CGAL

Poisson Surface Reconstruction - |
Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749


http://www.cse.iitb.ac.in/~cs749

Recap: Implicit Function Approach

* Define a function with
positive values inside the
model and negative
values outside
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Recap: Implicit Function Approach

e Define a function with
positive values inside the
model and negative
values outside

e Extract the zero-set
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Recap: Key Idea

e Reconstruct the surface of the model by solving
for the indicator function of the shape

f

1 if peM

In practice, we define the indicator function
to be -1/2 outside the shape and 1/2 inside, so
that the surface is the zero level set. We also
smooth the function a little, so that the zero Xu

set is well defined.

Indicator function
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Recap: Challenge

e How to construct the indicator function?

Oriented points Indicator function

Xu
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Recap: Gradient Relationship

* There is a relationship between the normal field at
the shape boundary, and the gradient of the
(smoothed) indicator function
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Operators

e |Let's look at a 1D function /: R —- R

* |t has a first derivative given by

d . flx+h)—f(x
U g, [l
e ... asecond derivative, and a third...
ﬂ — iif ﬁ _dd df
dx’ dx dx dx> dx dx dx

d . . . :
* 1. Is a general operation mapping functions to

functions: it's called an operator

a
dx

d

* In fact, it's a linear operator: (f+g) = j—xf t g



Variational Calculus

* Imagine we didn't know £, but we did know its

derivative g = Z—i

* Solving for f'is, obviously, integration

f=JLax = [ gax

» But what If g Is not analytically integrable?

 Then we can look for approximate solutions, drawn
from some parametrized family of candidate functions



Variational Calculus

 Assume we have a family of functions F

e Let's minimize the mean squared approximation
error over some Interval Q and functions f€ F

minimize fQ

ar
dx

2

dx



Euler-Lagrange Formulation

* Euler-Lagrange equation: Stationary points
(minima, maxima etc) of a functional of the form

J o LOx,f(x),f(x))dx

— fr(x)=4

dx

are obtained as solutions f'to the PDE

0L d OL — 0
of dx Of"'




Euler-Lagrange Formulation

e Euler-Lagrange equation: or " axap O

e In our case, L = (f'(x) — g(x))? so
0L 0L

Lo 2L a(9gle)
d OL o ,
e = )-g'x)

» Substituting, we get (a case of) the 1D Poisson

equation:
fri= g d°f _ dg
o g Or dX2 dX



Link to Linear Least Squares

e Here, we want to minimize fg(f'(x)—g(x))zdx and
end up having to solve

d d, d

.e. the two sides are equal at all points x

 Let's try to discretize this!

* Sample n consecutive points {x;} from Q
— Assume (for simplicity) they're evenly spaced, so x,,, —x;=

e We want to minimize X, (f '(x,) - g(x,))?



Link to Linear Least Squares

function

0

e R -
1

Discrete
approximation NS

1 2 3 4 5 6 7 8 9 10 1N 12 13 14

* The derivative at x;, can be approximated as

' y fi+1_fi _l_ fl
frlx) ~ 5 — = h{ 1 ﬂfm_

where f; I1s shorthand for f(x;)




Link to Linear Least Squares

e ... and all the derivatives can be listed in one big matrix
multiplication: 4 f=g, where

1 1 0 - 0 0 f, g,
0 -1 1 - 0 0 f, 7,
A = % S0 100 gy, e=|9.
0 0 1 1 ; E
0 o -- 0 -1 f, d.

* f and g are discrete approximations of continuous

functions fand g, and 4 Is a discrete approximation for

d

the continuous derivative operator —-!



Functions as vectors

e Functions from 4 to B form a vector space: we
can think of functions as “vectors”

e E.g. we can commutatively add two functions:
freg=g+sf

* Or distribute multiplication with a scalar:
s(f+g) =sf+sg

 If we want, we can also associate a norm (“vector
length”) with a function: e.g. || f]| = (jfZ(x) dx)'?



