
Poisson Surface Reconstruction - I
Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

CGAL

http://www.cse.iitb.ac.in/~cs749

Recap: Implicit Function Approach

● Define a function with
positive values inside the
model and negative
values outside

Slides adapted from Kazhdan, Bolitho and Hoppe

Recap: Implicit Function Approach

● Define a function with
positive values inside the
model and negative
values outside

● Extract the zero-set

Slides adapted from Kazhdan, Bolitho and Hoppe

Recap: Key Idea

● Reconstruct the surface of the model by solving
for the indicator function of the shape

χM (p)={1 if p∈M
0 if p∉M

M

Indicator function

0 0

0
0

0

1

1

1
In practice, we define the indicator function

to be -1/2 outside the shape and 1/2 inside, so
that the surface is the zero level set. We also
smooth the function a little, so that the zero

set is well defined.

Slides adapted from Kazhdan, Bolitho and Hoppe

Recap: Challenge

● How to construct the indicator function?

M

Indicator functionOriented points

Slides adapted from Kazhdan, Bolitho and Hoppe

Recap: Gradient Relationship
● There is a relationship between the normal field at

the shape boundary, and the gradient of the
(smoothed) indicator function

Oriented points

M

Indicator gradient

0 0

0

0

0

0

Slides adapted from Kazhdan, Bolitho and Hoppe

Operators

● Let's look at a 1D function f : ℝ → ℝ

● It has a first derivative given by

● … a second derivative, and a third...

● is a general operation mapping functions to
functions: it's called an operator
● In fact, it's a linear operator:

df
dx

 = limh→0
f (x+h)−f (x)

h

d2 f
dx2 =

d
dx
d
dx
f

d
dx

d3 f
dx3 =

d
dx
d
dx
d
dx
f

d
dx

(f +g) =
d
dx
f +

d
dx
g

Variational Calculus

● Imagine we didn't know f, but we did know its
derivative g =

● Solving for f is, obviously, integration

● But what if g is not analytically integrable?
● Then we can look for approximate solutions, drawn

from some parametrized family of candidate functions

df
dx

f = ∫ df
dx
dx = ∫ g dx

Variational Calculus

● Assume we have a family of functions F

● Let's minimize the mean squared approximation
error over some interval Ω and functions f ∈ F

minimize ∫Ω|dfdx−g|
2

dx

Euler-Lagrange Formulation

● Euler-Lagrange equation: Stationary points
(minima, maxima etc) of a functional of the form

are obtained as solutions f to the PDE

∫Ω
L(x , f (x) , f ' (x))dx

∂L
∂ f

 −
d
dx

∂L
∂ f '

 = 0

f ' (x)= df
dx

Euler-Lagrange Formulation

● Euler-Lagrange equation:
● In our case, L = (f '(x) – g(x))2, so

● Substituting, we get (a case of) the 1D Poisson
equation:

or

∂L
∂ f

 −
d
dx

∂ L
∂ f '

 = 0

∂L
∂ f

 = 0 ∂ L
∂ f '

 = 2(f ' (x)−g (x))

d
dx

∂ L
∂ f '

 = 2(f ' ' (x)−g '(x))

f ' ' = g'
d2 f
dx2 =

dg
dx

Link to Linear Least Squares

● Here, we want to minimize and
end up having to solve

i.e. the two sides are equal at all points x

● Let's try to discretize this!
● Sample n consecutive points {xi} from Ω

– Assume (for simplicity) they're evenly spaced, so xi + 1 – xi = h

● We want to minimize Σi (f '(xi) - g(xi))2

d
dx
d
dx
f =

d
dx
g

∫Ω
(f ' (x)−g (x))2dx

Link to Linear Least Squares

● The derivative at xi can be approximated as

where fi is shorthand for f (xi)

Continuous
function

Discrete
approximation

0 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f ' (xi) ≈
f i+1−f i
h

 =
1
h

[−1 1] [f if i+1
]

Link to Linear Least Squares

● … and all the derivatives can be listed in one big matrix
multiplication: A f = g, where

● f and g are discrete approximations of continuous
functions f and g, and A is a discrete approximation for
the continuous derivative operator !

f=[
f 1

f 2

f 3

⋮
⋮
f n

] g=[
g1

g2

g3

⋮
⋮
gn

]
d
dx

A =
1
h [

−1 1 0 ⋯ 0 0
0 −1 1 ⋯ 0 0

 0 −1 ⋯ 0 0
⋮ ⋱ ⋮
0 0 −1 1
0 0 ⋯ 0 −1

]

Functions as vectors

● Functions from A to B form a vector space: we
can think of functions as “vectors”
● E.g. we can commutatively add two functions:
f + g = g + f

● Or distribute multiplication with a scalar:
s(f + g) = sf + sg

● If we want, we can also associate a norm (“vector
length”) with a function: e.g. || f || = (∫ f 2(x) dx)1/2

A function can be discretized
● Characterize a function f by its values at a finite

set of n sample points
● This results in a discrete function, let’s call it f *

● The discrete function is perfectly defined by its values
at the n points

● In other words, f * is represented by a finite-
dimensional vector [f (x1), f (x2), …, f (xn)]

Continuous function f

Discrete approximation f *

0 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Linear operators, more formally

● An operator T is a mapping from a vector space U to
another vector space V

● T is a linear operator if T(a + b) = T(a) + T(b)

● The set of functions F from domain A to codomain B is a
vector space
● So we can have operators T that map from one function space

F to another function space G
● Note that T maps functions to functions!

