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Natural Language Processing

Art, science and technique of making
computers understand and generate
language



Increased
Complexity
of
Processing

NLP is layered Processing,
Multidimensional too

Discourse and Coreference

Semantics

Parsing

Chunking

POS tagging

CRF

Morphology

Problem
o Semantics NLP
Trinity
Parsing ——
Part of Speech
—T— Tagging
Morph ——
Analysis Marathi French
|| | |
HMM I | |
Hindi English
Language
MEMM
Algorithm



Main Challenge: AMBIGUITY



Example

* (from a TV serial) “You met the boy; how
did you find him?”



Example (cntd.)

* “You met the boy; how did you find him;
did you like him?”



Example (cntd.)

* “You met the boy; how did you find him;
through some reference?”



Topics to be covered

Single Neuron, perceptron and sigmoid,;
application to NLP; text classification

Multilayered FFNN, Backpropagation; Softmax
Application to NLP; Multiclass NLP problems

Recurrent Neural Net (RNN); Application to
NLP- seg2seq

Recursive Neural Net; Application to NLP
Parsing

Convolutional Neural Nets; Multimodal NLP
Transformers; Application to MT, QA, NLG




Major Topics covered in CS626,
last sem

NLP and Ambiqguity

POS Tagging

Named Entity Recognition

Word Sense Disambiguation

Wordnet and Lexical Resources
Alignment and EM Algorithm

Machine Translation and MT Evaluation
Conversational Al and Pragmatics



Evaluation Scheme (tentative)

* 40%: Reading, Thinking,
Comprehending
— Quizzes (20%) (4 nos.)
— Endsem (20%)

* 60%: Doing things, Hands on
— Assignments (20%)
— Course Project (40%)



Quizzes and Endsem

 ONE/TWO subjective guestions- only
one page

 Rest MCQs on Moodle



Assignments and Project

 Continuous evaluation

* Meeting every two weeks to monitor
progress

» Credit for thorough literature survey
for the project work



Demoes

https://www.cfilt.iitb.ac.in/ssmt/speech2speech
https://www.cfilt.litb.ac.in/mtsystem/translate
https://chat.openai.com/chat#



https://www.cfilt.iitb.ac.in/ssmt/speech2speech
https://www.cfilt.iitb.ac.in/mtsystem/translate
https://chat.openai.com/chat
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The Perceptron Model

A perceptron is a computing element with input
lines having associated weights and the cell
having a threshold value. The perceptron model
IS motivated by the biological neuron.

Output =y

Threshold = 6



Statement of Convergence of
PTA

e Statement:

Whatever be the initial choice of weights and
whatever be the vector chosen for testing, PTA
converges if the vectors are from a linearly
separable function.



To note

F1:|G(W,)| Is bounded
1=

F2: n tends to Infinity
THEN

F3: |G(W,)| iIs unbounded



Sigmoid



Sigmoid neuron




Sigmoid function: can saturate

* Brain saving itself from itself, in case of
extreme agitation, emotion etc.




Definition: Sigmoid or Logit function

1 y = 1
Y T e 1+e™
dy ﬂ — kv(] —
ol Yi-y) g y(1-y)

If k tends to infinity, sigmoid tends
to the step function



Decision making under sigmoid

Output of sigmod Is between 0-1

Look upon this value as probability of
Class-1 (C,)

1-sigmoid(x) Is the probability of Class-2
(C>)
Decide C,, If P(C,) > P(C,), else C,



multiclass: SOFTMAX

2-class = multi-class (C classes)
Sigmoid = softmax

ith input, ct" class (small ¢), c varies over
classes

In softmax, decide for that class which
has the highest probability



Mathematical form

G(i)i =

o Is the softmax function
Z 1s the input vector of size K

The RHS gives the i component of the output
vector

Input to softmax and output of softmax are of
the same dimension
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Sigmoid neuron




Softmax Neuron




Single sigmoid neuron- weight change
rule

oE OE o0 onet
ow, 00 oOnet ow,
E=-tlogo—(1-t)log(l-o0)
oE t 1-t t—o
= +
00 o l1l-o0 0(1-0)

. . 00
_ sigmoid)= ——=0(1-0
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Multiple neurons in the output layer: softmax+cross entropy

loss (1/2): illustrated with 2 neurons and single training data
point

O=<o0,0, >
NET =< net, net, >

gnet
01 = 0. =

net,

e

net,

g™l p g™ ' 0 oMl g
| 90, 00,
~ 00 | dnet, dnet,
ONET 00, 00,

| onet,  oOnet,

_ {Oo (1_00) — 0,0, }

— 0,0 0, (1 - 01)




