

Surface Curvature

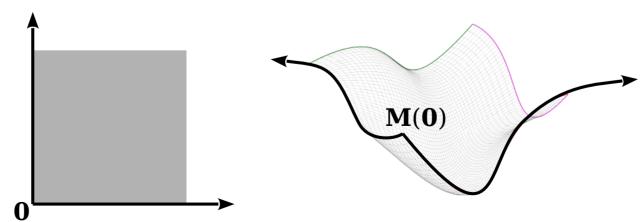
Siddhartha Chaudhuri

http://www.cse.iitb.ac.in/~cs749

Curves and surfaces in 3D

- For our purposes:
 - A curve is a map $\alpha: \mathbb{R} \to \mathbb{R}^3$ (or from some subset I of \mathbb{R})

- A surface is a map $\mathbf{M}: \mathbb{R}^2 \to \mathbb{R}^3$ (or from some subset Ω of \mathbb{R}^2)



Curves and surfaces in 3D

- For our purposes:
 - A curve is a map $\alpha: \mathbb{R} \to \mathbb{R}^3$ (or from some subset I of \mathbb{R})
 - $\bullet \ \mathbf{\alpha}(t) = (x, y, z)$
 - A surface is a map $\mathbf{M}: \mathbb{R}^2 \to \mathbb{R}^3$ (or from some subset Ω of \mathbb{R}^2)
 - $\mathbf{M}(u, v) = (x, y, z)$

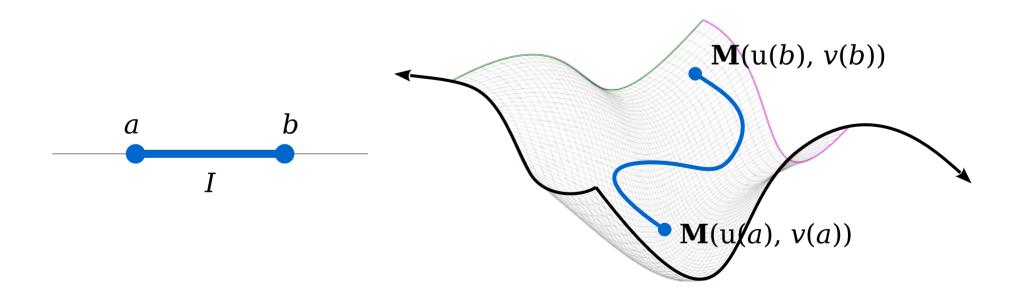
 We will assume everything is arbitrarily differentiable, regular, etc

Curve on a surface

ullet A curve ${f C}$ on surface ${f M}$ is defined as a map

$$\mathbf{C}(t) = \mathbf{M}(u(t), v(t))$$

where u and v are smooth scalar functions



Special cases

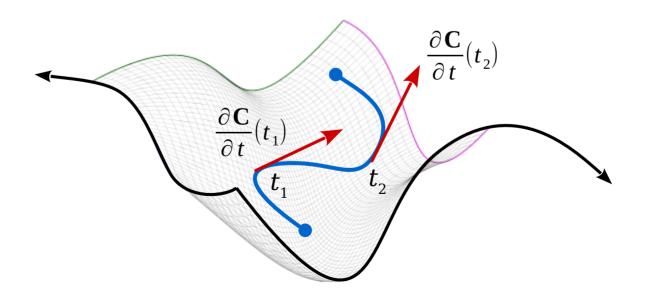
- The curve $\mathbf{C}(v) = (u_0, v)$ for constant u_0 is called a u-curve
- The curve $\mathbf{C}(u) = (u, v_0)$ for constant v_0 is called a v-curve
- These are collectively called coordinate curves

• Example: coordinate curves $(\theta\text{-curves and }\phi\text{-curves})$ on a sphere

Tangent vector

• The tangent vector to the surface curve ${f C}$ at t can be found by the chain rule

$$\frac{\partial \mathbf{C}}{\partial t} = \frac{\partial \mathbf{M}}{\partial u} \frac{du}{dt} + \frac{\partial \mathbf{M}}{\partial v} \frac{dv}{dt}$$



Tangent vector

We will use the following shorthand

$$\mathbf{M}_{u} := \frac{\partial \mathbf{M}}{\partial u} \qquad \mathbf{M}_{v} := \frac{\partial \mathbf{M}}{\partial v}$$

$$\dot{u} := \frac{du}{dt} \qquad \dot{v} := \frac{dv}{dt} \qquad \dot{\mathbf{C}} := \frac{\partial \mathbf{C}}{\partial t}$$

• Then the tangent vector is $\dot{\mathbf{C}} = \mathbf{M}_{u}\dot{u} + \mathbf{M}_{v}\dot{v}$

