
Surazhsky et al.

Exact and Approximate Shortest Paths
Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

http://www.cse.iitb.ac.in/~cs749

Overview

● Last class:
– Distances on surfaces: applications and complications
– Definition of geodesics

≠ shortest paths, but often conflated!

● Today:
– An algorithm for finding exact shortest paths on a

mesh
– Can be modified to quickly give approximately shortest

paths

Challenge
● The shortest path traverses interiors of triangles

– Where does the path cross edges?
– Continuous optimization problem, much harder than

shortest paths on discrete graphs

masters.donntu.org

Approximate

Exact

A historical perspective
● Exact:

– Single source, all destinations
● Mitchell/Mount/Papadimitriou [1987]: O(n2 log n)
● Chen/Han [1996]: O(n2)

– Single source, single destination
● Kapoor [1999]: O(n log2 n)

● Approximate:
– Insert extra edges: Lanthier [1997]

– Iterative optimization: Kanai/Suzuki [2001], Martinez et al. [2004]

– Fast-marching: Kimmel/Sethian [1998, O(n log n)]

– Fast-sweeping: Zhao [2005, O(n)]

– Window merging: Surazhsky et al. [2005, O(n log n)]

– Heat flow: Crane et al. [2013]

n = number
of triangles
in the mesh

Note that asymptotic
behavior ≠ real-world

performance

Edge Insertion

● Problem: Edges crudely model
surface connectivity

● Solution: Add more edges!
– Finer-grained discrete problem
– Produces better approximations

with more edges, at the cost of
runtime complexity

● But typically converges at around 6
points per edge

Lanthier 1997

A crucial observation 1/2

● A mesh can be unfolded

van Wijk 2008, Takahashi 2011

A crucial observation 2/2

● Shortest paths can be
visualized as rays emanating
from point in all directions
– Interior to triangle: shortest

path must be straight line

– Crossing edge: shortest path
corresponds to straight line
when two triangles are unfolded
into common plane.

Surazhsky et al. 2005
In 3D

Unfolded
to plane

Unfolding the shortest path

Surazhsky et al. 2005

Source vertex unfolded to triangle plane

Surazhsky et al. 2005

s

Windows

● A window is a segment
of an edge over which all
shortest paths to the
source traverse the same
sequence of faces

● Within a window, distance
computations can be
performed atomically (no
need to worry about
routing in the mesh)

Surazhsky et al. 2005

Unfolded layout

Window specified by 5-tuple

● b0, b1: local x-
coordinates of
endpoints on edge

● d0, d1: distances from
endpoints to source s

● τ : direction to source
(side of edge where s
lies)

Surazhsky et al. 2005

Unfolded layout

Source reconstruction

Surazhsky et al. 2005

● Given two distances d0, d1, recover the source
s = (x, y)

● Computation is simple via
local coordinate system

 
  2

1
22

1

2
0

22
0

dybx

dybx





2
0

2
0

01

2
1

2
0

2
1

2
0

)(

)(2

bxdy

bb

bbdd
x








Basic Idea: Window Propagation
● Step from triangle to adjacent triangle
● Windows on an edge create new windows on other edges

of new triangle
– The cone “sees” new edges as we enter the new triangle

● Can create one, two or three new windows

Surazhsky et al. 2005

Overlapping Windows

● Find equidistant point on edge
● Cut off overlapping parts that define larger distances
● Distance function is continuous on edge

Surazhsky et al. 2005

Hyperbolic (saddle) vertices

● If the sum of face angles at a vertex is > 2π, it is
called a hyperbolic/saddle vertex

● It cannot be unfolded onto a plane without
foldovers (overlapping faces)

● The shortest path can pass
through boundary, hyperbolic
(> 2π) and parabolic (= 2π)
vertices
– Hyperbolic vertices need special handling

Stephanie K. Fleming

Hyperbolic (saddle) vertices

Unflattened region near saddle vertex
s. Part of the upper triangle is not

visible by rays from source vertex vs

Unfolding to plane of upper triangle reveals
two different images of vs, neither of which
is visible from red region. All shortest paths

to w pass through saddle vertex.

Surazhsky et al. 2005

Hyperbolic (saddle) vertices

● Solution: Treat saddle (or boundary) vertex as
pseudo-source

– All shortest paths route through pseudo-
source

– … so we can originate our visibility cones
from the pseudo-source, and add its
distance from the actual source

● Window as 6-tuple: { b0, b1, d0, d1, σ, τ }

– σ : distance from pseudo-source to source

Surazhsky et al. 2005

The algorithm

● Initialize queue Q with a window for
each edge adjacent to source s,
sorted by distance to source

● Until Q is empty
– select (and remove) a window from Q

– propagate selected window

– update Q with new windows

● The algorithm fully covers each
edge with non-overlapping windows

Surazhsky et al. 2005

Approximating Algorithm

● Basic idea: merge windows
– Two original windows must have direction values τ in

agreement

– Original windows must define similar distances on
their union

– Distance function along edge must be continuous

– Visibility region of new window must cover the union
of visibility regions of original windows

Surazhsky et al. 2005

Merging Windows

● Find a new source s = (x, y) and σ,
for which the distances at the
endpoints b0 and b1 are preserved:

● s = (x, y) lies on a conic curve
(quadratic algebraic curve)

● s = (x, y) must lie in the yellow
area – visibility must not be
reduced) with y > 0

● σ > 0 corresponds to the pink area

 
  2

1
22

1

2
0

22
0

)(

)(









dybx

dybx

Surazhsky et al. 2005

Merging Windows

● Find a new source s = (x, y) and σ,
for which the distances at the
endpoints b0 and b1 are preserved:

● s = (x, y) lies on a conic curve
(quadratic algebraic curve)

● s = (x, y) must lie in the yellow
area – visibility must not be
reduced) with y > 0

● σ > 0 corresponds to the pink area

 
  2

1
22

1

2
0

22
0

)(

)(









dybx

dybx

Surazhsky et al. 2005

Shortest path between two vertices
● Sequence of pruned searches to locate exact shortest path
● Exact algorithm is invoked only on a thin region surrounding geodesic
● Upper bound is the length of the approximate path obtained by Djikstra

search on edge graph, refined by output of approximation algorithm
● Lower bound initially represented by Euclidean distance, then replaced

with output of approximation algorithm

Surazhsky et al. 2005

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