A function can be discretized

* Characterize a function f* by its values at a finite
set of n sample points

e This results in a discrete function, let’s call it /*

e The discrete function Is perfectly defined by its values
at the n points

* In other words, f* Is represented by a finite-
dimensional vector [ /' (x)), f (x,), ..., f(x,)]

Continuous function f _ _
0 1
Discrete approximation f * _ _

1 2 3 4 5 6 7 8 9 10 1N 12 13 14




Linear operators, more formally

* An operator T I1s a mapping from a vector space U to
another vector space V

e T'i1s a linear operator if 7(a + b) = 1(a) + 1T(D)

e The set of functions F from domain 4 to codomain B iIs a
vector space

* So we can have operators 7' that map from one function space
F to another function space G

e Note that T maps functions to functions!
. ... d d & .
* The differentials ,—, 5 etc are linear operators
dx dx dx

* They map functions to their derivatives




Discrete Linear Operators

 Theorem: Any linear operator between finite-
dimensional vector spaces can be represented by a
matrix

* Let's say we have a set of functions F from 4 to B

e The discrete versions of the functions form a finite-
dimensional vector space F* equivalent to R"

— Each function is sampled at the same finite set of points

Let 7 be a linear operator from F to itself

... and T* be a “discrete version” of T acting on F*

Then T* can be represented by a nxn matrix (cf. theorem)



Example: Discrete Derivative

Continuous Discrete
e Function: f .« Vector: £=[ f{x,), fx,) ... fix,)]
» Operator: di .« Matrix:
X :
-1 1 0 0 O
: 0o -1 1 0 O
. ' 1 0 -1 0O O
* Applying operator: A=
E 0 0 -1 1
df _ g 55 . o
dx : '

* Applying matrix:
Af=1



Example: Discrete Derivative

Continuous Discrete




Example: Discrete 2™ Derivative

Continuous ! Discrete
e Function: f . e Vector: f=[ (x,), fix,) ... fix,)]
- Operator: 4" .« Matrix:
dx’ :
-2 1 0 0 0
: 1 -2 1 0 0
: : _ 1 1 =2 0 0
* Applying operator: b=y
, : 0 0 -2 1
af_ o0 1o
dx’ '

* Applying matrix:
LEf=f”



Operators in higher dimensions

* The underlying function space can have a higher-
dimensional domain

' ‘ [ —4 1 - 1 :

1 —4 1 : 1 : :

1 —4 : 1 .
‘ ‘ 1 : . —4 1 . 1 . .
Continuous function . 1 : 1 -4 1 y 1 .
.1 - 1 —4 .1
. SR
.1 -1 -4 1
.1 1 —4 |

E G-

Discrete approximation

2D discrete Laplace operator




Discrete 2D Laplacian

* The Laplacian i1s computed via differences of a cell
from its neighbors




Flashback

* Need to solve set of equations Af=g In a least squares
sense

minimize |r||2 = ||g — Af]|2
 The directional derivative In direction &f Is
V||r|]2 . 5f = 26£7(ATg — ATAf)
e The minimum Is achieved when all directional
derivatives are zero, giving the normal equations
ATAf= A"g
* Thought for the (Previous) Day: Compare this
equation to the Poisson equation



Link to Linear Least Squares

* Linear Least Squares: The f that minimizes
|Af - g||> Is the solution of 4ATAf= ATg

e Euler-Lagrange: The f'that minimizes

df i " " ii — i
fg a(X)_g(x) dx is a solution of f g

dx dx dx

. . . . d
* Knowing that 4 Is the discrete version of -,

everything lines up except for the transpose bit

e How do we reconcile this?



Link to Linear Least Squares

* The derivative at x, can also be approximated as

fi—fis 1 fi
' ) A~ l l = —|—1 1 i—1

... and derivatives at all x; as B f, where
1 0 o 0 0
-1 1 0 0 0
1 -1 1 0 0
B =~ ,
0 0 1 0
0 0 -1 1

... which is just —4"!

