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The Second Fundamental Form. Geodesics. The Curvature Tensor. The
Fundamental Theorem of Surfaces. Manifolds

The Second Fundamental Form.

Consider a surface x = x(u, v). Following the reasoning that x1 and x2 denote the derivatives ∂x
∂u

and ∂x
∂v

respectively, we denote the second derivatives

∂2x
∂u2

by x11,
∂2x
∂v∂u

by x12,
∂2x
∂u∂v

by x21, and ∂2x
∂v2

by x22.

Using this notation, the second derivative of a curve γ on the surface x (obtained by differentiating
γ ′(t) = u′x1 + v′x2 with respect to t) is given by

γ ′′ = u′′x1+u′(u′x11+v′x12)+v′′x2+v′(u′x21+v′x22) = u′′x1+v′′x2+u′2x11+u′v′x12+u′v′x21+v′2x22.

The terms u′′x1 + v′′x2 are in the tangent plane (so this is the tangential component of γ ′′).

The terms xij, i, j = 1, 2 can be represented
as a linear combination of tangential and normal
component. Each of the vectors xij can be repre-
sented as a combination of the tangent component
(which itself is a combination of vectors x1 and
x2) and the normal component (which is a multi-
ple of the unit normal vector n). Let Γ1

ij and Γ2
ij

denote the coefficients of the tangent component
and Lij denote the coefficient with n of vector xij.
Thus,

xij = Γ1
ijx1 + Γ2

ijx2 + Lijn =
∑

k Γkijxk + Lijn.

The formula above is called the Gauss formula.
The coefficients Γkij where i, j, k = 1, 2 are called Christoffel symbols and the coefficients Lij,

i, j = 1, 2 are called the coefficients of the second fundamental form.

Einstein notation and tensors. The term “Einstein notation” refers to the certain summation
convention that appears often in differential geometry and its many applications. Consider a formula
can be written in terms of a sum over an index that appears in subscript of one and superscript of
the other variable. For example, xij =

∑
k Γkijxk + Lijn. In cases like this the summation symbol is

omitted. Thus, the Gauss formula for xij in Einstein notation is written simply as

xij = Γkijxk + Lijn.
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The important benefit of the use of Ein-
stein notation can be seen when considering n-
dimensional manifolds – all the formulas we con-
sider for surfaces generalize to formulas for n-
dimensional manifolds. For example, the formula
xij = Γkijxk + Lijn remains true except that the
indices i, j take integer values ranging from 1 to
n not just values 1 and 2.

If we consider the scalar components in certain
formulas as arrays of scalar functions, we arrive
to the concept of a

tensor.

For example, a 2 × 2 matrix with entries gij is considered to be a tensor of rank 2. This matrix is
referred to as the metric tensor. The scalar functions Γkij are considered to be the components
of a tensor Γ of rank 3 (or type (2,1)). The Einstein notation is crucial for simplification of some
complicated tensors.

Another good example of the use of Einstein notation is the matrix multiplication (students who
did not take Linear Algebra can skip this example and the next several paragraphs that relate to
matrices). If A is an n×m matrix and v is a m× 1 (column) vector, the product Av will be a n× 1
column vector. If we denote the elements of A by aij where i = 1, . . . , n, j = 1, . . . ,m and xj denote
the entries of vector x, then the entries of the product Ax are given by the sum

∑
j a

i
jx
j that can be

denoted by aijx
j using Einstein notation.

Note also that the entries of a column vector are denoted with indices in superscript and the
entries of row vectors with indices in subscript. This convention agrees with the fact that the entries
of the column vector aijx

j depend just on the superscript i.

Another useful and frequently considered tensor is the Kronecker delta symbol. Recall that the
identity matrix I is a matrix with the ij-th entry 1 if i = j and 0 otherwise. Denote these entries by
δij. Thus,

δij =

{
1 i = j
0 i 6= j

In this notation, the equation Ix = x can be written as δijx
j = xi.

Recall that the inverse of a matrix A is the matrix A−1 with the property that the products AA−1

and A−1A are both equal to the identity matrix I. If aij denote the elements of the matrix A, aij

denote the elements of the inverse matrix Aij, the ij-th element of the product A−1A in Einstein
notation is given by aikakj. Thus aikakj = δij.

In particular, let gij denote the entries of the inverse matrix of [gij] whose entries are the coeffi-
cients of the first fundamental form. The fact that the matrix and its inverse multiply to the identity
gives us the following formulas (all given in Einstein notation).

gikg
kj = δji and gikgkj = δij.

The coefficients gij of the inverse matrix are given by the formulas

g11 =
g22

g
, g12 =

−g12

g
, and g22 =

g11

g
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where g is the determinant of the matrix [gij].

Computing the second fundamental form and the Christoffel symbols. The formula
computing the Christoffel symbols can be obtained by multiplying the equation xij = Γkijxk + Lijn
by xl where k = 1, 2. Since n · xl = 0, and xk · xl = gkl, we obtain that

xij · xl = Γkijgkl

To solve for Γkij, we have to get rid of the terms gkl from the left side. This can be done by using
the inverse matrix gls.

(xij · xl)gls = Γkijgklg
ls = Γkijδ

s
k = Γsij

Thus, we obtain that the Christoffel symbols can be computed by the formula

Γkij = (xij · xl)glk.

To compute the coefficients of the second fundamental form, multiply the equation xij = Γkijxk +
Lijn by n. Since xl · n = 0, we have that xij · n = Lijn · n = Lij. Thus,

Lij = xij · n = xij · x1×x2

|x1×x2| .

The second fundamental form. Recall that we obtained the formula for the second derivative
γ ′′ to be

γ ′′ = u′′x1 + v′′x2 + u′2x11 + u′v′x12 + u′v′x21 + v′2x22.

To be able to use Einstein notation, let us denote u by u1 and v by u2. Thus the part u′′x1 + v′′x2

can be written as (ui)′′xi and the part u′v′x12 + u′v′x21 + v′2x22 as (ui)′(uj)′xij. This gives us the
short version of the formula above

γ ′′ = (ui)′′xi + (ui)′(uj)′xij.