Softmax and Cross Entropy (2/2)

E=-tlogo, —t,logo,
enet1 net,

0, = , 00 =
1 enet1 _|_enet0
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aW’H



Weight change rule with TSS



Single neuron: sigmoid+total sum
square (tss) loss

Lets consider wilg w,. Change is
weight Aw,= -ndL/ dw,
n=learning rate,

L=loss= Y4(t-0)?,
t=target, o=observed output
oL oL oo onet
ow, 6o onet’ ow,
oL
B
(sigmoid) = 0 _ 0(1-0)(2)
onet

=—(t-0) @)

1
L==(t-0)* =
2( )

L onet

=X (3)

i=0 1

= Aw, =7n(t-0)o(1-0)X,



Single neuron: sigmoid+total sum
square (tss) loss (cntd)

oL oL 0o oOnet
ow, 00 oOnet ow,

1 , oL
L=—(t-0)" =" "=(t-0) (1

(sigmoid) = 2% = 0(1—0) (2)

0=

1+e™™ onet
L net
net=> wx, 0 =x. (3)
1=0 1

= Aw, =7(t—0)o(1-0)X

Aw, = n(t-0)o(1-0)x,



Multiple neurons In the output layer:
sigmoid+total sum square (tss) loss

et, largetvector: <t;, t,>

Observed vector:
<04, 0p>

TSS Loss= %5[(t;-0,)%+
(to-00)“]

Awy; = N(t3-01)04(1-01)%;



General Backpropagation Rule

« General weight updating rule:
AWji =10Jo,

* Where

6; =(t; —0;)0;(1—0;) for outermost layer

- Z (ij5k)0j (1- 0; )0, for hidden layers

kenext layer
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Deriving the word vector: setting

W tWg, Wy, W, W Wy WS: word sequence in the st
Sentence

V., ] VRSV
V,;: word vector of w,

J=P(w;|w)
L:_P(Wj |Wi)

vV Vv

e
Ml v Vv
j=1

P(Wj |Wi) =

MoV
LL=-V_V +In>e"

j'=1



Deriving the word vector: Optimization
. l'(,...v‘g]:'{uzo,)ul,u

syl Uy ]

k=0
%, V] % U Vi
v Zekzo
oLL ou,\ 7o
—— =V + .



Deriving the word vector: Optimization

d
I\/l a kzo Uy Vi l\/l % Uy Vi 8 d
U € e~ — 2 UV,
=1 Ol i1 Ou,, \ k=0
T T =T T
2. UgVy 2 UpVy
k=0 k=0
J=1 J=1
4 % UV
&% v
_ j=1 _ _
=Vt T =—V,+ ) PW,; W)V, =-v +E(v)



Deriving the word vector, Gradient
Descent: Au,

oOLL
—1] = 77[Vk — E(Vk')]
ou,

AU,



Example

We want, say, P(‘bark’|’dog’)

Take the weight vector FROM ‘dog’ neuron
'O projection layer (call this Uy,,)

"ake the weight vector TO ‘bark’ neuron
FROM projection layer (call this U, ;)

When initialized, U,,, and Uy, give the initial
estimates of word vectors of ‘dog’ and ‘bark’

The weights and therefore the word vectors
get fixed by back propagation




Input to Projection (shown for one

neuron only)  oupu O
for
]Icgfut O Pr_oje.zction park O
dog O (dim: d) O
O 1
O /”?
®
: //»o
1 C)é ]
o T
O




Modelling P(context word|input word)
(2/2)
* To model the probability, first compute dot
product of uy,, and vy,
* EXxponentiate the dot product

* Take softmax over all dot products over the
whole vocabulary

eXp(U cTogU bark )
D exp(UgUg)

ReVocabulary

P(‘bark'|'dog") =




P(‘bark’|’dog’) (1/2)

exp(U cTogU bark )
Y. exp(UgeUp)

ReVocabulary

P('bark'['dog") =

log(P(‘bark''dog")) =UgoUpar —109( D, exp(Ug,U¢))

R&Vocabulary



Word2vec architectures

Mikolov 2013



Classic work

* Caught the attention of the world by
equations like

king’-’'man’+’'woman’='queen’

‘king’-'man’+'woman=‘queen’




Input Layer Hidden Layer
0 — — >
1 VXD
0 _ i
0 /
V-dim D-dim

(context: prev word and next word)

Skip Gram

DXV

Softmax
Layer

Truth

1
0
0
0

~ O O O



Input Layer

VXD

VXD

/ D-dim

wjn Layer

.