 Can rewrite normal equations as (—-4")Af = (-4")g



Uniqueness of Solutions

e The discrete operator 4 we constructed is full-rank
(invertible), and gives a unique solution 4''g for f

» But the corresponding continuous problem has multiple
solutions (e.g. if fis a solution, (f+ constant) i1s also a
solution)

* Explanation: Af=g implicitly imposes the boundary
condition f,=—g, (see the last row of the matrix)

* In higher dimensions, the operator matrix 4 is non-square
(maps scalar field to vector field) and not invertible. The
system Is overdetermined and we seek least-squares solutions



Discrete Second Derivative

e Multiplying the matrices, we get the discrete

second derivative operator (the 1D Laplacian)

If you actually do the multiplication, this term is -1
and not -2. This is because our discretization does
not correctly model the derivative at the end of the

range. If you swap the matrices, the discrepancy ,|||_2 1 0
occurs in the last element of the product instead.

1 -2 1
d’ d d : : T 1 I =2
— = —— discretizedto (—A)A = =
dx dx dx h

0 O

0 O

... which i1s the same as the Taylor series
approximation for the second derivative




In higher dimensions

 We have a function /: R” — R

o Differential operators (in 3D):

e Gradient (of scalar-valued function): Vi= of of of
O0x 0y’ 0z
e Divergence (of vector-valued function): V/.y= oV, 8V aV
0 X 8y 0z

» Laplacian (of scalar-valued function): Af=V-Vf= o f o’ f o°f
0% 0y’ Y



In higher dimensions

 We have a function : R” — R

e We can discretize the domain as before, and obtain

discrete analogues of the gradient V (4), divergence V-
(-4") and Laplacian A= (V-)V (-4"4)

* Note that the gradient and divergence matrices are no
longer square (more on this next class)

P s

A 4 k &

. G=w/2)-(y—h/2)
F(x,y)= Flillj]=
(x,y) = xy 71171 (w/2)-(h/2) Misha Kazhdan




Takeaway

* A continuous variational problem can be approximated
by a discrete one

e Continuous function = Discrete vector of values
* Continuous operator = Discrete matrix
e Function composition = Matrix multiplication

o Euler-Lagrange solution = Linear Least Squares

» Rest of this class: Overview of the pipeline of Poisson
surface reconstruction

* Next class: The Galerkin approximation for recovering
a continuous function from the discrete setup



Implementation

Given the Points:
\.\,L\.l:’cb
 Set octree \.\>'\° .f;
e Compute vector field \ . i\.\' 'ﬁ}?:\_
e Compute indicator function e .&“
e Extract iso-surface ~ E
Do o=
Fa S £
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Implementation: Adaptive Octree

Given the Points:

e Set octree ﬁéJr ]
“ | [ o
° i » | & |-| L » T ==
[ ) ] ;-a
. T ] x
T I.'“| { ] isee - f_
i % ]
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Implementation: Vector Field

Given the Points:

e Compute vector field

e Define a function space
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Implementation: Vector Field

Given the Points:

e Compute vector field

e Define a function space

/
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Implementation: Vector Field

Given the Points:

e Compute vector field

e Define a function space
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Implementation: Vector Field

Given the Points:

e Compute vector field

e Define a function space

/
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Implementation: Vector Field

Given the Points:

e Compute vector field \y

e Splat the samples
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Implementation: Vector Field

Given the Points:

e Compute vector field

e Splat the samples
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Implementation: Vector Field

Given the Points:

e Compute vector field T_It

e Splat the samples
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Implementation: Vector Field

Given the Points:

. I 1A
 Compute vector field N i
. I§ Wl el i
 Splat the samples == g
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Implementation: Indicator Function

Given the Points: /

e Compute indicator function

e Compute divergence

: (O
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Implementation: Indicator Function

Given the Points:

e Compute indicator function

* Solve Poisson equation




Implementation: Indicator Function

Given the Points:

e Compute indicator function

* Solve Poisson equation




Implementation: Surface Extraction

Given the Points:

e Extract iso-surface
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