Substituting the Gauss formula xij = Γkijxk +
Lijn in the formula, we obtain that

γ ′′ = (ui)′′xi + (ui)′(uj)′(Γkijxk + Lijn) =

((uk)′′ + Γkij(u
i)′(uj)′)xk + (ui)′(uj)′Lijn.

The part ((uk)′′ + Γkij(u
i)′(uj)′)xk is the tan-

gential component and it is in the tangent
plane. The part (ui)′(uj)′Lijn is the normal
component and it is orthogonal to the tangent
plane.

The coefficients (ui)′(uj)′Lij of the normal component are the second fundamental form. While
the first fundamental form determines the intrinsic geometry of the surface, the second fundamental
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form reflects the way how the surface embeds in the surrounding space and how it curves relative to
that space. Thus, the second fundamental form reflects the extrinsic geometry of the surface.

Practice Problems. Find the coefficients of the second fundamental form for the following
surfaces.

1. z = f(x, y)

2. Sphere of radius a parametrized by geographic coordinates.

3. Cylinder of radius a. (you can use parametrization (a cos t, a sin t, z)).

Solutions.

1. Use x, y as parameters and shorten the notation by using z1 for zx, z2 for zy, and z11 = zxx,
z12 = z21 = zxy and z22 = zyy. We have x1 = (1, 0, z1) and x2 = (0, 1, z1). g11 = 1+z2

1 , g12 = z1z2

and g22 = 1 + z2
2 . Thus, g = 1 + z2

1 + z2
2 , and n = 1√

g
(−z1,−z2, 1). Also, x11 = (0, 0, z11),

x12 = (0, 0, z12), x22 = (0, 0, z22). Then calculate that Lij =
zij√
g
.

2. Compute that L11 = −a cos2 φ, L12 = 0 and L22 = −a.

3. x1 = (−a sin t, a cos t, 0), x2 = (0, 0, 1). Thus, g11 = a2, g12 = 0 and g22 = 1. Hence g = a2,
n = (cos t, sin t, 0), x11 = (−a cos t,−a sin t, 0) and x12 = x22 = 0. Thus, L11 = −a, and
L12 = L22 = 0.

Normal and Geodesic curvature. Geodesics

The curvature of a curve γ on a surface is im-
pacted by two factors.

1. External curvature of the surface. If a
surface itself is curved relative to the sur-
rounding space in which it embeds, then a
curve on this surface will be forced to bend
as well. The level of this bending is mea-
sured by the normal curvature κn.

Example with κn 6= 0, κg = 0

For example, the curving of any curve in a
normal section of a surface comes just from
curving of the surface itself.

2. Curvature of the curve relative to the
surface. Consider a curve “meandering” in
a plane. The curvature of this curve comes
only from the “meandering, not from any
exterior curving of the plane since the plane
is flat. This level of bending is measured by
the geodesic curvature κg. Example with κn = 0, κg 6= 0
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In this case, a meandering curve in a plane has the normal curvature κn equal to zero and the
geodesic curvature κg nonzero.

We now examine more closely meaning and computation of the two curvatures. Consider a curve
γ on a surface and assume that it is parametrized by the arc length. In this case, the length of the
second derivative computes the curvature κ = |γ ′′|.

Recall that the vector γ ′′ can be decomposed
into the sum of the tangential and the normal
component γ ′′ = γ ′′tan + γ ′′nor =
((uk)′′ + Γkij(u

i)′(uj)′)xk + (ui)′(uj)′Lijn.
Up to the sign, the length of the tangential

component γ ′′tan determines the geodesic curva-
ture κg and the length of the normal component
γ ′′nor determines the normal curvature κn. Dot-
ting the last formula by n produces the formula
which calculates κn.

κn = γ ′′ · n = (ui)′(uj)′Lij.

A formula for computing κg can be obtained
by expressing γ ′′tan in terms of different basis of the
tangent plane, not x1 and x2. To do this, start by
noting that γ ′′nor ·γ ′ = 0 since γ ′ is in the tangent
plane. Also, γ ′′ · γ ′ = 0 since γ ′ is a vector of
constant length. Note that here we are using the
same argument we have utilized multiple times
in the course, in particular in section on curves.
Thus

0 = γ ′′ · γ ′ = (γ ′′tan + γ ′′nor) · γ ′ = γ ′′tan · γ ′ + γ ′′nor · γ ′ = γ ′′tan · γ ′ + 0 = γ ′′tan · γ ′.

So, γ ′′tan is orthogonal to γ ′ as well. Thus, γ ′′tan is orthogonal to both γ ′ and n and thus it is colinear
with n× γ ′. The geodesic curvature κg is the proportionality constant

γ ′′tan = κg(n× γ ′)

Thus, the length |γ ′′tan| is ±κg. Dotting the above identity by n×γ ′, we obtain (n×γ ′) ·γ ′′tan = κg.
But since n× γ ′ is perpendicular to γ ′′nor, the mixed product (n× γ ′) · γ ′′tan is equal to (n× γ ′) · γ ′′.
Thus κg = (n× γ ′) · γ ′′ or, using the bracket notation

κg = (n× γ ′) · γ ′′ = [n,γ ′,γ ′′] = [n,T,T′].

The curvatures κ = |γ ′′|, κg = ±|γ ′′tan|, and
κn = ±|γ ′′nor| are related by the formula

κ2 = κ2
g + κ2

n

which can be seen from the figure on the right.

5



Geodesics. A curve γ on a surface is said to be a geodesic if κg = 0 at every point of γ.
The following conditions are equivalent.

1. γ is a geodesic. 2. [n,T,T′] = 0.
3. γ ′′tan = 0 at every point of γ. 4. γ ′′ = γ ′′nor at every point of γ.
5. (uk)′′ + Γkij(u

i)′(uj)′ = 0 for k = 1, 2. 6. κ = ±κn at every point of γ.
7. N is colinear with n (i.e. N = ±n).

The conditions 1 and 2 are equivalent since κg = [n,T,T′]. The conditions 3 and 4 are clearly
equivalent. The conditions 3 and 5 are equivalent since γ ′′tan = ((uk)′′+Γkij(u

i)′(uj)′)xk. The conditions
1 and 3 are equivalent since γ ′′tan = 0⇔ κg = |γ ′′tan| = 0.