● The differentials , , etc are linear operators
● They map functions to their derivatives

d
d x

d2

d x2

d3

d x3

Discrete Linear Operators

● Theorem: Any linear operator between finite-
dimensional vector spaces can be represented by a
matrix
● Let’s say we have a set of functions F from A to B
● The discrete versions of the functions form a finite-

dimensional vector space F* equivalent to ℝn

– Each function is sampled at the same finite set of points
● Let T be a linear operator from F to itself
● … and T* be a “discrete version” of T acting on F*

● Then T* can be represented by a n×n matrix (cf. theorem)

Example: Discrete Derivative

A =
1
h [

−1 1 0 ⋯ 0 0
0 −1 1 ⋯ 0 0

 0 −1 ⋯ 0 0
⋮ ⋱ ⋮
0 0 −1 1
0 0 ⋯ 0 −1

]

Continuous
● Function: f
● Operator:

● Applying operator:

Discrete
● Vector: f = [f(x1), f(x2) … f(xn)]

● Matrix:

● Applying matrix:
Af = f’

d
d x

d f
d x

 = f '

Example: Discrete Derivative

Continuous Discrete

d
d x A

Example: Discrete 2nd Derivative

Continuous
● Function: f
● Operator:

● Applying operator:

Discrete
● Vector: f = [f(x1), f(x2) … f(xn)]

● Matrix:

● Applying matrix:
Lf = f ”

d2

d x2

d2 f

d x2 = f ' '

L =
1

h2 [
−2 1 0 ⋯ 0 0
1 −2 1 ⋯ 0 0

 1 −2 ⋯ 0 0
⋮ ⋱ ⋮
0 0 −2 1
0 0 ⋯ 1 −2

]

Operators in higher dimensions
● The underlying function space can have a higher-

dimensional domain

2D discrete Laplace operator

Continuous function

Discrete approximation

Discrete 2D Laplacian
● The Laplacian is computed via differences of a cell

from its neighbors

4

–1
–1

–1

–1

Flashback
● Need to solve set of equations Af = g in a least squares

sense

minimize ||r||2 = ||g – Af||2

● The directional derivative in direction δf is
∇||r||2 . δf = 2δfT(ATg – ATAf)

● The minimum is achieved when all directional
derivatives are zero, giving the normal equations

ATAf = ATg

● Thought for the (Previous) Day: Compare this
equation to the Poisson equation

Link to Linear Least Squares

● Linear Least Squares: The f that minimizes
||Af - g||2 is the solution of ATAf = ATg

● Euler-Lagrange: The f that minimizes

 is a solution of

● Knowing that A is the discrete version of ,
everything lines up except for the transpose bit
● How do we reconcile this?

∫Ω (dfdx (x)−g(x))
2

dx
d
dx
d
dx
f =

d
dx
g

d
dx

Link to Linear Least Squares

● The derivative at xi can also be approximated as

… and derivatives at all xi as B f, where

… which is just –AT !
● Can rewrite normal equations as (–AT)Af = (–AT)g

B =
1
h [

1 0 0 ⋯ 0 0
−1 1 0 ⋯ 0 0
 −1 1 ⋯ 0 0
⋮ ⋱ ⋮
0 0 1 0
0 0 ⋯ −1 1

]
f ' (xi) ≈

f i−f i−1
h

 =
1
h

[−1 1] [f i−1

f i]

Uniqueness of Solutions
● The discrete operator A we constructed is full-rank

(invertible), and gives a unique solution A-1g for f
● But the corresponding continuous problem has multiple

solutions (e.g. if f is a solution, (f + constant) is also a
solution)

● Explanation: Af = g implicitly imposes the boundary
condition fn = –gn (see the last row of the matrix)
● In higher dimensions, the operator matrix A is non-square

(maps scalar field to vector field) and not invertible. The
system is overdetermined and we seek least-squares solutions

Discrete Second Derivative

● Multiplying the matrices, we get the discrete
second derivative operator (the 1D Laplacian)

… which is the same as the Taylor series
approximation for the second derivative

d2

dx2 =
d
dx
d
dx

 discretized to (−AT) A =
1

h2 [
−2 1 0 ⋯ 0 0
1 −2 1 ⋯ 0 0

 1 −2 ⋯ 0 0
⋮ ⋱ ⋮
0 0 −2 1
0 0 ⋯ 1 −2

]
If you actually do the multiplication, this term is -1
and not -2. This is because our discretization does
not correctly model the derivative at the end of the
range. If you swap the matrices, the discrepancy
occurs in the last element of the product instead.

