

Polygonization of Implicit Surfaces

Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

Recall: Final step of Poisson reconstruction

Density Function

lsosurface

Kazhdan, Bolitho and Hoppe

Medical Reconstruction

Density Function from CT Scans

Reconstructed Skull Isosurface

Wikipedia, University of Utah

Level Set

• *c*-Level set: The set of points where a function takes a constant value *c*

Level Set

- *c*-Level set: The set of points where a function takes a constant value *c*
 - Isocontour: Level set of a 2D function
 - Isosurface: Level set of a 3D function —

lsocontours

• Data: 2D structured grid of scalar values

lsocontours

• The 5-level set:

Isocontours: Ambiguity

• Where is the contour?

"Split" green (inner) region

Square cell: 2 ambiguous cases

"Join" green (inner) region

Slides adapted from Toby Breckon

Isocontours: Ambiguity

• Where is the contour?

Isocontours: Cell Configurations

 $2^4 = 16$ different possibilities, reducible to just 6 distinct cases after factoring out symmetries

Marching Squares Algorithm

- Select a starting cell
- Calculate inside/outside state for each vertex
- Classify cell configuration
 - Determine which edges are intersected
- Find exact locations of edge intersections
- Link up intersections to produce contour segment(s)
- Move (or "march") into next cell and repeat
 - ... until all cells have been visited

Where is the intersection?

• Find location of contour intersection with edge by interpolating vertex values

The value 5 splits the edge in a 1:1 ratio

8-5=3 5-2=3 8-5=3The value 5
splits the edge
in a 1:3 ratio 5-4=1

Contour continuity

• Since we only look at the endpoints of the edge, the generated contour is continuous across cells

Example: Marching Squares

Find 5-contour of function represented by its values at vertices of a uniform grid

Step 1: Classify vertices

 $\left(\right)$

Green: inside Red: outside

Slides adapted from Toby Breckon

Step 2: Classify cells

Slides adapted from Toby Breckon

Arbitrarily choose to split here, instead of join. We could also have gone the other way.

Slides adapted from Toby Breckon

Resolving ambiguities

Slides adapted from Toby Breckon

In 3D: Marching Cubes

Exactly the same algorithm, but cells are now cubes (15 distinct configurations) and output is triangles (or a polygon mix)

In 3D: Marching Cubes

Koen Samyn, https://www.youtube.com/watch?v=LfttaAepYJ8

Marching Cubes: Estimating Normals

- We could estimate normals from the generated mesh, but the density function has more information
- Recall: The normal to the surface is the gradient of the density function

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

• We will estimate the gradient from the grid of values

Normals at Cube Vertices

Normals at Mesh Vertices

Example: Different level sets of CT scan

Bone surface

Soft tissue surface

Lorensen and Cline, "Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm", SIGGRAPH '87

Example: Different level sets of CT scan

Alignment with original volumetric data

Lorensen and Cline, "Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm", SIGGRAPH '87

Marching Cubes: Pros and Cons

• Pros:

- Local computations only, so needs very little working memory and has good cache coherence
- Works well with grid-structured input
 - E.g. medical scans
- Simple to implement
- Cons:

- No adaptive resolution, produces lots of triangles
- Telltale patterned artifacts, since cells are cubes and output triangles are generated from a uniform grid.
- No principled approach to resolve ambiguities