To see that the conditions 1 and 6 are equivalent, recall the formula κ2
n = κ2

g +κ2
n. Thus, if κg = 0

then κ2 = κ2
n ⇒ κ = ±κn. Conversely, if κ = ±κn, then κ2 = κ2

n ⇒ κ2
g = 0⇒ κg = 0.

Finally, to show that 1 and 7 are equivalent, recall that γ ′′ = T′ = κN if γ is parametrized by arc
length. Assuming that γ is a geodesic, we have that γ ′′ = γ ′′nor = κnn. Thus, κN = κnn and so the
vectors N and n are colinear, in particular N = ±n since they both have unit length. Conversely,
if N and n are colinear, then γ ′′ (always colinear with N if unit-length parametrization is used) is
colinear with n as well. So γ ′′ = γnor and so condition 4 holds. Since we showed that 1 and 4 are
equivalent, 1 holds as well. This concludes the proof that all seven conditions are equivalent.

Examples.

1. If γ is the normal section in the direction of
a vector v in the tangent plane (intersection
of the surface with a plane orthogonal to the
tangent plane), then the normal vector N has
the same direction as the unit normal vector n
and so N = ±n (the sign is positive if the ac-
celeration vector has the same direction as n).
So, every normal section is a geodesic.

2. A great circle on a sphere is the normal section and so, it is a geodesic. Having two points
on a sphere which are not antipodal (i.e. exactly opposite to one another with respect to the
center), there is a great circle on which the two points lie. Thus, the “straightest possible”
curve on a sphere that connects any two points is a great circle.

Thus, κg of a great circle is 0 and its curva-
ture κ comes just from the normal curvature
κn (equal to 1

a
if the radius is a).

Any circle on a sphere which is not “great” (i.e.
whose center does not coincide with a center of
the sphere and the radius is smaller than a) is
not a geodesic. Any such “non-great“ circle is
an example of a curve on a surface whose nor-
mal vector N is not colinear with the normal
vector of the sphere n.

Just great circles are geodesics
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Condition (uk)′′+ Γkij(u
i)′(uj)′ = 0 for k = 1, 2 (condition in the list on the previous page) can be

seen as the set of differential equations (system of two differential equations of second order) whose
solutions compute geodesics on a surface. Note that the differential equations depend just on the
Christoffel symbols. These differential equations provide a tool for explicitly obtaining the formulas
of geodesics on a surface. This tool is frequently used in everyday life, for example when determining
the shortest flight route for an airplane.

Consider, for example, air traffic routes from Philadelphia to London, Moscow and Hong Kong
represented below. Each city being further from Philadelphia the previous one, makes the geodesic

distance appear more curved when represented
on the flat plane. Still, all three routes are de-
termined as geodesics – as intersections of great
circles on Earth which contain Philadelphia and
the destination city.

Philadelphia to London

Philadelphia to Moscow Philadelphia to Hong Kong

Philadelphia to Moscow
via geodesic and
non-geodesics routes

Since a geodesic curves solely because of curving of the surface, a geodesic has the role of a
straight line on a surface. Moreover, geodesics have the following properties of straight lines.

1. If a curve γ(s) for a ≤ s ≤ b is the shortest route on the surface that connects the points γ(a)
and γ(b), then γ is a geodesic. This claim can be shown by computing the derivative of the
arc length and setting it equal to zero. From this equation, the condition (5) follows and so γ
is geodesic.
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Note that the converse does not have to hold – if a curve is geodesic, it may not give the
shortest route between its two points. For example, a north pole and any other point on a
sphere but the south pole, determine two geodesics connecting them, just one of which will be
the shortest route.

2. Every point P on a surface and a vector v in the tangent plane uniquely determine a geodesic
γ with γ(0) = P and γ ′(0) = v.

As opposed to the straight lines, a geodesic connecting two points does not have to exist. For
example, consider the xy-plane without the origin. Then there is no geodesic connecting (1,0)
and (-1,0). Also, there can be infinitely many geodesics connecting two given points on a
surface (for example, take north and south poles on a sphere).

Two points do not determine a “line” There are many “lines” passing two points

Next, we show that the geodesic curvature can be computed intrinsically. Start by differentiating
the equation gij = xi · xj with respect to uk. Get

∂gij
∂uk

= xik · xj + xi · xjk

In similar manner, we obtain

∂gik
∂uj

= xij · xk + xi · xkj and
∂gjk
∂ui

= xji · xk + xj · xki

Note that the second equation can be obtained from the first by permuting the indices j and k
and the third equation can be obtained from the second by permuting the indices i and j. This is
called cyclic permutation of indices.

At this point, we require the second partial derivatives to be continuous as well. This condition
will guarantee that the partial derivatives xij and xji are equal. In this case, adding the second and
third equation and subtracting the first gives us

∂gik
∂uj

+
∂gjk
∂ui
− ∂gij
∂uk

= xij · xk + xi · xkj + xji · xk + xj · xki − xik · xj − xi · xjk = 2xij · xk

Thus,

Γkij = (xij · xl)glk = 1
2

(
∂gil
∂uj

+
∂gjl
∂ui
− ∂gij

∂ul

)
glk.
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This shows that the Christoffel symbols Γkij can be computed just in terms of the metric coefficients
gij that can be determined by measurements within the surface. This proves the following theorem.

Theorem. The geodesic curvature is intrinsic.

Examples.
(1) Geodesics in a plane. With an appropriate choice of coordinates we may assume that this is
the xy-plane, z = 0 thus x = (x, y, 0) (thus u = x and v = y). The coefficient of the first fundamental
form are g11 = g22 = 1 and g12 = 0. The Christoffel symbols vanish and thus the geodesics are given
by equations x′′ = 0 and y′′ = 0. These equations have solutions

x = as+ b and y = cs+ d

which represent parametric equations of a line. Hence, geodesics are straight lines.

