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Recap of differential operators (in 3D)

● Gradient (of scalar-valued function):

● In operator form:
● Maps scalar field to vector field

∇ f=( ∂ f
∂ x
,
∂ f
∂ y
,
∂ f
∂ z )

∇=( ∂
∂ x
, ∂
∂ y
, ∂
∂ z )

Scalar fields (black: high, white: low) and their gradients (blue arrows)
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Recap of differential operators (in 3D)

● Divergence (of vector-valued function):

● Maps vector field to scalar field
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∇⋅V=
∂V x

∂ x
+

∂V y

∂ y
+

∂V z

∂ z

Has divergence Divergence-free



Recap of differential operators (in 3D)

● Curl (of vector-valued function):

● Maps vector field to vector field
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Curl-free Has curl

∇×V=( ∂
∂ x
, ∂
∂ y
, ∂
∂ z )×(V x ,V y ,V z)



Recap of differential operators (in 3D)

● Laplacian (of scalar-valued function):

● In operator form:

● Maps scalar field to scalar field
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Δ=( ∂2

∂ x2 ,
∂2

∂ y2 ,
∂2

∂ z2 )

Δ f  =  ∇⋅∇ f  = 

∂2 f
∂ x2 +

∂2 f

∂ y2+
∂2 f

∂ z2

Original function After applying Laplacian



Recap

● The boundary of a shape is a level set of its
indicator function χ

● The gradient ∇χ of χ is the normal field V at the
boundary (after some smoothing which we won't go into here)

● We can solve for χ by integrating the normal field
● … but in general, we can't get an exact solution

since an arbitrary vector field need not be the
gradient of a function (field needs to be curl-free)

● So we find a least-squares fit, minimizing ||∇χ – V||2



Recap

● So we find a least-squares fit, minimizing ||∇χ – V||2

● This reduces to solving the Poisson Equation

● We can discretize the system by representing the
functions as vectors of values at sample points
● Gradient, divergence and Laplacian operators become

matrices

● Solving the resulting linear system gives a least
squares fit at the sample positions

∇⋅(∇ χ )=∇⋅V      ⇔      Δ χ=∇⋅V



Why can't we solve it exactly?
● Over a non-loop 1D range (which we studied closely),

this isn't very useful – the gradient     is invertible by
integration and we can solve the system              exactly
● We can also do this in the discrete setting – the

corresponding operator matrix is invertible

● But in 2 and higher dimensions, the gradient is not
invertible, and neither is its operator matrix
● Gradient maps scalar field to vector field: intuitively, “lower-

dimensional” to “higher-dimensional”
● In 1D, scalars and vectors are the same

d
dx d χ

dx
=V



● A vector field (over a simply-connected region) is the
gradient of a scalar function if and only if it is
curl‑free (has no circulation about any point)
● In other words, we can solve ∇χ = V (over a simply-

connected region) if and only if ∇×V = 0

● If the region is not simply-
connected, even this may
not be enough

∇×V=( ∂
∂ x
, ∂
∂ y
, ∂
∂ z )×(V x ,V y ,V z)

Curl-free Not curl-free
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Non-invertibility of k-D continuous operators



Non-invertibility of k-D discrete operators

∇
(k-D discrete

gradient)

χ

= V

n columns

kn rows

n rows

kn rows

(1 row for each
coordinate of
each point)

Overdetermined



∇⋅
(k-D discrete
divergence)

g=V

n rows

kn columns

kn rows

(1 row for each
coordinate of
each point)

n rows

Non-invertibility of k-D discrete operators

Underdetermined



Thought for the Day #1

What about the Laplacian? Is it invertible?

Is this over- or under-determined?

∇⋅∇
(k-D discrete
Laplacian)

g=
n columns

n rows

n rows χ
n rows



What we have so far

● Transform continuous variational problems to
discrete linear algebra problems

● Solve in a least squares sense, since the problem
is overdetermined in higher dimensions

● BUT: the results are also discrete: the values of
the function f at the sampled points
● Solution: A different type of discretization



Galerkin Approximation

● Restrict the solution space F to weighted sums of
basis functions, i.e. F = ∑i wi  Bi, for some set of
functions B1, B2 ... Bm

● Why? Allows us to discretize the problem in terms
of the m-D vector of weights

● We will choose functions that are locally supported
● … i.e. each fi is non-zero only around some local region

of space
● This keeps the resulting linear system sparse



Basis Functions with Local Support

● A finite element model
● Discretize space into cells, then define a basis

function centered around each cell

Instead of values at points, we now have values locally around points
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Basis Functions with Local Support

A potential grid of cells.



Basis Functions with Local Support

A single basis function, centered at a grid
cell but overlapping adjacent cells



Basis Functions with Local Support

A potential grid of cells.
Problem: Not enough detail where it's needed (boundary), too much

detail where it's not (empty space or interior)



Basis Functions with Local Support

A hierarchical, adaptive grid (octree).

Puts resolution where it matters. One basis function per octree cell.



Projecting to the Finite Basis

● Assume we want to reconstruct the function over
range Ω  (e.g. [0, 1] in 1D, or [0, 1]3 in 3D)

● The original Poisson problem is Δχ = ∇·V

● BUT: since we've now restricted our solutions to
the space spanned by {Bi}, this equation may not
have an exact solution!
● Solution: Least squares to the rescue again!



Projecting to the Finite Basis

● Solve: Δχ = ∇·V  for  χ ∈ F

● To find the best solution within the space spanned
by the basis, we minimize the sum of squared
projections onto the basis functions

where                                 measures the
projection of function f onto basis function Bi

∑i=1

m

⟨Δ χ−∇⋅V ,Bi ⟩Ω
2

⟨ f ,Bi⟩=∫Ω
f (x )Bi (x )dσ



Projecting to the Finite Basis

● Minimize:

● (skipping some algebra) This amounts to
minimizing ||Lw – v||2, where

∑i=1

m

⟨Δ χ−∇⋅V ,Bi ⟩Ω
2

=  ∑i=1

m

|⟨ Δ χ ,Bi ⟩− ⟨∇⋅V ,Bi ⟩Ω|
2

Lij  =  ⟨ ∂2Bi∂ x2 ,B j⟩+⟨ ∂2Bi
∂ y2 ,B j⟩+⟨ ∂2Bi

∂ z2 , B j ⟩
v i  =  ⟨∇⋅V , Bi ⟩

w
1

w
2

w
m

⁞w = 

Mostly zero, since most
pairs of basis functions

don't overlap