CBOW

DXV

v

V-dim

Softmax



Symbolic approach to
representing word meaning



Syntagmatic and Paradigmatic
Relations

* Syntagmatic and paradigmatic relations

— Lexico-semantic relations: synonymy,
antonymy, hypernymy, mernymy, troponymy
etc. CAT is-a ANIMAL

— Coccurence: CATS MEW
* Resources to capture semantics:
— Wordnet: primarily paradigmatic relations
— ConceptNet: primarily Syntagmatic
Relations



Fundamental Device- Lexical
Matrix (with examples)

Word Forms
Word Meanings
F, F, F, F,
rel
(depend) (bank) (E Y)
M1 E1 2 1,3
E1,1 '
(embankme
\ (bank) nt)
2 E2,2 Ez,...
(bank)
M, E3,2 E3 3
Mm Em,n
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Two main models for learning word vectors

* 1) global matrix factorization methods,
such as latent semantic analysis (LSA)
(Deerwester et al., 1990) and

» 2) local context window methods, such
as the skip-gram model of Mikolov
et al. (2013)

» Currently, both families suffer significant
drawbacks.



Matrix Factorization: drawback

“most frequent words contribute a
disproportionate amount to the similarity
measure: the number of times two
words co-occur with the or and, for
example, will have a large effect on
their similarity despite conveying
relatively little about their semantic
relatedness.”



Skip Gram & CBOW: drawback

“shallow window-based methods suffer
from the disadvantage that they do not
operate directly on the co-occurrence
statistics of the corpus. Instead,these
models scan context windows across
the entire corpus, which fails to take
advantage of the vast amount of
repetition in the data”



Can this architecture for Glove work?

Input Layer Hidden Layer

7 0.4

0
0 ] 0.2
1 V XD X V 01

0
\ 0.3

0 S




Representation using syntagmatic
relations: Co-occurrence Matrix

Corpora: | enjoy cricket. | like music. | like deep learning

I enjoy cricket |like music deep learning
I - 1 1 2 1 1 1
enjoy 1 - 1 0 0 0 0
cricket |1 1 0 0 0 0
like 2 0 0 - 1 1 1
music 1 0 0 1 - 0 0
deep 1 0 0 1 0 - 1
learning |1 0 0 1 0 1 -




Solution: uses co-occurences

|

7= (X)) (whj +b; +B; — log X;;)
i,j=1



Dimensionality Reduction by
PCA



Intuition for Dimensionality Reduction

1, 2, 3, 4: are the points
*A, B, C, D: are their projections on the fitted line by linear regression

*Suppose 1, 2 form a class and 3, 4 another class
*Of course, it is easy to set up a hyper plane that will separate 1 and 2 from 3 and 4
*That will be classification in 2 dimension

*But suppose we form another attribute of these points, viz., distances of their
sprojections On the line from “O”

*Then the points can be classified by a threshold on these distances

*This effectively is classification in the reduced dimension (1 dimension)




Principal Component Analysis



Example: IRIS Data (only 3 values

out of 150)
ID Petal Petal Sepal ’ Sepal Classific
Length | Width Length | Width ation
(a;) (ay) (as) (ay)
001 5.1 3.5 1.4 0.2 Iris-
setosa
051 7.0 3.2 4.7 1.4 Iris-
versicol
or
101 6.3 3.3 6.0 2.5 Iris-
virginica




Training and Testing Data

Training: 80% of the data; 40 from each
class: total 120

Testing: Remaining 30
Do we have to consider all the 4
attributes for classification?

Less attributes Is likely to increase the
generalization performance (Occam
Razor Hypothesis: A simpler hypothesis
generalizes better)



The multivariate data: n instances,
p attributes

X, Xp Xg Xy Xeewr X

X11 X2 X3 Xqg X5 -2 Xqp
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PCA: Example

49 birds: 21 survived in a storm and 28 died.