(2) Geodesics on a cylinder. The cylinder x2+y2 = a2 can be parametrized as x = (a cos t, a sin t, z)
so that u = t and v = z. We have that x1 = (−a sin t, a cos t, 0), x2 = (0, 0, 1), g11 = a2, g12 = 0 = g12

and g22 = 1 = g22. Hence g = a2 and g11 = 1
a2

n = (cos t, sin t, 0), x11 = (−a cos t,−a sin t, 0) and
x12 = x22 = 0. Thus Γk12 = Γk21 = Γk22 = 0 and Γk11 can also be computed to be 0. Thus, the equation
of a geodesic is given by t′′ = 0 and z′′ = 0. These equations have solutions t = as+ b and z = cs+ d
which are parametric equations of a line in tz-plane. This shows that a curve on a cylinder is geodesic
if and only if it is a straight line in zt-plane.

In particular, both meridians and parallels are geodesics. The meridians are z-curves (parame-
trized by unit-length since x2 = (0, 0, 1) has unit length). Since t = t0 is a constant on a z-curve,
t′ = t′′ = 0 so the first equation holds. The second holds since z′ = dz

dz
= 1 and so z′′ = 0. Hence,

both geodesic equations hold.
The parallels (or circles of latitude), are t-curves with z = z0 a constant. They are parametrized

by unit length for t = s
a
. Thus, t′ = 1

a
and t′′ = 0 and z′ = z′′ = 0 so both geodesic equations hold.

Another way to see that the circles of latitude γ = (a cos t, a sin t, z0) = (a cos s
a
, a sin s

a
, z0) are

geodesics is to compute the second derivative (colinear with N) and to note that it is a multiple
of n (thus condition (4) holds). The first derivative is γ ′ = (− sin s

a
, cos s

a
, 0) and the second is

γ ′′ = (− 1
a

cos s
a
,− 1

a
sin s

a
, 0). The second derivative is a multiple of n = (cos s

a
, sin s

a
, 0) (γ ′′ = −1

a
n)

and so γ is a geodesic.

(3) Meridians of a cone are geodesics. Consider the cone obtained by revolving the line (3
5
s, 4

5
s)

about z-axis so that the parametrization of the cone is x = 1
5
(3s cos θ, 3s sin θ, 4s). In this parametriza-

tion, the meridians are s-curves and parallels are θ-curves. Let us show that the meridians are
geodesics.

Note that the meridians have the unit-speed parametrization since x1 = 1
5
(3 cos θ, 3 sin θ, 4) and

g11 = |x1|2 = 1. x2 = 1
5
(−3s sin θ, 3s cos θ, 0) so that g12 = 0 and g22 = 9

25
s2. In addition x11 =

(0, 0, 0), x12 = 1
5
(−3 sin θ, 3 cos θ, 0) and x22 = 1

5
(−3s cos θ,−3s sin θ, 0). The inverse matrix of [gij] is[

1 0
0 25

9s2

]
. The Christoffel symbols can be computed as Γkij = (xij · xl)glk. Thus, Γ1

11 = 0, Γ2
11 = 0,

Γ1
12 = Γ1

21 = 0, Γ2
12 = Γ2

21 = 1
s
, Γ1

22 = − 9
25
s, Γ2

22 = 0. Thus, the two equations of geodesics are
s′′ − 9

25
s(θ′)2 = 0 and θ′′ + 2

s
s′θ′ = 0 for a curve γ on the cone for which s and θ depend on a

parameter t. These two equations represent the conditions for γ to be a geodesic.
The meridians are s-curves. Thus θ is constant so θ′ = θ′′ = 0 and s′ = 1, s′′ = 0. So, both

geodesic equations hold. This gives us that meridians on the cone are geodesics.
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The Gauss Curvature. The Curvature Tensor. Theorema Egregium

Recall that the formula for the normal curvature is given by κn = Lij(u
i)′(uj)′. If the curve γ is

not given by arc length parametrization, this formula becomes κn =
Lij(ui)′(uj)′

|γ′|2 . Recall the formula

for |γ ′|2 from earlier section

|γ ′(t)|2 = g11((u1)′)2 + 2g12(u1)′(u2)′ + g22((u2)′)2 in Einstein notation = gij(u
i)′(uj)′

Thus, the normal curvature can be computed as

κn =
Lij(u

i)′(uj)′

gkl(uk)′(ul)′

Differentiating this equation with respect to (ur)′ for r = 1, 2, and setting derivatives to zero in
order to get conditions for extreme values, we can obtain the conditions that (Lij − κngij)(uj)′ = 0
for i = 1, 2. A nonzero vector ((u1)′, (u2)′) can be a solution of these equations just if the determinant
of the system |Lij − κngij| is zero.

This determinant is equal to (L11 − κng11)(L22 − κng22) − (L12 − κng12)2. Substituting that de-
terminant of [gij] is g and denoting the determinant of [Lij] by L, we obtain the following quadratic
equation in κn

gκ2
n − (L11g22 + L22g11 − 2L12g12)κn + L = 0

The solutions of this quadratic equation are the principal curvatures κ1 and κ2. The Gauss
curvature K is equal to the product κ1κ2 and from the above quadratic equation this product is
equal to the quotient L

g
(recall that the product of the solutions x1, and x2 of a quadratic equation

ax2 + bx+ c is equal to c
a
). Thus,

K = L
g

that is the Gauss curvature is the quotient of the determinants of the coefficients of the
second and the first fundamental forms.

From the formula (Lij − κngij)(uj)′ = 0 it follows that if L12 = L21 = g12 = g21 = 0, then the
principal curvatures are given by L11

g11
and L22

g22
and the principal directions are x1 and x2. Conversely,

if directions x1 and x2 are principal, then L12 = L21 = g12 = g21 = 0. Using this observation, we can
conclude that the principal directions on a surface of revolution are determined by the meridian and
the circle of latitude through every point.

Note that from the equation (Lij − κngij)(uj)′ = 0 also follows that the principal curvatures are
the eigenvalues of the operator determined by the first and the second fundamental form that can
be expressed as

S = g−1

[
L11g22 − L12g12 L12g22 − L22g12

L12g11 − L11g12 L22g11 − L12g12

]
.

and is called the shape operator.
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Examples.

