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Overview

● Last class:
– Distances on surfaces: applications and complications
– Definition of geodesics

≠ shortest paths, but often conflated!

● Today:
– An algorithm for finding exact shortest paths on a 

mesh
– Can be modified to quickly give approximately shortest 

paths



Challenge
● The shortest path traverses interiors of triangles

– Where does the path cross edges?
– Continuous optimization problem, much harder than 

shortest paths on discrete graphs
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Approximate

Exact



A historical perspective
● Exact:

– Single source, all destinations
● Mitchell/Mount/Papadimitriou [1987]: O(n2 log n)
● Chen/Han [1996]: O(n2)

– Single source, single destination
● Kapoor [1999]: O(n log2 n)

● Approximate:
– Insert extra edges: Lanthier [1997]

– Iterative optimization: Kanai/Suzuki [2001], Martinez et al. [2004]

– Fast-marching: Kimmel/Sethian [1998, O(n log n)]

– Fast-sweeping: Zhao [2005, O(n)]

– Window merging: Surazhsky et al. [2005, O(n log n)]

– Heat flow: Crane et al. [2013]

n = number
of triangles
in the mesh

Note that asymptotic
behavior ≠ real-world

performance



Edge Insertion

● Problem: Edges crudely model 
surface connectivity

● Solution: Add more edges!
– Finer-grained discrete problem
– Produces better approximations 

with more edges, at the cost of 
runtime complexity

● But typically converges at around 6 
points per edge

Lanthier 1997



A crucial observation 1/2

● A mesh can be unfolded

van Wijk 2008, Takahashi 2011



A crucial observation 2/2

● Shortest paths can be 
visualized as rays emanating 
from point in all directions
– Interior to triangle: shortest 

path must be straight line

– Crossing edge: shortest path 
corresponds to straight line 
when two triangles are unfolded 
into common plane.

Surazhsky et al. 2005
In 3D

Unfolded
to plane



Unfolding the shortest path
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Source vertex unfolded to triangle plane
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Windows

● A window is a segment 
of an edge over which all 
shortest paths to the 
source traverse the same 
sequence of faces

● Within a window, distance 
computations can be 
performed atomically (no 
need to worry about 
routing in the mesh)
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Unfolded layout



Window specified by 5-tuple

● b0, b1: local x-
coordinates of 
endpoints on edge

● d0, d1: distances from 
endpoints to source s

● τ : direction to source 
(side of edge where s 
lies) 
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Unfolded layout



Source reconstruction
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● Given two distances d0, d1, recover the source 
s = (x, y)

● Computation is simple via
local coordinate system
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Basic Idea: Window Propagation
● Step from triangle to adjacent triangle
● Windows on an edge create new windows on other edges 

of new triangle
– The cone “sees” new edges as we enter the new triangle

● Can create one, two or three new windows
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Overlapping Windows

● Find equidistant point on edge
● Cut off overlapping parts that define larger distances
● Distance function is continuous on edge
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Hyperbolic (saddle) vertices

● If the sum of face angles at a vertex is > 2π, it is 
called a hyperbolic/saddle vertex

● It cannot be unfolded onto a plane without 
foldovers (overlapping faces)

● The shortest path can pass
through boundary, hyperbolic
(> 2π) and parabolic (= 2π)
vertices
– Hyperbolic vertices need special handling

Stephanie K. Fleming



Hyperbolic (saddle) vertices

Unflattened region near saddle vertex 
s. Part of the upper triangle is not 

visible by rays from source vertex vs

Unfolding to plane of upper triangle reveals 
two different images of vs, neither of which 
is visible from red region. All shortest paths 

to w pass through saddle vertex.
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Hyperbolic (saddle) vertices

● Solution: Treat saddle (or boundary) vertex as 
pseudo-source

– All shortest paths route through pseudo-
source

– … so we can originate our visibility cones 
from the pseudo-source, and add its 
distance from the actual source

● Window as 6-tuple: { b0, b1, d0, d1, σ, τ }

– σ : distance from pseudo-source to source
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The algorithm

● Initialize queue Q with a window for 
each edge adjacent to source s, 
sorted by distance to source

● Until Q is empty
– select (and remove) a window from Q

– propagate selected window

– update Q with new windows

● The algorithm fully covers each 
edge with non-overlapping windows
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Approximating Algorithm

● Basic idea: merge windows
– Two original windows must have direction values τ in 

agreement

– Original windows must define similar distances on 
their union

– Distance function along edge must be continuous 

– Visibility region of new window must cover the union 
of visibility regions of original windows
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Merging Windows

● Find a new source s = (x, y) and σ, 
for which the distances at the 
endpoints b0 and b1 are preserved:

● s = (x, y) lies on a conic curve 
(quadratic algebraic curve)

● s = (x, y) must lie in the yellow 
area – visibility must not be 
reduced) with y > 0

● σ > 0 corresponds to the pink area
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Shortest path between two vertices
● Sequence of pruned searches to locate exact shortest path
● Exact algorithm is invoked only on a thin region surrounding geodesic
● Upper bound is the length of the approximate path obtained by Djikstra 

search on edge graph, refined by output of approximation algorithm
● Lower bound initially represented by Euclidean distance, then replaced 

with output of approximation algorithm

Surazhsky et al. 2005
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