be defined as the angle between the two corresponding tangent vectors in
the tangent plane. Recall that the angle α between two vectors v1 and v2 can be found from the
formula v1 · v2 = |v1||v2| cosα. Representing the vectors v1 and v2 via the basis vectors x1 and
x2 and expressing the dot product and the lengths via the coefficients gij we can obtain a formula
computing the angle α in terms of the coefficients gij.

When we say that a certain quantity can be measured intrinsically we mean that it can be
computed by measuring distances and angles on a surface without using any references to exterior
space or the particular embedding. In particular, if certain quantity can be expressed solely in terms
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of the coefficients of the first fundamental form, it is an intrinsic quantity. Thus, to show Theorema
Egregium, it is sufficient to show that the Gaussian curvature K can be computed solely using the
coefficients of the first fundamental form.

Besides enabling us to compute lengths and angles on a surface, the first fundamental form also
enables us to compute the surface areas. Note that the total area of region D on the surface can
be computed by adding up all the areas of “rectangular” regions (i.e. approximately parallelogram
shaped pieces on the surface) determined by the intersections of the u and v-curves.

Since the length of the cross product |x1×x2|
determines the area of parallelogram determined
by x1 and x2, the area of one such “rectangular”
region is given by

dS = |x1 × x2| dudv =
√
g dudv

The total surface area of the surface x(u, v)
over region S to be

Surface area =
∫ ∫

S
dS =

∫ ∫
S
|x1 × x2| dudv

Recall that this is the familiar formula from Calculus 3 that calculates the surface area of a
parametric surface.

Practice Problems.

1. Compute the first fundamental form, the determinant g of the matrix [gij] and the unit normal
vector for the following surfaces.

(a) Surface given by z = z(x, y).

(b) Sphere given by x = (a cos θ cosφ, a sin θ cosφ, a sinφ).

(c) Cylinder x2 + y2 = 1 (you can use parametrization x = (cos θ, sin θ, z)).

(d) Torus obtained by revolving a circle (x − a)2 + z2 = b2 in xz-plane along the circle
x2 + y2 = a2 in xy-plane. Since the first circle can be parametrized by x = a + b cosφ,
z = b sinφ and a surface of revolution of a curve x = f(u), z = g(u) in xz-plane about
z-axis is given by the parametric equations x = (f(u) cos θ, f(u) sin θ, g(u)), the torus can
be parametrized as

x = ((a+ b cosφ) cos θ, (a+ b cosφ) sin θ, b sinφ).

2. Find the formula computing the surface area of a surface given by z = z(x, y).

3. Find the area of the following surfaces.

(a) The part of the surface z = x + y2 that lies above the triangle with vertices (0,0), (1,1)
and (0,1).
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(b) The part of the surface z = y2 + x2 that lies between the cylinders x2 + y2 = 1 and
x2 + y2 = 4. Write down the parametric equations of the paraboloid and use them to find
the surface area.

(c) The part of the cone z =
√
x2 + y2 that lies between the cylinders x2 + y2 = 4 and

x2 + y2 = 9. Write down the parametric equations of the cone first. Then find the surface
area using the parametric equations.

(d) The surface area of the cylinder x2 + z2 = 4 for 0 ≤ y ≤ 5.

Solutions.

1. (a) We have found the basis vectors and the fundamental form to be x1 = (1, 0, z1), x2 =
(0, 1, z2) and g11 = 1 + z21 , g12 = z1z2 and g22 = 1 + z22 (see the example above) where z1 and z2
denote the partial derivatives ∂z

∂x
and ∂z

∂y
. The determinant g = (1+z21)(1+z22)−z21z22 = 1+z21 +

z22 + z21z
2
2 − z21z22 = 1 + z21 + z22 . The unit normal vector is given by n = 1√

1+z21+z
2
2

(−z1,−z2, 1).

(b) For the sphere, x1 = (−a sin θ cosφ, a cos θ cosφ, 0), x2 = (−a cos θ sinφ, −a sin θ sinφ,
a cosφ). So, g11 = a2 cos2 φ, g12 = 0, g22 = a2. Hence g = a4 cos2 φ. n = 1

a2 cosφ
(a2 cos θ cos2 φ,

a2 sin θ cos2 φ, a2 sinφ cosφ) = (cos θ cosφ, sin θ cosφ, sinφ) = 1
a
x.

(c) For the cylinder, x1 = (− sin θ, cos θ, 0), x2 = (0, 0, 1). Thus, g11 = 1, g12 = 0 and g22 = 1.
Hence g = 1 meaning that the lengths on the cylinder are the same as in a plane i.e. that
the geometry of the cylinder locally is indistinguishable from the geometry of a plane (so the
cylinder and a plane are locally isometric). The normal vector is n = (cos θ, sin θ, 0).

(d) For the torus, x1 = (−(a + b cosφ) sin θ, (a + b cosφ) cos θ, 0) and x2 = (−b sinφ cos θ,
−b sinφ sin θ, b cosφ). So, g11 = (a + b cosφ)2, g12 = 0, g22 = b2, g = b2(a + b cosφ)2, and
n = (cos θ cosφ, sin θ cosφ, sinφ).

2. Using problem 1, the surface are is computed by A =
∫ ∫

D

√
1 + z21 + z22dxdy which is the

familiar formula for surface area from Calculus 3.

3. (a) 1.4 (b) Parametrization: x = r cos t, y = r sin t, z = x2 + y2 = r2. The surface area is
30.85. (c) Parametrization: x = r cos t, y = r sin t, z =

√
x2 + y2 =

√
r2 = r. The length

of the cross product is
√

2r. The surface area is 5π
√

2. (d) Parametrization: x = 2 cos t,
y = y, z = 2 sin t. Bounds: 0 ≤ t ≤ 2π, 0 ≤ y ≤ 5. Length of the cross product is 2. Thus the
double integral is 2π · 5 · 2 = 20π.
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