1. We have computed the first and the second fundamental form of the sphere to be [gij] =[
a2 cos2 φ 0

0 a2

]
and [Lij] =

[
−a cos2 φ 0

0 −a

]
. Thus g = a4 cos2 φ and L = a2 cos2 φ. Hence

K =
a2 cos2 φ

a4 cos2 φ
=

1

a2
.

2. We have also computed the first and the second fundamental form of the surface z = f(x, y).

[gij] =

[
1 + z2

1 z1z2

z1z2 1 + z2
2

]
, g = 1 + z2

1 + z2
2 , and [Lij] = 1

g

[
z11 z12

z12 z22

]
. Thus

K =
z11z22 − z2

12

g2
=

z11z22 − z2
12

(1 + z2
1 + z2

2)2
.

Theorema Egregium. Recall that the informal statement of Theorema Egregium we presented
before is that the Gauss curvature can be calculated intrinsically. In this section we present this
result in the more formal way and prove it.

Recall the formula K = L
g
. Thus, to prove the “Remarkable Theorem”, we need to show that the

determinant of the second fundamental form L is a function of the coefficients of the first fundamental
form and their derivatives. The coefficient Lij of the second fundamental form can be viewed as
extrinsic because of the presence of the normal n in their definition. Theorema Egregium asserts
that although the coefficients Lij are extrinsic, their determinant L is intrinsic and can be computed
solely via the first fundamental form.

We begin by introducing the Riemann curvature tensor (or Riemann-Christoffel curvature tensor)
and showing three sets of equations known as Weingarten’s, Gauss’s and Codazzi-Mainardi equations.

The coefficients of the Riemann curvature tensor are defined via the Christoffel symbols
by

Rl
ijk =

∂Γlik
∂uj
−
∂Γlij
∂uk

+ ΓpikΓ
l
pj − ΓpijΓ

l
pk

The geometric meaning of this tensor is not visible from this formula. It is possible to interpret
this tensor geometrically, but the interpretation requires introduction of further concepts (covariant
derivatives). So, we can think of it just as an aide to prove Theorema Egregium.

Proposition.

Weingarten’s equations nj = −Lijgikxk

Gauss’s equations Rl
ijk = LikLjpg

pl − LijLkpgpl.

Codazzi-Mainardi equations
∂Lij

∂uk
− ∂Lik

∂uj
= ΓlikLlj − ΓlijLlk.

11



Proof. Let us prove Weingarten’s equations
first. Since n · n = 1, nj · n = 0 and so nj is
in tangent plane. Thus, it can be represented as
a linear combination of x1 and x2. Let alj denote
the coefficients of nj with xl. Thus nj = aljxl.

Differentiate the equation n · xi = 0 with re-
spect to uj and obtain nj · xi + n · xij = 0. Recall
that Lij = n · xij.

Thus, 0 = nj · xi + Lij = aljxl · xi + Lij = aljgli + Lij and so aljgli = −Lij. To solve for alj, multiply
both sides by gik and recall that glig

ik = δkl . Thus we have −Lijgik = aljglig
ik = aljδ

k
l = akj . This gives

us
nj = akjxk = −Lijgikxk.

To prove the remaining two sets of equations, let us start by Gauss formulas for the second
derivatives

xij = Γlijxl + Lijn

Differentiate with respect to uk and obtain

xijk =
∂Γl

ij

∂uk
xl + Γlijxlk +

∂Lij

∂uk
n + Lijnk

=
∂Γl

ij

∂uk
xl + Γlij(Γ

p
lkxp + Llkn) +

∂Lij

∂uk
n− LijLpkgplxl (sub Gauss and Wein. eqs)

=
∂Γl

ij

∂uk
xl + ΓlijΓ

p
lkxp − LijLpkgplxl + ΓlijLlkn +

∂Lij

∂uk
n (regroup the terms)

=
∂Γl

ij

∂uk
xl + ΓpijΓ

l
pkxl − LijLpkgplxl + ΓlijLlkn +

∂Lij

∂uk
n (make tangent comp via xl)

=
(
∂Γl

ij

∂uk
+ ΓpijΓ

l
pk − LijLpkgpl

)
xl +

(
ΓlijLlk +

∂Lij

∂uk

)
n (factor xl and n)

Interchanging j and k we obtain

xikj =

(
∂Γlik
∂uj

+ ΓpikΓ
l
pj − LikLpjgpl

)
xl +

(
ΓlikLlj +

∂Lik
∂uj

)
n

Since xijk = xikj, both the tangent and the normal components of xijk − xikj are zero. The
coefficient of the tangent component is

∂Γlij
∂uk

+ ΓpijΓ
l
pk − LijLpkgpl −

∂Γlik
∂uj
− ΓpikΓ

l
pj + LikLpjg

pl = LikLpjg
pl − LijLpkgpl −Rl

ijk = 0.

This proves the Gauss’s equations.
The coefficient of the normal component is

ΓlijLlk +
∂Lij
∂uk

− ΓlikLlj −
∂Lik
∂uj

= 0

proving Codazzi-Mainardi equations. QED.

We can now present the proof of Theorema Egregium.

12



Theorema Egregium. The Gaussian K is dependent solely on the coefficient of the first
fundamental form and their derivatives by

K =
g1iR

i
212

g
.

Proof. Multiplying Gauss’s equation Rl
ijk = LikLjpg

pl − LijLkpgpl by glm, we obtain Rl
ijkglm =

LikLjpg
plglm − LijLkpg

plglm = (LikLjp − LijLkp)δ
p
m = LikLjm − LijLkm. Taking i = k = 2, and

j = m = 1, we obtain L = L22L11 − L21L21 = Rl
212gl1.

From here we have that K = L
g

= L11L22−L12L21

g
=

Rl
212gl1
g

. QED.

