

Polygonization of Implicit Surfaces

Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

Recall: Final step of Poisson reconstruction

Density Function

Isosurface

Medical Reconstruction

Density Function from CT Scans

Reconstructed Skull Isosurface

Level Set

- c-Level set: The set of points where a function takes a constant value c

Level Set

- c-Level set: The set of points where a function takes a constant value c

Isocontours

- Data: 2D structured grid of scalar values

Isocontours

- The 5-level set:

Bisects the edge, since 5 is equidistant from 3 and 7

Splits edge asymetrically, since 5 is closer to 6 than to 2

Isocontours: Ambiguity

- Where is the contour?

Isocontours: Ambiguity

- Where is the contour?

Isocontours: Cell Configurations

1 vertex different

$2^{4}=16$ different possibilities, reducible to just 6 distinct cases after factoring out symmetries

2 vertices different

\qquad

Marching Squares Algorithm

- Select a starting cell
- Calculate inside/outside state for each vertex
- Classify cell configuration
- Determine which edges are intersected
- Find exact locations of edge intersections
- Link up intersections to produce contour segment(s)
- Move (or "march") into next cell and repeat
- ... until all cells have been visited

Where is the intersection?

- Find location of contour intersection with edge by interpolating vertex values

The value 5 splits the edge in a 1:1 ratio

The value 5
splits the edge
in a 1:3 ratio

Contour continuity

- Since we only look at the endpoints of the edge, the generated contour is continuous across cells

No discontinuity here!

Example: Marching Squares

Find 5-contour of function represented by its values at vertices of a uniform grid

Step 1: Classify vertices

Green: inside Red: outside

Step 2: Classify cells

No intersections

Adjacent edges

Opposite edges

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Ambiguous

Arbitrarily choose to split here, instead of join. We could also have gone the other way.

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3: Interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Resolving ambiguities

In 3D: Marching Cubes

Exactly the same algorithm, but cells are now cubes (15 distinct configurations) and output is triangles (or a polygon mix)

In 3D: Marching Cubes

(Video)

Marching Cubes: Estimating Normals

- We could estimate normals from the generated mesh, but the density function has more information
- Recall: The normal to the surface is the gradient of the density function

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

- We will estimate the gradient from the grid of values

Normals at Cube Vertices

Discrete approximation to the gradient at the blue cube vertex

$$
\begin{aligned}
& n_{x}=\frac{f(i+1, j, k)-f(i-1, j, k)}{2 \Delta x} \\
& n_{x}=\frac{f(i, j+1, k)-f(i, j-1, k)}{2 \Delta y} \\
& n_{y}=\frac{f(i, j, k+1)-f(i, j, k-1)}{2 \Delta z} \\
& \text { (Better approximations are possible) }
\end{aligned}
$$

Normals at Mesh Vertices

Example: Different level sets of CT scan

Bone surface

Soft tissue surface

Example: Different level sets of CT scan

Alignment with original volumetric data

Marching Cubes: Pros and Cons

- Pros:
- Local computations only, so needs very little working memory and has good cache coherence
- Works well with grid-structured input
- E.g. medical scans
- Simple to implement
- Cons:
- No adaptive resolution, produces lots of triangles
- Telltale patterned artifacts, since cells are cubes and output triangles are generated from a uniform grid.
- No principled approach to resolve ambiguities

