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Recall: Final step of Poisson reconstruction

Density Function Isosurface

Kazhdan, Bolitho and Hoppe



Medical Reconstruction

Density Function from CT Scans Reconstructed Skull Isosurface

Wikipedia, University of Utah



Level Set
● c-Level set: The set of points where a function 

takes a constant value c



Level Set
● c-Level set: The set of points where a function 

takes a constant value c
● Isocontour: Level set of a 2D function
● Isosurface: Level set of a 3D function

Toby Breckon



Isocontours

● Data: 2D structured grid of scalar values

Slides adapted from Toby Breckon
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Isocontours

● The 5-level set:

Slides adapted from Toby Breckon
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Isocontours: Ambiguity

● Where is the contour?

Slides adapted from Toby Breckon

or

Triangular cell:
No ambiguities

Square cell:
2 ambiguous cases

“Split” green (inner) region

“Join” green (inner) region



Isocontours: Ambiguity

● Where is the contour?

Slides adapted from Toby Breckon

Join Split



Isocontours: Cell Configurations

Slides adapted from Toby Breckon

No intersections 1 vertex different 2 vertices different

Ambiguous case
24 = 16 different possibilities, reducible to just 6 
distinct cases after factoring out symmetries



Marching Squares Algorithm

● Select a starting cell
● Calculate inside/outside state for each vertex
● Classify cell configuration

● Determine which edges are intersected

● Find exact locations of edge intersections
● Link up intersections to produce contour segment(s)
● Move (or “march”) into next cell and repeat

● … until all cells have been visited

Slides adapted from Toby Breckon



Where is the intersection?

● Find location of contour intersection with edge by 
interpolating vertex values
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5 – 4 = 1

8 – 5 = 3 The value 5 
splits the edge 
in a 1:3 ratio

8 – 5 = 3 5 – 2 = 3

The value 5 splits the edge in a 1:1 ratio



Contour continuity

● Since we only look at the endpoints of the edge, 
the generated contour is continuous across cells
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Example: Marching Squares
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Step 1: Classify vertices
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Step 2: Classify cells
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Arbitrarily choose to split here, instead of join. We could 
also have gone the other way.



Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Step 3: Interpolate contour intersections
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Resolving ambiguities

No intersections

Adjacent edges

Opposite edges

Ambiguous

Slides adapted from Toby Breckon
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In 3D: Marching Cubes

Exactly the same algorithm, but cells are now cubes (15 distinct 
configurations) and output is triangles (or a polygon mix)

Wikipedia



In 3D: Marching Cubes

Koen Samyn, https://www.youtube.com/watch?v=LfttaAepYJ8

(Video)

https://www.youtube.com/watch?v=LfttaAepYJ8


Marching Cubes: Estimating Normals

● We could estimate normals from the generated mesh, 
but the density function has more information

● Recall: The normal to the surface is the gradient of the 
density function

● We will estimate the gradient from the grid of values

∇ f=( ∂ f
∂ x
,
∂ f
∂ y
,
∂ f
∂ z )



Normals at Cube Vertices

nx=
f (i+1, j , k )−f (i−1, j , k )

2Δ x

nx=
f (i , j+1,k )−f (i , j−1, k )

2Δ y

n y=
f (i , j , k+1)−f (i , j , k−1)

2Δ z

Discrete approximation to the 
gradient at the blue cube vertex

(Better approximations are possible)
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Normals at Mesh Vertices

Cube vertex normal
(from gradient)

Cube vertex normal
(from gradient)

Mesh vertex normal
(interpolated from edge 
endpoints in ratio a:b)

a

b



Example: Different level sets of CT scan

Lorensen and Cline, “Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm”, SIGGRAPH '87

Bone surface Soft tissue surface



Example: Different level sets of CT scan

Lorensen and Cline, “Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm”, SIGGRAPH '87

Alignment with original volumetric data



Marching Cubes: Pros and Cons
● Pros:

● Local computations only, so needs very little working memory 
and has good cache coherence

● Works well with grid-structured input
– E.g. medical scans

● Simple to implement
● Cons:

● No adaptive resolution, produces lots of triangles
● Telltale patterned artifacts, since cells are cubes and output 

triangles are generated from a uniform grid.
● No principled approach to resolve ambiguities
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