The curvature tensor Rl
ijk plays the key role when generalizing the results of this section to higher

dimensions. This tensor can be viewed as a mapping of three vectors of the tangent space onto the
tangent space itself given by

R(X, Y )Z 7→ Rl
ijkX

jY kZixl

This formula relates to the curvature since K = (R(x2,x1)x1)·x2

|x2×x1|2 . The tensor R measures the curva-
ture on the following way. Note that when a vector in space is parallel transported around a loop in a
plane, it will always return to its original position. The Riemann curvature tensor directly measures
the failure of this on a general surface. This failure is known as the holonomy of the surface.

The connection between the areas and angles on a surface (thus the coefficients gij) and its
Gaussian curvature can be seen in the following. The surface integral of the Gaussian curvature over
some region of a surface is called the total curvature.

The total curvature of a geodesic triangle equals the deviation of the sum of its angles from 180
degrees. In particular,

• On a surface of total curvature zero, (such as a plane for example), the sum of the angles of a
triangle is precisely 180 degrees.

• On a surface of positive curvature, the sum of angles of a triangle exceeds 180 degrees. For
example, consider a triangle formed by the equator and two meridians on a sphere. Any
meridian intersects the equator by 90 degrees. However, if the angle between the two meridians
is θ > 0, then the sum of the angles in the triangle is 180 + θ degrees. In the figure on the
right, the angles add to 270 degrees.

• On a surface of negative curvature, the sum of the angles of a triangle is less than 180 degrees.

K = 0⇒
∑

angles = 180, K > 0⇒
∑

angles > 180, K < 0⇒
∑

angles < 180

13



The curvature impact also the number of lines passing a given point, parallel to a given line.
Surfaces for which this number is not equal to one are models of non-Euclidean geometries.

Recall that the parallel postulate in Eu-
clidean geometry is stating that in a plane
there is exactly one line passing a given point that
does not intersect a given line, i.e. there is ex-
actly one line parallel to a given line passing a
given point.

In elliptic geometry the parallel postulate is replaced by the statement that there is no line
through a given point parallel to a given line. In other words, all lines intersect.

In hyperbolic geometry the parallel postulate is replaced by the statement that there are at
least two distinct lines through a given point that do not intersect a given line. As a consequence,
there are infinitely many lines parallel to a given line passing a given point.

We present the projective plane which is a model of elliptic geometry and Poincaré half plane
and disc which are models of hyperbolic geometry.

The projective plane RP 2 is defined as the
image of the map that identifies antipodal points
of the sphere S2. More generally, n-projective
plane RP n is defined as the image of the map that
identifies antipodal points of the n-sphere Sn.

While there are lines which do not intersect
(i.e. parallel lines) in a regular plane, every two
“lines” (great circles on the sphere with antipodal
points identified) in the projective plane intersect

in one and only one point. This is because every pair of great circles intersect in exactly two points
antipodal to each other. After the identification, the two antipodal points become a single point and
hence every two “lines” of the projective plane intersect in a single point. The standard metric on
the sphere gives rise to the metric on the projective plane. In this metric, the curvature K is positive.

14



The projective plane can also be represented
as the set of lines in R3 passing the origin. The
distance between two such elements of the pro-
jective plane is the angle between the two lines
in R3. The “lines” in the projective planes are
the planes in R3 that pass the origin. Every two
such “lines” intersect at a point (since every two
planes in R3 that contain the origin intersect in a
line passing the origin).

All lines intersect

Poincaré half-plane. Consider the upper half y > 0 of the plane R2 with metric given by the

first fundamental form

[ 1
y2

0

0 1
y2

]
. In this metric, the geodesic (i.e. the “lines”) are circles with

centers on x-axis and half-lines that are perpendicular to x-axis.

Given one such line and a point, there is more than one line passing the point that does not
intersect the given line. In the given metric, the Gaussian curvature is negative.

Poincaré disc. Consider the disc x2 +y2 < 1
in R2 with metric given by the first fundamen-

tal form

[
1

(1−x2−y2)2
0

0 1
(1−x2−y2)2

]
. In this met-

ric, the geodesic (i.e. the “lines”) are diameters
of the disc and the circular arcs that intersect the
boundary orthogonally. Given one such “line”
and a point in the disc, there is more than one
line passing the point that does not intersect the
given line. In the given metric, K is negative.
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Fundamental Theorem of Surfaces

The coefficients of curvature tensor Rl
ijk are defined via the Christoffel symbols Γkij and the

Christoffel symbols can be computed via the first fundamental form using the formula

Γkij =
1

2

(
∂gil
∂uj

+
∂gjl
∂ui
− ∂gij
∂ul

)
glk.

Thus, both the coefficients of the curvature tensor and the Christoffel symbols are completely
determined by the first fundamental form. In light of this fact, Gauss’s and Codazzi-Mainardi
equations can be viewed as equations connecting the coefficients of the first fundamental form gij
with the coefficients of the second fundamental form Lij.

The Fundamental Theorem of Surfaces states that a surface is uniquely determined by the
coefficients of the first and the second fundamental form. More specifically, if gij and Lij
are symmetric functions (i.e. gij = gji and Lij = Lji) such that g11 > 0 and g > 0, and such that
both Gauss’s and Codazzi-Mainardi equations hold, there is a coordinate patch x such that gij and
Lij are coefficients of the first and the second fundamental form respectively. The patch x is unique
up to a rigid motion (i.e. rotations and translations in space).

The idea of the proof of this theorem is similar to the proof of the Fundamental Theorem of
Curves. Namely, note that the vectors x1 and x2 in tangent plane are independent by assumption
that the patch is proper. Moreover, the vector n is independent of x1 and x2 since it is not in
the tangent plane. Thus the three vectors x1,x2 and n represent a “moving frame” of the surface
analogous to the moving frame T,N and B of a curve.

Gauss formula and Weingarten’s equations represent (partial) differential equations relating the
derivatives of x1,x2 and n in terms of the three vectors themselves

Gauss formula xij = Γkijxk + Lijn.