5 body characteristics given

X,: body length; X,: alar extent; X;: beak and head length

X,: humerus length; Xc: keel length

Could we have predicted the fate from the body characteristic

X4 X, X3 X4 Xs

"1.000 T X,
0.735 1.000 X,

R =|0.662 0.674 1.000 X;
0.645 0.769 0.763 1.000 X,
0.605 0.529 0.526 0.607 1.000 | X



Eigenvalues and Eigenvectors of R

Eigenvalues: 3.612, 0.532, 0.386, 0.302, 0.165

First Eigen- V, V, V, Vg
vector: V;

0.452 0.462 0.451 0.471 0.398
-0.051 0.300 0.325 0.185 -0.877
0.691 0.341 -0.455 -0.411 -0.179
-0.420 0.548 -0.606 0.388 0.069
0.374 -0.530 -0.343 0.652 -0.192




Which principal components are
Important?

Total variance in the data=
A+ A+ At Ayt As
= sum of diagonals of R=5

First eigenvalue= 3.616 = 72% of total
variance 5

Second = 10.6%, Third = 7.7%, Fourth =
6.0% and Fifth = 3.3%

First PC Is the most important and
sufficient for studying the

~laccifiratinn



Forming the PCs

Z,= 0.451X,+0.462X,+0.451X,+0.471X,+0.398X¢
Z,= -0.051X,+0.300X,+0.325X,+0.185X, -0.877X.

For all the 49 birds find the first two
principal components

This becomes the new data
Classify using them



For the first bird

X,=156, X,=245, X;=31.6, X,=18.5, X;=20.5
After standardizing

Y ,=(156-157.98)/3.65=-0.54,
Y,=(245-241.33)/5.1=0.73,
Y,;=(31.6-31.5)/0.8=0.17,
Y,=(18.5-18.46)/0.56=0.05,
Y:=(20.5-20.8)/0.99=-0.33

PC, for the first bird=

Z,= 0.45X(-0.54)+ 0.46X(0.725)+0.45X(0.17)+0.47X(0.05)+0.39X(-
0.33)

=0.064
Similarly, Z,= 0.602



- Instead of [X; [X, [X53 [X; [Xsg

- Use (Z; Z,

Reduced Classification Data

| |rows

f 49 | rows




Working out a simple case of
word2vec



Us; Us
U, u,

Uy uy

Uos Ug

Input
vector
U

Word2vec n/w

Capital letter for NAME of neuron; small
letter for output from the same neuron

Hai hy Wyon1

W|-|1U() WV2H0

Ho; hy
Whouo

Weights go from all neurons to
all neurons in the next layer; shown
For only one input and output

Vs; V3
Vo, Vs
Vi vy
Vo Vo

Output
vector
V



Computing Aw,,,q
ok
&NVZHO

t t
E =-net, +log(e™ +e™™ +e" +e"™)

AW,y = =77

=W, W,/ +log(e"" +e™™ +e™ +e"™*)

T _
WUOWVZ o WVZHOWHOUO +WV2H1WH1U0

OF g2l
=—-W +

HoUg W.

aNVz Ho € VO

— _WHOUO +V, 'WHOUO

Wy, n eWV1 Wy, n eWV2 Wy, e

— AWVZHO = 77(1_V2)-WHOUO = 77(1_V2)0HO

K/p'of hidden neuron H,



Us; Us
U, u,

Uy uy

Uos Ug

Input
vector
U

Word2vec n/w

Capital letter for NAME of neuron; small
letter for output from the same neuron

Hai hy Wyon1

W|-|1U() WV2H0

Ho; hy
Whouo

Weights go from all neurons to
all neurons in the next layer; shown
For only one input and output

Vs; V3
Vo, Vs
Vi vy
Vo Vo

Output
vector
V



Change in other weights to output layer, say, V,,
due toé]iznput U,

VlHO ﬁ’”
VlHO

E — _net\/2 4 Iog(enetVO Le™ e enetvs)

_ _WUOWVT2 +1o 9 (e nety, n enetVl n enetV2 n enet\,3 )

T —
WUOWV2 - WVzHoWHoUo T VVVZHlVVHlu0

éE _ O N eWVl Wyg "
- W, W, W, W, W, W, Wo. W~ "VVH,U
&/VleO e Vo " Ug 4 e Vi -"Uq +e Vo -¥¥Uq +e vz -YVuq ) ovo
= V. Wy U,

— AW\,lH0 = —1Ny\Wy y, = —TV,0y



Us; Us
U, u,

Uy uy

Uos Ug

Input
vector
U

Word2vec n/w

Capital letter for NAME of neuron; small
letter for output from the same neuron

Hai hy Wyon1

W|-|1U() WV2H0

Ho; hy
Whouo

Weights go from all neurons to
all neurons in the next layer; shown
For only one input and output