Regular surface

- A surface M is regular if $\dot{C} \neq 0$
 - ... for all curves $\mathbf{C}: t \mapsto \mathbf{M}(u(t), v(t))$ on the surface
 - ... such that the map $t \mapsto (u(t), v(t))$ is regular
- Eqivalently, $\mathbf{M}_u \times \mathbf{M}_v \neq \mathbf{0}$ everywhere
 - (the derivatives are not collinear)
- A point where $\mathbf{M}_u \times \mathbf{M}_v \neq \mathbf{0}$ is called a regular point
 - (else, it is a singular point)

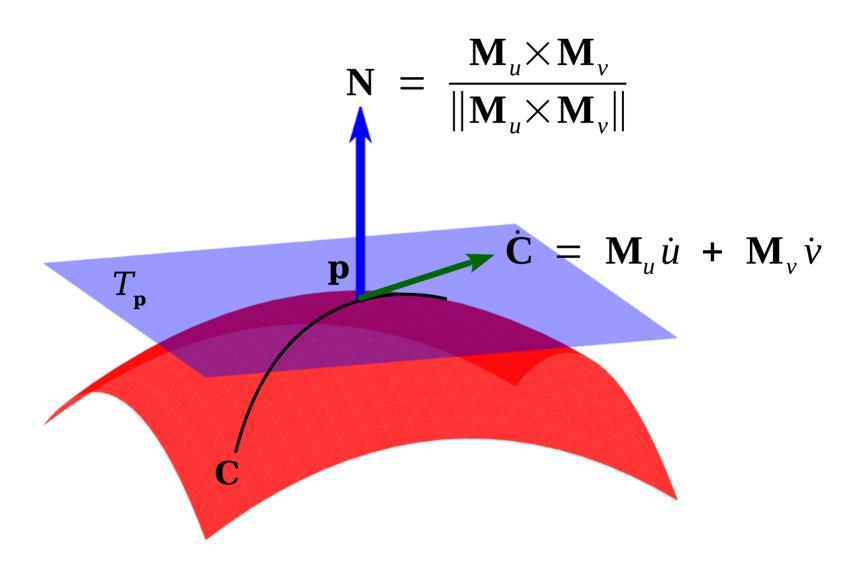
Tangent space

• All tangent vectors at a point \mathbf{p} are of the form $\mathbf{M}_{u}\dot{u} + \mathbf{M}_{v}\dot{v}$

- If the point is regular, the tangent vectors form a 2D space called the tangent space $T_{\mathbf{p}}$ at \mathbf{p}
 - \mathbf{M}_u and \mathbf{M}_v are basis vectors for the tangent space
- The unit normal to the tangent space, also known as the normal to the surface at the point, is

$$\mathbf{N} = \frac{\mathbf{M}_{u} \times \mathbf{M}_{v}}{\|\mathbf{M}_{u} \times \mathbf{M}_{v}\|}$$

Tangent space



Thought for the Day #1

If we change the parameters of the surface to, e.g.

$$u := u(r, s), \quad v := v(r, s)$$

does the normal change, and if so how?

Arc length on a surface

- ullet Consider a curve $oldsymbol{C}$ on surface $oldsymbol{M}$
- Its (differential) arc length at point **p** is

$$\|\dot{\mathbf{C}}\| = \|\mathbf{M}_{u}\dot{u} + \mathbf{M}_{v}\dot{v}\|$$

Squaring

$$\|\dot{\mathbf{C}}\|^2 = (\mathbf{M}_u \cdot \mathbf{M}_u) \dot{u}^2 + 2(\mathbf{M}_u \cdot \mathbf{M}_v) \dot{u} \dot{v} + (\mathbf{M}_v \cdot \mathbf{M}_v) \dot{v}^2$$
or
$$\|\dot{\mathbf{C}}\|^2 = E \dot{u}^2 + 2F \dot{u} \dot{v} + G \dot{v}^2$$

First Fundamental Form

• The map $(x, y) \mapsto Ex^2 + 2Fxy + Gy^2$ is called the first fundamental form of the surface at \mathbf{p}

$$I_{\mathbf{p}}(x,y) = \begin{bmatrix} x \ y \end{bmatrix} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- For a regular surface, the matrix is positive definite since E (and G) > 0 and $EG F^2 > 0$
- Because of the relation to differential arc length ds, the first fundamental form is often written as