Weingarten’s equations nj = −Lijgikxk

As opposed to a system of ordinary differential equations, there is no theorem that guarantees an
existence and uniqueness of a solution of a system of partial differential equations. However, in case
of the equations for x1,x2 and n, the existence and uniqueness of solution follows from the fact that
both Gauss’s and Codazzi-Mainardi equations hold. Thus, the apparatus x1,x2, n, gij, Lij describes
a surface.
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Examples. It can be shown that a surface of revolution obtained by revolving the unit speed
curve (r(s), z(s)) about z-axis, has Gaussian curvature K equal to −r

′′

r
. If K is constant, this yields a

differential equation r′′+Kr = 0 that can be solved for r. Then z can be obtained from the condition
that z′2 + r′2 = 1 i.e. from z = ±

∫ s
0

√
1− r′2ds. Thus, all the surfaces of revolution of constant

curvature can be characterized on this way. We distinguish three cases:

• K = a2 > 0⇒ r′′ + a2r = 0⇒ r(s) = c1 cos as+ c2 sin as = A cos as. Sphere and outer part of
the torus are in this group of surfaces.

• K = 0 ⇒ r′′ = 0 ⇒ r(s) = c1s + c2. Part of
the plane, circular cylinder and circular cone
are in this group.

• K = −a2 < 0 ⇒ r′′ − a2r = 0 ⇒
r(s) = c1 cosh as + c2 sinh as. Pseudo-sphere
(see graph) and the inner part of the torus are
in this group of surfaces.

Manifolds

A surface embedded in the 3-dimensional space R3 on a small enough scale resembles the 2-
dimensional space R2. In particular, the inverse of a coordinate patch of a surface can be viewed as
a mapping of a region on the surface to R2. This inverse is called an atlas or a chart.

Generalizing this idea to n-dimensions, we arrive to concept of a n-dimensional manifold or
n-manifolds for short. Intuitively, an n-manifold locally looks like the space Rn – the neighborhood
of every point on the manifold can be embedded in the space Rn. The inverse of a coordinate patch
of an n-manifold is a mapping of a region on the manifold to Rn.

The coordinate patches are required to overlap smoothly on the intersection of their domains.
The coordinate patches provide local coordinates on the n-manifold.

Making this informal definition rigorous, the concept of n-dimensional manifold is obtained.
Considering manifolds instead of just surfaces has the following advantages:

1. Surfaces are 2-manifolds so this more general study of n-manifolds agrees with that of surfaces
for n = 2.

2. A study of surfaces should not depend on a specific embedding in 3-dimensional space R3. The
study of n-manifolds can be carried out without assuming the embedding into the space Rn+1.

3. All the formulas involving indices ranging from 1 to 2 that we obtained for surfaces remain
true for n-dimensional manifolds if we let the indices range from 1 to n.

When developing theory of manifolds one must be careful to develop all the concepts intrinsically
and without any reference to extrinsic concepts. This underlines the relevance of Theorema Egregium
in particular.

When considering manifolds for n > 2, one could make the following comment regarding the
level of abstraction: is an n-manifold relevant for n > 2? Although the higher dimensional manifolds
may not be embedded in three dimensional space, the theory of n-manifolds is used in high energy
physics, quantum mechanics and relativity theory and, as such, is relevant. The Einstein space-time
manifold, for example, has dimension four.
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Coordinate Patches. Recall that a proper
coordinate patch of a surface is given by paramet-
ric equations x = (x(u, v), y(u, v), z(u, v)) such
that x, y, z are one-to-one continuous functions
with continuous inverses, continuous derivatives
and such that ∂x

∂u
× ∂x

∂v
6= 0. It may not be possi-

ble to describe the whole surface with a

single coordinate patch but it is always be possible to cover the entire surface by “patching” several
different coordinate patches together. Coordinate patches overlap smoothly provided that the fol-
lowing holds: if x = x(u, v) is one coordinate patch defined on domain D and x̄ = x̄(ū, v̄) is another
defined on domain D̄, then the composite functions x−1 ◦ x̄ and x̄−1 ◦ x are one-to-one and onto
continuous functions on the intersection of D and D̄ with continuous derivatives.

We define coordinate patches on n-manifold
analogously: a coordinate patch of an non empty
set of points M is a one-to-one mapping from
an open region D in Rn into M given by
x(u1, u2, . . . , un). The n-tuple (u1, u2, . . . , un) rep-
resents the local coordinates on M . Two coor-
dinate patches overlap smoothly provided that
the following holds:

if x is one coordinate patch defined on domain D and x̄ is another defined on domain D̄, then
the composite functions x−1 ◦ x̄ and x̄−1 ◦ x are one-to-one and onto continuous functions on the
intersection of D and D̄ with continuous derivatives up to order at least three. For validity of
the formulas involving the second fundamental form and equations from previous section, we may
need the partial derivatives up to the third order to be continuous. If derivatives of any order are
continuous, such function is said to be smooth.

We say that M is an n-manifold if there is a collection of coordinate patches such that:

1. The coordinate patches cover every point of M.

2. The coordinate patches overlap smoothly.

3. Every two different points on M can be covered by two different patches.

4. The collection of patches is maximal collection with conditions (1)–(3) (i.e. if a patch overlaps
smoothly with every patch in collection is itself in collection).

Examples.

1. Euclidean space Rn is an n-manifold.

2. Hypersurfaces. Let f be a function with continuous derivatives that maps Rn+1 into R. The
set of all vectors x = (x1, . . . , xn+1) in Rn+1 such that f(x) = 0 defines an n-manifold usually
referred to as hypersurface.
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For example, the n-plane can be defined as the set of vectors x = (x1, . . . , xn+1) in Rn+1 such
that

a1x1 + a2x2 + . . . an+1xn+1 = b

for some constant vector a = (a1, a2, . . . , an+1). Note that the left side of the above equation is
the dot product a · x. Thus, this is a hypersurface with f(x) = a · x− b.

3. The n-sphere Sn is another example of a hypersurface. It can be defined as the set of vectors
x = (x1, . . . , xn+1) in Rn+1 such that

x2
1 + x2

2 + . . .+ x2
n+1 = 1

i.e. that |x|2 = 1. So, this is a hypersurface with f(x) = |x|2 − 1.

4. n-torus T n is defined as the set of vectors x = (x1, . . . , x2n) in R2n such that x2
1 + x2

2 =
1, x2

3 + x2
4 = 1, . . . , x2

2n−1 + x2
2n = 1.