Vs; V3
Vo, Vs
Vi vy
Vo Vo

Output
vector
V



Cntd: Weight change for input to hidden layer,

Say, Wouo
o=
OW
I_IOUO
W, € g, e g e g, e
— —W + VoHg ViH, VoHg V3Hg
 TV,H eWVO W ew\,1 Woo ew\,2 W eWV3 Wy,

= =Wy, TWyn, Vo T Wy g Vi Wy 1y Vo Wy Vs

= AWHOU0 =nl(d- VZ)WV2H0 —Wy H, Yo =Wy h, Vo =W, V]
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Encode - Decode Paradigm Explained

(5)... continue till
end of sequence
tag is generated

Use two RNN networks: the encoder and the decoder
(4) Decoder

generates one
element at a
time

(3) This is used
to initialize the

decoder state

hy h, h, hy » Decoding

(1) Encoder
processes one
input at a time

(2) A representation
of the sentence is
generated

> Encoding https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/
Sequence to Sequence Learning with Neural Networks llya Sutskever, Oriol Vinyals, Quoc V. Le. arxiv pre-

print [link]


https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/
https://arxiv.org/abs/1409.3215

What is the decoder doing at each

time-step?
ply; = kly<;,x;0) - SOfthLQU(Ojk) _ m:(;xp(()jk)
>~ exp(0jm)
m=0
05 = FF(SJ)

s;j = g(sj—1,emb(yj_1), c)

This captures y



Decoding

Searching for the best translations in the space of all
translations

Ram | ate rice | with the spoon

|

TH JEAd O | [ draed | | @™



Partial
Hypothesis Hypothesis
Expansion

Final
Hypothesis

Incremental construction
® Each hypothesis is scored using the model

®* Hypotheses are maintained in a priority
gueue

Empty
Hypothesis




R A

» Decoding

» Encoding



The entire source sentence IS
represented by a single vector

Problems

e Insufficient to represent to capture all the syntactic and
semantic complexities
o Solution: Use a richer representation for the sentences

e Long-term dependencies: Source sentence representation
not useful after few decoder time steps
o Solution: Make source sentence information when making
the next prediction
o Even better, make RELEVANT source sentence
Information available



Encode - Attend - Decode Paradigm

Annotation

vectors Represent the source sentence by

the set of output vectors from the
encoder

Each output vector attime tis a
contextual representation of the
input at time t

Let’s call these encoder output
vectors annotation vectors

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate.” ICLR 2015.

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-3/



CNN



Two motivation points

* 1. Reduced number of parameters
» 2. Stepwise extraction of features

* These two are applicable to any Al
situation, and not only vision and

Image processing



CNN= feedforward like + recurrent
like!

* Whatever we learnt so far in FF-BP Is useful
to understand CNN

* So also is the case with RNN (and LSTM)
* Input divided into regions and fed forward

* Window slides over the input: input changes,
but filter’ parameters remain same

* Thatis like RNN




Genesis: Neocognitron

recognized
pattern

stage 1

()

(Fukusima, 1980)

stage 2

stage 4

feature
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CNN Genesis: Neocognitron

recognized
pattern

stage 1

()

(Fukusima, 1980)

stage 2

stage 4

feature




A typical ConvNet

LT Wl T ELT ST L il 7ML N EEET AL LA EEEEOLEE LTS EEE (FEE WLl ETE —EET ey

Convolutions and RelLU
& & & & F T & & & & L& T £ o 0o 0o ol &F & &F F & &F & @

V-7 77777772727 777,77 77 4

Convolutions and ReLU

I

Lecun, Bengio, Hinton, Nature, 2015



Why CNN became a rage: image

Vision Language
Deep CNN Generating RNN
' A group of people
. _ shopping at an outdoor
.L.\ ,/. market.
B 1q e —_
.-:\ - S There are many
.,,,,/\. vegetables at the

fruit stand.

Image
Captioning-1

Image
Captioning-2

A stop sign is on a road with a
mountain in the background



Role of ImageNet

Million images from the web
1,000 different classes
Spectacular results!

Almost halving the error rates of the
best competing approachesl.



Learning in CNN

 Automatically learns the
values of its filters

* For example, in Image
Classification learn to

detect edges from raw pixels in the first layer,

then use the edges to detect simple shapes in
the second layer,

and then use these shapes to deter higher-level
features, such as facial shapes in higher layers.

The last layer is then a classifier that uses
these high-level features.



Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

1
L

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)
—l- ’l

LI |

| -

1

http://mww.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/



+ activation function

(2 |

/

convolution 1-max softmax function
\ i regularization
Y pockng y /I inthis layer
\ 3 region sizes: (2,3,4) 2 feature = v
Sentence matrix 2 filters for each region maps for 6 univariate | 2 classes |
7x5 size each vectors
totally 6 filters region size concatenated
together to form a
single feature
vector
> \
Credit: Denny Britz
d=5
ks CNN for NLP
this
movie
very
much '
! \
—_—

/I



CNN-FF for Sarcasm

Vocab Size

Embedding Size

Max Tweet Length (In
Dataset) + Padding

Awesome
Battery
Lasts
Only

Mins

Embedding Size

Filters (3* Embed size)

Filters (4* Embed size)

Filters (5* Embed size)

Feature Maps Obtained From different Filters, concatenated to
Become a single Feature Vector

It can also be a simple
Logistic Regression Layer

Numeric Sarcastic

4 Fully Connected

Non-Sarcastic



Comparison of results : sarcastic, o: non-

sarcastic)
Approaches Precision Recall F-score
P(1) PO) | Pavg) R | RO [ Ravg) F(1) FO0) | Fvg
Past Approaches
Buschmeier et.al. 0.19 0.98 0.84 0.99 0.07 0.24 0.32 0.13 0.16
Liebrecht et.al. 0.19 1.00 0.85 1.00 0.07 0.24 0.32 0.13 0.17
Gonzalez et.al. 0.19 0.96 0.83 0.99 0.06 0.23 0.32 0.12 0.15
Joshi et.al. 0.20 1.00 0.86 1.00 0.13 0.29 0.33 0.23 0.25
Rule-Based Approaches
Approach-1 0.53 0.87 0.81 0.39 0.92 0.83 0.45 0.90 0.82
Approach-2 0.44 0.85 0.78 0.28 0.92 0.81 0.34 0.89 0.79
Machine-Learning Based Approaches
SVM 0.50 0.95 0.87 0.80 0.82 0.82 0.61 0.88 0.83
KNN 0.36 0.94 0.84 0.81 0.68 0.70 0.50 0.79 0.74
Random Forest 0.47 0.93 0.85 0.74 0.81 0.80 0.57 0.87 0.82
Deep-Learning Based Approaches
CNN-FF 0.88 0.94 0.93 0.71 0.98 0.93 0.79 0.96 0.93
CNN-LSTM-FF 0.82 0.94 0.92 0.72 0.96 0.92 0.77 0.95 0.92
LSTM-FF 0.76 0.93 0.90 0.68 0.95 0.90 0.72 0.94 0.90

O
o))
(@]
=



Sentiment Annotation and Eye
Movement

~ Sarcastic

S1: I'll always cherish the original misconception I had of you..

Longer
Fixations

o | Multiple

S2: The lead actress 1s terrible and I cannot be convinced she 1s supposed .
to be some forensic genius. Reg ressive

Saccades

~
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Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya, Learning Cognitive Features
from Gaze Data for Sentiment and Sarcasm Classification Using Convolutional Neural
Network, ACL 2017, Vancouver, Canada, July 30-August 4, 2017.
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https://www.cse.iitb.ac.in/~pb/papers/acl17-cogfeatures.pdf
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Neural Network Architecture
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Results — Sarcasm Detection

Configuration r R F
Traditional systems Niive Bayes 69.1 60.1 60.5
based on Multi-layered Perceptron 69.7 704 699
textual features SVM (Linear Kernel) 72.1 71.9 72
Systems by Text based (Ordered) 49 46 47
Riloff et al. (2013) Text + Gaze (Unordered) 46 41 42
System by Text based (best) 70.7 69.8 64.2
Joshi et al. (2015)
Systems by Gaze based (Best) T3 73.8 73.1
Mishra et al. (2016b) Text based (Best) 72.1 71.9 72
Text + Gaze (Best) 76.5 75.3 75.7
CNN with only STATICTEXT 67.17 6638 66.77
text input (Kim, 2014) NONSTATICTEXT 84.19 87.03 RB5.59
’ MULTICHANNELTEXT 84.28 B7.03 85.63
. FIXATION 7439 69.62 71.93
CNN with only SACCADE 68.58 6823 6840
gaze Input MULTICHANNELGAZE 67.93 6172 67.82
STATICTEXT + FIXATION 72,38 7193 72.15
STATICTEXT + SACCADE 73.12 72,14 72.63
STATICTEXT + MULTICHANNELGAZE 71.41 71.03 71.22
CNN with both NONSTATICTEXT + FIXATION 87.42 85.2 86.30
text and NONSTATICTEXT + SACCADE 84.84 82.68 83.75
gaze Input NONSTATICTEXT + MULTICHANNELGAZE 84.98 82.79 83.87
MULTICHANNELTEXT + FIXATION 87.03 8692 8697
MULTICHANNELTEXT + SACCADE 81.98 81.08 81.53
MULTICHANNELTEXT + MULTICHANNELGAZE 83.11 81.69 82.39