$$ds^2 = E du^2 + 2F du dv + G dv^2$$

and called a Riemannian metric

Second Fundamental Form

- Consider a curve ${f C}$ on surface ${f M}$ parametrized by arc length
- Its curvature at point ${f p}$ is $\|\ddot{{f C}}\|$
- Writing $L=\mathbf{N}\cdot\mathbf{M}_{\mathrm{uu}}$, $M=\mathbf{N}\cdot\mathbf{M}_{\mathrm{uv}}$, $N=\mathbf{N}\cdot\mathbf{M}_{\mathrm{vv}}$ we have $\|\ddot{\mathbf{C}}\|=L\dot{u}^2+2M\dot{u}\dot{v}+N\dot{v}^2$
- The map $(x, y) \mapsto Lx^2 + 2Mxy + Ny^2$ is called the second fundamental form of the surface at **p**

$$II_{\mathbf{p}}(x,y) = \begin{bmatrix} x \ y \end{bmatrix} \begin{bmatrix} L & M \\ M & N \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Caution!

Remember that the fundamental forms depend on the surface point ${f p}$

The coefficients E, F, G, L, M, N are not in general constant over the surface (it would be clearer but more cluttered to write them as $E_{\mathbf{p}}, F_{\mathbf{p}}$ etc). They can take different values at different points.

Analogies with curves

Curves:

First derivative → arc length Second derivative → curvature

Surfaces:

First fundamental form \rightarrow distances Second fundamental form \rightarrow (extrinsic) curvatures

Intrinsic and Extrinsic Properties

- Properties of the surface related to the first fundamental form are called intrinsic properties
 - Determined only by measuring distances on the surface
- Properties of the surface related to the second fundamental form are called extrinsic properties
 - Determined by looking at the full embedding of the surface in \mathbb{R}^3

Gaussian Curvature

The Gaussian curvature at a surface point is an intrinsic property

$$K = \frac{LN - M^2}{EG - F^2}$$

• But this involves L, M, N from the second fundamental form, how is this intrinsic?

Theorem Egregium of Gauss

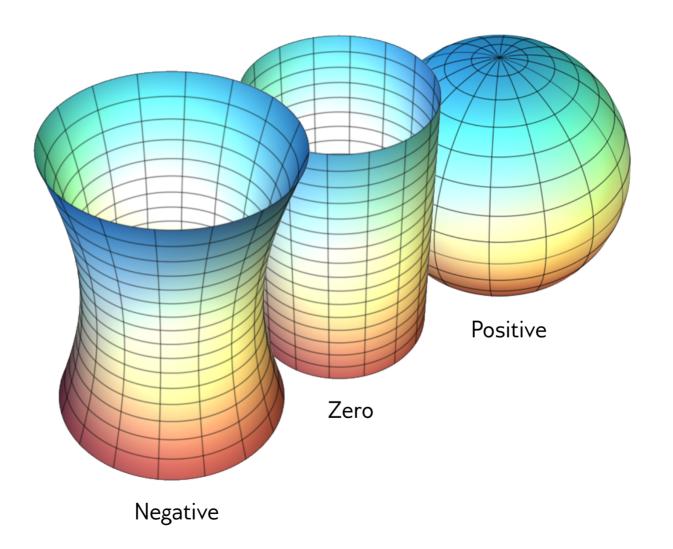
 The Gaussian curvature can be expressed solely as a function of the coefficients of the first fundamental form and their derivatives

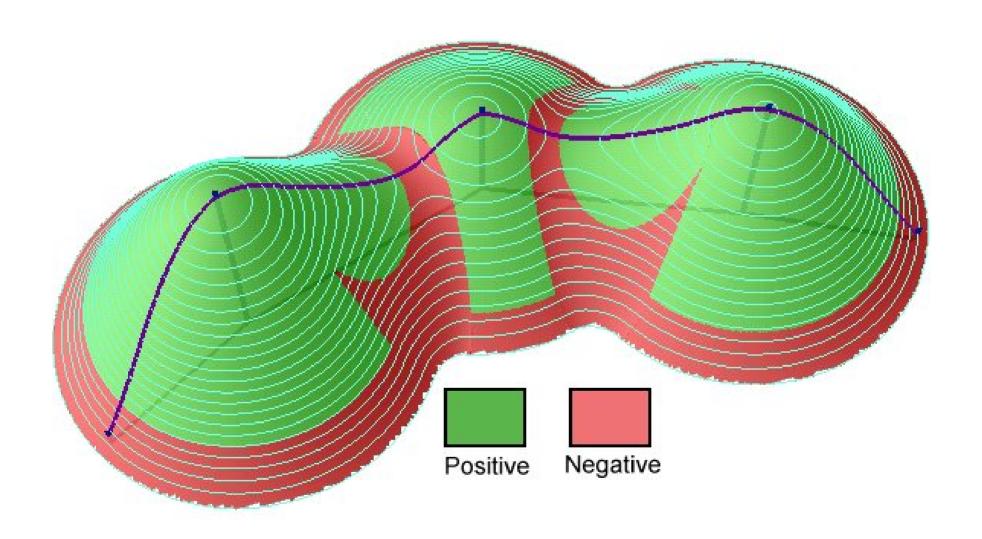
$$K = \frac{\det \begin{vmatrix} -\frac{1}{2}E_{vv} + F_{uv} - \frac{1}{2}G_{uu} & \frac{1}{2}E_{u} & F_{u} - \frac{1}{2}E_{v} \\ F_{v} - \frac{1}{2}G_{u} & E & F \\ \frac{1}{2}G_{v} & F & G \end{vmatrix} - \det \begin{vmatrix} 0 & \frac{1}{2}E_{v} & \frac{1}{2}G_{u} \\ \frac{1}{2}E_{v} & E & F \\ \frac{1}{2}G_{u} & F & G \end{vmatrix}}{(EG - F^{2})^{2}}$$