In higher dimensions
● We have a function f : ℝp → ℝq

● Differential operators (in 3D):

● Gradient (of scalar-valued function):

● Divergence (of vector-valued function):

● Laplacian (of scalar-valued function):

∇ f=(∂ f
∂ x
,
∂ f
∂ y
,
∂ f
∂ z)

∇⋅V=
∂V x

∂ x
+

∂V y

∂ y
+

∂V z

∂ z

Δ f=∇⋅∇ f= ∂2 f
∂ x2 +

∂2 f
∂ y2 +

∂2 f
∂ z2

In higher dimensions
● We have a function f : ℝp → ℝq

● We can discretize the domain as before, and obtain
discrete analogues of the gradient ∇ (A), divergence ∇·
(-AT) and Laplacian ∆ = (∇·)∇ (-ATA)

● Note that the gradient and divergence matrices are no
longer square (more on this next class)

Misha Kazhdan

Takeaway

● A continuous variational problem can be approximated
by a discrete one
● Continuous function → Discrete vector of values
● Continuous operator → Discrete matrix
● Function composition → Matrix multiplication
● Euler-Lagrange solution → Linear Least Squares

● Rest of this class: Overview of the pipeline of Poisson
surface reconstruction

● Next class: The Galerkin approximation for recovering
a continuous function from the discrete setup

Given the Points:
● Set octree
● Compute vector field
● Compute indicator function
● Extract iso-surface

Implementation

Slides adapted from Kazhdan, Bolitho and Hoppe

Given the Points:
● Set octree
● Compute vector field
● Compute indicator function
● Extract iso-surface

Implementation: Adaptive Octree

Slides adapted from Kazhdan, Bolitho and Hoppe

Given the Points:
● Set octree
● Compute vector field

● Define a function space
● Splat the samples

● Compute indicator function
● Extract iso-surface

Implementation: Vector Field

Slides adapted from Kazhdan, Bolitho and Hoppe

Given the Points:
● Set octree
● Compute vector field

● Define a function space
● Splat the samples

● Compute indicator function
● Extract iso-surface

Implementation: Vector Field

Slides adapted from Kazhdan, Bolitho and Hoppe

Given the Points:
● Set octree
● Compute vector field

● Define a function space
● Splat the samples

● Compute indicator function
● Extract iso-surface

Implementation: Vector Field

Slides adapted from Kazhdan, Bolitho and Hoppe

Given the Points:
● Set octree
● Compute vector field

● Define a function space
● Splat the samples

● Compute indicator function
● Extract iso-surface

Implementation: Vector Field

Slides adapted from Kazhdan, Bolitho and Hoppe

Given the Points:
● Set octree
● Compute vector field

● Define a function basis
● Splat the samples

● Compute indicator function
● Extract iso-surface

Implementation: Vector Field

Slides adapted from Kazhdan, Bolitho and Hoppe

Given the Points:
● Set octree
● Compute vector field

● Define a function basis
● Splat the samples

● Compute indicator function
● Extract iso-surface

Implementation: Vector Field

Slides adapted from Kazhdan, Bolitho and Hoppe

Given the Points:
● Set octree
● Compute vector field

● Define a function basis
● Splat the samples

● Compute indicator function
● Extract iso-surface

Implementation: Vector Field

Slides adapted from Kazhdan, Bolitho and Hoppe

Given the Points:
● Set octree
● Compute vector field

● Define a function space
● Splat the samples

● Compute indicator function
● Extract iso-surface

Implementation: Vector Field

Slides adapted from Kazhdan, Bolitho and Hoppe

Given the Points:
● Set octree
● Compute vector field
● Compute indicator function

● Compute divergence
● Solve Poisson equation

● Extract iso-surface

Implementation: Indicator Function

Slides adapted from Kazhdan, Bolitho and Hoppe

Given the Points:
● Set octree
● Compute vector field
● Compute indicator function

● Compute divergence
● Solve Poisson equation

● Extract iso-surface

Implementation: Indicator Function

Given the Points:
● Set octree
● Compute vector field
● Compute indicator function

● Compute divergence
● Solve Poisson equation

● Extract iso-surface

Implementation: Indicator Function

Given the Points:
● Set octree
● Compute vector field
● Compute indicator function
● Extract iso-surface

Implementation: Surface Extraction

Slides adapted from Kazhdan, Bolitho and Hoppe