Attention and Transformer

Arguably, the most important application-
MACHINE TRANSLATION



Two Pillars of Transformer

SECOND
PILLAR

FIRST
PILLAR

Attention + Positional Encoding

= Transformer



Week9

Prompting, Reasoning, Bias, SSMT, QE,
APE, Fake-News & Half-Truth

Detection, Query Intent Detection and
Speech Emotion Recognition
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A classic diagram and a classic paper
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Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. http://nlp.seas.harvard.edu/2018/04/03/attention.html
Gomez, Lukasz Kaiser, and lllia Polosukhin. "Attention is all you need." NeurlPS http://jalammar.github.io/illustrated-transformer/

(2017).


http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/

Attention: Self, Multi-headed,
Cross



Self Attention Block

Yl Y2 Y3 Y4

L]

Attention

]

Bank of the river



Word Embedding and Contextual Word
Embedding

Consider the phrase “bank of the river”
Word embeddings of ‘bank’, ‘of’, ‘the’,
river: V., V,, V3, V,

Now create a ‘score’ vector S; for each
word vector

S (V.V, V..V, V..V, V..V,
Similarly, S,, S;, S,



S-matrix

S11 S12 S13 S14
S21 S22 S23 S24

S31 S32 S33 S34

_S41 S42 S43 S44




S-scaled matrix

S —scaled =

1

Ja

X

S11 S12 S13 Sl4
S21 S22 S23 SZ4

S31 S32 S33 S34

5419542543544




W-matrix
Wll W12 W13 W14
W21W22 W23 W24
W31 W32 W33 W34

Wiy Wiyp Wys Wy,

S, —vector

W. —vector = soft max

Ja



Y-matrix

Vi Y12 Yis Yie
y21 y22 y23 y24
y31 y32 y33 y34

a1 Yar Yaz Yas

Y, —vector =w,,.V, + W, V, + W, .V, +w,.V,



Attention Block

Yl Y2 Y3 Y4

L]

Attention

]

Bank of the river



Query, Key and Value

attention(Q, K,V) = soft max

/ KT\

\f/'



Query, Key and Value with
LEANABLE Parameter (1/2)

Q KT
attention(Q, K,V ) = soft max[w Q W'K }\NVV

Ja

Scaled DataProaduct Attenbon

We, WKk and WV can be the weights of 3
linear layers of neurons which can be
learnt by gradient descent




Query, Key and Value with
LEANABLE Parameter (2/2)

(\NqQT)-(VVK K) — (VVVV)

Wq, W and W,, can be the weights of 3
linear layers of neurons which can be learnt
by gradient descent
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Attempts at Automation

* InstructGPT:
— Command/Request/Order = Response

e ChatGPT:

— Carry out a conversation

— Respect context (state), personalization, quality
and quantity and respond
* Input: | have been promoted

« Appropriate response: | am
delighted/congratulations/great ..

* |Inappropriate: why did they promote you?



Gricean Maxims: Cooperative Principle In
Converstaion (Wikipedia)
Quantity, Quality, Relation, and
Manner

Paul Grice, philosopher of language

“Make your contribution such as is
required, at the stage at which It occurs,
by the accepted purpose or direction of
the talk exchange in which you are
engaged”.

Captures the LINK between utterances



Maxim of Quantity (length and depth)

« Be informative, and submaxims are:

— Make your contribution as informative as Is
required (for the current purposes of the
exchange).

— Do not make your contribution more informative
than Is required.

* Grice’s analogy: "If you are assisting me to mend
a car, | expect your contribution to be neither more
nor less than is required. If, for example, at a
particular stage | need four screws, | expect you to
hand me four, rather than two or six."



Maxim of Quality (truth)

e Be Truthful

* Submaxims:
— Do not say what you believe Is false.

— Do not say that for which you lack
adequate evidence

* Grice’s analogy: "l expect your contributions
to be genuine and not spurious. If | need sugar
as an ingredient in the cake you are assisting
me to make, | do not expect you to hand me
salt; If | need a spoon, | do not expect a trick
spoon made of rubber."