Partial Derivatives. Note that the differentiation is defined on the domain of a coordinate
patch. When working with manifolds, we may want to be able to differentiate on the range of the
coordinate patch as well. This can be done by considering derivative of a real-valued functions.

Let f be function that maps a neighborhood U of a point P on n-manifold M into a subset of
R. The function f is smooth if the composition f ◦ x is smooth where x is a coordinate patch that
contains P (thus meets U). Note that f ◦ x is a function that maps domain D of x into R. Thus,

we can define the derivative of f with respect to coordinate ui as ∂f
∂ui

= ∂(f◦x)
∂ui
◦ (x−1) and use it to

define the partial derivative operator at point P as

∂

∂ui
(P )(f) =

∂f

∂ui
(P ).

Directional Derivative and Tangent Vectors. Using the concept of partial derivative op-
erator, we can define tangent vectors. In case of surfaces, tangent vectors were defined as velocity
vectors of curves on surfaces. However, the definition of velocity vector is not available to us any more
because it refers to embedding in R3. We can still define tangent vectors using an alternate route
- via directional derivative. To understand the idea, consider a vector v in R3 given by (v1, v2, v3).
This defines a directional derivative operator by

Dv = v · ∇ = v1 ∂

∂x
+ v2 ∂

∂y
+ v3 ∂

∂z
.

This operator is defined on the set of all real-valued functions f by Dvf = v ·∇f = v1 ∂f
∂x

+v2 ∂f
∂y

+

v3 ∂f
∂z
. Thus, any linear combination of the partial derivatives can be considered as a directional

derivative.
The set of all tangent vectors corresponds exactly to the set of all directional derivatives. For

every curve γ(t) on the surface x(u1, u2), the velocity vector γ ′(t)[f ] = d
dt

(f ◦ γ) can be seen as an

operator γ ′(t)[f ] = ∂(f◦x)
∂ui

(x−1 ◦ γ(t))du
i

dt
= ∂f

∂ui
γ(t)du

i

dt
. Thus, γ(t)′ = dui

dt
∂
∂ui

(γ(t)) is the directional
derivative D((u1)′,(u2)′).

Having defined partial derivatives on an n-manifold M , allows us to define the tangent vectors at
a point P as the set of all linear combinations of the partial derivatives ∂

∂ui
(P ). Thus, v is a tangent

vector if v is a linear combination of partial derivatives ∂
∂ui

(P ) i.e. v is of the form vi ∂
∂ui

(P ).
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The set of all tangent vectors is called the tangent space and is denoted by TPM. This space rep-
resents the generalization of tangent plane of 2-manifolds. After showing that the partial derivatives
are linearly independent, the vectors ∂

∂ui
(P ) can be viewed as the basis of the tangent space TPM.

Inner product and Metric. The coefficients of the first fundamental form are defined using
the dot product of the basis vectors xi = ∂

∂ui
. The familiar concept of the dot product generalizes to

the inner product, a mapping of two vectors v and w producing a complex (or real) number v ·w
such that for all vectors u,v, and w and complex (or real) numbers a and b the following holds.

1. The product is symmetric: v ·w = w · v.

2. The product is bi-linear: u · (av + bw) = au · v + bu ·w.

3. The product is positive definite: v · v ≥ 0 and v · v = 0 if and only if v = ~0.

For example, the dot product in Rn given by

x · y = x1y1 + x2y2 + . . .+ xnyn

for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
If the tangent space TPM at every point P of an n-manifold M is equipped with an inner product,

we say that M is a Riemannian manifold and the inner product is called a Riemannian metric.
In this case, the coefficients of the first fundamental form at point P can be defined as

gij(P ) =
∂

∂ui
(P ) · ∂

∂uj
(P ).

With the inner product, the length of a vector v can be defined as |v| =
√

v · v. This enables
defining the concepts of unit-length curves of a Riemannian n-manifold. Moreover, if gij denotes the
matrix inverse to the matrix gij, then we can define Christoffel Symbols using the same formula
which holds for surfaces

Γkij =
1

2

(
∂gil
∂uj

+
∂gjl
∂ui
− ∂gij
∂ul

)
glk.

With the Christoffel symbols, we can also generalize the concept of geodesic. A curve γ on
manifoldM is geodesic if in each coordinate system defined along γ the equation (uk)′′+Γkij(u

i)′(uj)′ =
0 holds for k = 1, 2, . . . n. With this definition, a curve with the shortest possible length is necessarily
a geodesic and every point P and every tangent vector v uniquely determine a geodesic γ with
γ(0) = P and γ ′(0) = v.

The Sectional Curvature. The Riemann curvature tensor can be defined via Christoffel sym-
bols, using the same formula which holds for surfaces

Rl
ijk =

∂Γlik
∂uj
−
∂Γlij
∂uk

+ ΓpikΓ
l
pj − ΓpijΓ

l
pk

and the sectional curvature K at every point P of a manifold M can be defined as

K =
g1iR

i
212

g
.
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For 2-manifolds, the sectional curvature corresponds to Gaussian curvature. It is possible to define
other types of curvatures: Ricci curvature and scalar curvature. These concepts are used in physics,
especially in relativity theory.

There are many fascinating results in differential geometry. To conclude the exposition, we
mention some of them:

1. If the coefficients of the Riemann curvature tensor are equal to zero, then the n-manifold is
locally isometric to Rn.

2. If a connected and complete Riemannian manifold of even dimension has constant sectional
curvature 1

a2
, then it is either a 2n-sphere of radius a or a projective space.

3. A complete, connected and simply connected (every closed curve can be collapsed to a point)
Riemannian manifold of constant sectional curvature c is

• the sphere Sn of radius 1√
c

if c > 0,

• the space Rn if c = 0, and

• a hyperbolic space if c < 0. The hyperbolic space Hn is the set of vectors in Rn of length
smaller than 1 with the metric coefficients gij given at point v by gij(v) =

4δij
−c(1−|v|2)2

.

4. Poincaré conjecture (recently proven, see Wikipedia for more details): Every simply connected,
closed 3-manifold is homeomorphic to the 3-sphere.
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