Intrinsic classification of surface points

A surface point is

- (1) Elliptic if $LN M^2 > 0$, or equivalently K > 0.
- (2) Hyperbolic if $LN M^2 < 0$, or equivalently K < 0.
- (3) Parabolic if $LN M^2 = 0$ and $L^2 + M^2 + N^2 > 0$, or equivalently $K = \kappa_1 \kappa_2 = 0$ but either $\kappa_1 \neq 0$ or $\kappa_2 \neq 0$.
- (4) Planar if L = M = N = 0, or equivalently $\kappa_1 = \kappa_2 = 0$.

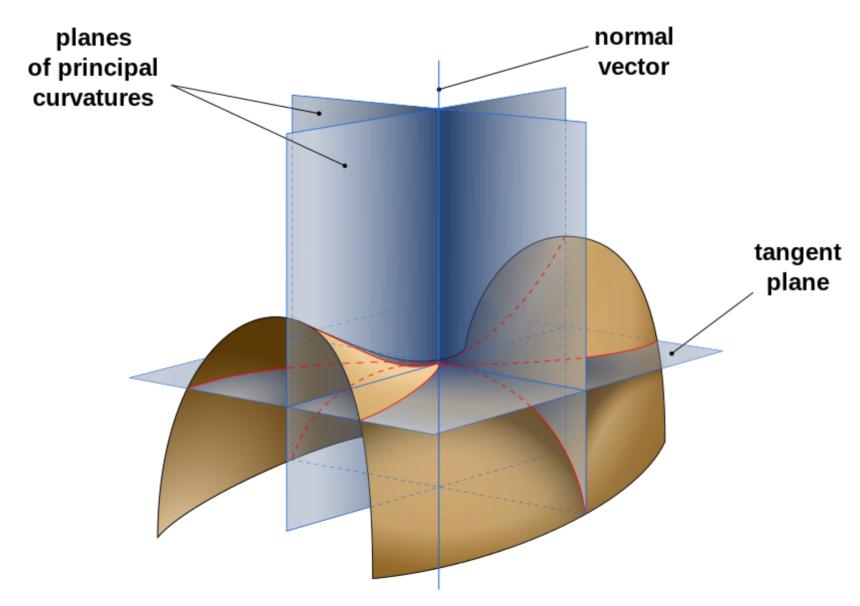




Principal Curvatures

- Geodesic curves passing through a point assume maximum and minimum curvatures in orthogonal directions
- These curvatures are called the principal curvatures K_1 and K_2 , and the corresponding directions the principal directions
- The principal curvatures are extrinsic properties

Principal Curvatures



Principal Curvatures

 The principal curvatures are the eigenvalues of the shape operator, computed from the fundamental form matrices

$$S = \begin{bmatrix} E & F \\ F & G \end{bmatrix}^{-1} \begin{bmatrix} L & M \\ M & N \end{bmatrix} = \frac{1}{EG - F^2} \begin{bmatrix} LG - MF & MG - NF \\ ME - LF & NE - MF \end{bmatrix}$$

(and the principal directions are the eigenvectors)

• It turns out that $K = K_1 K_2$

Bonnet's Theorem

A surface in 3-space is uniquely determined upto rigid motion by its first and second fundamental forms

(Compare to the Fundamental Theorem of Space Curves: curvature and torsion uniquely define a curve upto rigid motion.

An even more direct analogue is the Fundamental Theorem of Surface Theory: two fields of 2x2 matrices over a simply connected open 2D domain, that satisfy certain conditions, are the first and second fundamental form matrices of a surface uniquely defined upto rigid motion. Do you see why this theorem and Bonnet's Theorem are *not* saying the same thing?)