Shape Representations: Point Clouds

Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749
Shapes can be very different

This is a shape
Shapes can be very different

This is also a shape
Shapes can be very different

Can you use the same representation for both?
Why particular representations?

- Accuracy
- Storage
- Algorithmic efficiency
- Richness
Point Clouds

- The simplest representation of 3D shapes
- Sample N points from the surface of the shape
 - How large should N be?
How large should N be?

- Some big fixed number?

$N = 1000$
How large should N be?

- Dependent on the scale of the shape?

$N = 100000$

$N = 1000$
How large should N be?

- Dependent on the scale of the shape?

$N = 1000$
How large should N be?

- Dependent on the complexity of the shape?

$N = 1000$

$N = 100000$
How can we characterize complexity?

- **Nyquist-Shannon Sampling Theorem**

 If a function $x(t)$ contains no frequencies higher than B hertz, it is completely determined by samples spaced $1/2B$ apart.

- What is the “frequency” of a shape?

 - Intuitively: lots of fine detail \rightarrow high frequency
How can we characterize complexity?

- What is the “frequency” of a shape?
 - Intuitively: lots of fine detail \rightarrow high frequency
 - We will revisit this when we study spectral decompositions
Thought for the Day #1

Do we need the same sampling rate everywhere on the shape?

No, we can do adaptive sampling!

Öztireli, Alexa, and Gross, “Spectral Sampling of Manifolds”, SIGGRAPH Asia 2010
Thought for the Day #2

Can you predict the complexity of a shape, without knowing the shape itself?

It depends on what you mean by “knowing”, and how much confidence you want in your prediction.
A simple storage format

X, Y, Z coordinates of points, one triplet per line

-1.67671 9.06038 -2.40807
-4.81769 6.48015 0.012154
-2.80832 10.0916 3.70869
-1.27393 13.9169 0.889338
 0.532515 15.1396 -0.103159
 1.31195 8.38292 -0.486781
-1.92718 13.8969 -1.19995
-0.489696 7.1351 -1.51946
-3.02698 10.7924 1.28467
A simple storage format

X, Y, Z coordinates of points, one triplet [+ more] per line

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Additional per-point fields (color, normal, features...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.67671</td>
<td>9.06038</td>
<td>-2.40807</td>
<td>0.2323 1.2943 -1.23</td>
</tr>
<tr>
<td>-4.81769</td>
<td>6.48015</td>
<td>0.012154</td>
<td>0.3234 0.8473 0.57</td>
</tr>
<tr>
<td>-2.80832</td>
<td>10.0916</td>
<td>3.70869</td>
<td>-0.6799 0.4434 -0.34</td>
</tr>
<tr>
<td>-1.27393</td>
<td>13.9169</td>
<td>0.889338</td>
<td></td>
</tr>
<tr>
<td>0.532515</td>
<td>15.1396</td>
<td>-0.103159</td>
<td></td>
</tr>
<tr>
<td>1.31195</td>
<td>8.38292</td>
<td>-0.486781</td>
<td></td>
</tr>
<tr>
<td>-1.92718</td>
<td>13.8969</td>
<td>-1.19995</td>
<td></td>
</tr>
<tr>
<td>-0.489696</td>
<td>7.1351</td>
<td>-1.51946</td>
<td></td>
</tr>
<tr>
<td>-3.02698</td>
<td>10.7924</td>
<td>1.28467</td>
<td></td>
</tr>
</tbody>
</table>
Acquiring point clouds

• From the real world
 • 3D scanning
 – Telltale characteristic: data is “striped”
 – Need multiple views to compensate for occlusion
 – Many technologies
 • Laser (LIDAR, e.g. Streetview)
 • Infrared (e.g. Kinect)
 • From a collection of photographs (Photosynth, Bundler)
 – Many challenges: resolution, occlusion, noise, registration
Acquisition Challenges

Noise → Poor detail reproduction

Low resolution further obscures detail

Some data was not properly registered with the rest

Occlusion → Interiors not captured
How can we do better?

- More data, better hardware
 - Difficult because of cost and limited human resources
- Apply geometry *priors* to reconstruct original surface from noisy, low-resolution scan

![Point cloud data](Image1.png) ➔ ![Reconstructed surface](Image2.png)
Geometry Priors

- **Prior:** (Typically statistical) model of how the true data is expected to look. E.g.
 - Surface must be smooth
 - Edges must be sharp
 - Detail must be repetitive
 - Shape must resemble exemplars
Thought for the Day #2, Revisited

Can you predict the complexity of a shape, without knowing the shape itself?

We can make an intelligent guess, using a prior
Some notes on noise

- **Noise:** Any deviation of the sampled point data from the true surface
 - Can be random (often assumed to be high-frequency Gaussian)
 - A simple smoothing filter helps, but blurs sharp edges and fine detail. Methods like bilateral filtering do better.
 - ... or structured/systematic
 - e.g. because of limitations in scanner resolution or calibration, or mount oscillation, or genuine bugs

- Reconstruct true signal by removing noise
 - Requires a prior on the true geometry and/or a prior on the structure of the noise (e.g. noise is gaussian, or periodic)

Acquiring point clouds

- From existing virtual shapes

- Why would we want to do this? Don't we already have a better representation of the shape?
Thought for the Day #3

When is a point cloud preferable to more sophisticated/accurate representations?
Sampling points from a shape

• **Method 1**: Independent identically distributed (i.i.d.) samples, by surface area

 1) **Pick** surface element (e.g. mesh triangle) with probability proportional to its area
 2) **Sample** a point uniformly from the element

• Usually the **easiest** to implement:

• **Problem**: Irregularly spaced sampling
Sampling points from a shape

- **Method 2:** Rejection sampling – reject and re-pick the \(k + 1 \) sample if it is too close to the previous \(k \) points

- Also very **easy** to implement

- **Problem:** Need to pick spacing threshold perfectly
 - If too big, impossible to pick a large number of points
 - If too small, points are not regularly spaced
Sampling points from a shape

- **Method 3**: Furthest point sampling – pick the $k + 1^{\text{th}}$ sample as the point furthest from any of the previous k points
- Gives **good results**
- Any **prefix** of the sequence is also regularly spaced!
 - Great for quick downsampling

$N = 1000$

$N = 125$ $N = 250$ $N = 500$
Sampling points from a shape

- **Method 3**: Furthest point sampling – pick the $k + 1^{\text{th}}$ sample as the point furthest from any of the previous k points
- Gives **good results**
- Any **prefix** of the sequence is also regularly spaced!
 - Great for quick downsampling
- **Problems:**
 - Tricky to implement
 - Slow
Furthest Point Sampling

- **Step 1:** Oversample the shape by any fast method (e.g. for \(N = 1000 \) pick \(N = 10000 \) i.i.d. samples)
Furthest Point Sampling

• *Step 2*: Compute a k-Nearest Neighbors graph on the points (e.g. $k = 8$)
Furthest Point Sampling

- **Step 3:**

 \[S = \text{empty set} \]

 for \(k = 1 \) to \(N \)

 compute distances from \(S \) to all graph vertices

 add the furthest vertex to \(S \)