Maxim of Relation (relevance)

Information is relevant to the current
exchange; therefore omitting any
Irrelevant information

Grice’s analogy for this maxim: "I expect a
partner’s contribution to be appropriate to the
Immediate needs at each stage of the
transaction. If | am mixing ingredients for a
cake, | do not expect to be handed a good
book, or even an oven cloth (though this might
be an appropriate contribution at a later

stage).”



Maxim of Manner (clarity)

 Be perspicuous

e Submaxims:

— Avoid obscurity of expression — I.e., avoid
language that is difficult to understand.

— Avoid ambiguity — I.e., avoid language that can be
Interpreted in multiple ways.

— Be brief — I.e., avoid unnecessary prolixity.

— Be orderly — i.e., provide information in an order
that makes sense, and makes it easy for the
recipient to process it.
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Al chatbots compared: Bard vs.
Bing vs. ChatGPT

https://www.theverge.com/2023/3/24/236533
['7/al-chatbots-comparison-bard-bing-
chatgpt-gpt-4



Comparison: Chatbots

Google’s Bard (https://bard.google.com/),

Microsoft's Bing
(https://www.theverge.com/2023/3/24/23653377/al-
chatbots-comparison-bard-bing-chatgpt-gpt-4),

OpenAl’'s ChatGPT (https://chat.openai.com/chat#)



https://www.theverge.com/2023/3/21/23649794/google-chatgpt-rival-bard-ai-chatbot-access-hands-on
https://www.theverge.com/2022/12/8/23499728/ai-capability-accessibility-chatgpt-stable-diffusion-commercialization

3 stages of LLM based CAI

* Generative Pretraining (GP)
» Supervised Fine Tuning (SFT)

* Reinforcement Learning from Human
Feedback (RLHF)



Enter Pragmatics



B, 20 1dt: pushpak

Modeling

P(e): “language”
« model
e =argmax, P(e| f)

=argmax [P(e)P(f |e)]

* Dialogue Act Classification (DAC): f-2 Dialogue
Sequence, e ?Dialogue turn labels

* Dialogue Intent: -2 dialogue sequence, e - dialogue
turns with Intent like ‘guestion’, ‘elaboration’,
affirmation’, ‘command/request’ etc.




Elements of Pragmatics (1/2)

* Deixis (literally, ‘pointing with words’: temporal-
now, then; spatial- here, there; personal- |, you,
he, they; definite-indefinite- this, that, those)

* Presupposition: (untie the shoe >
presupposes the shoe was tied before)



Elements of Pragmatics (2/2)

Speech Acts: (I pronounce you man and
wife)- locutionary, illocutionary, and
perlocutionary

Implicatures: (A: shall we go for a walk? B: It
IS raining outside)
Politeness: (close the door - please close

the door -2 can you close the door - would
you mind closing the door)

Information Structure: ordering of

iInformation (??The table Is under the flower
Nnnt- nAdd: emallar ohieact firet meantinn ... .



The Trinity of Pragmatics

Linguistic Expression

Speaker Hearer



DiexIs

Credit:
https://doi.org/10.1093/acrefore/97801993
84655.013.213



https://doi.org/10.1093/acrefore/9780199384655.013.213

Speech Act



Kinds of Speech Act

Locutionary
lllocutionary
Perlocutionary

Performative Speech acts



Implicatures



Computational Perspective:
Conversational Al



Dialogue Based Computation

Zihao He, Lelili Tavabi, Kristina Lerman, and Mohammad Soleymani.
2021. Speaker Turn Modeling for Dialogue Act Classification. In Findings
of the Association for Computational Linguistics: EMNLP 2021, pages
2150-2157, Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Tulika Saha, Aditya Patra, Sriparna Saha and Pushpak
Bhattacharyya, Towards Emotion-aided Multi-modal Dialogue Act
Classification, Association of Computational Linguistics Conference (ACL
2020), Seattle USA, 5-10 July, 2020.



https://www.cse.iitb.ac.in/~pb/papers/acl20-dialogue.pdf
https://aclanthology.org/2021.findings-emnlp.185
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Summarization



16

SUMMARIZATION

Task of automatically creating a compressed version
of the text document (set of tweets, web-page,
single/multi-document) that should be relevant, non-
redundant and representative of the main idea of the
text.

A text that Is produced from one or more texts that
conveys important information in the original text(s),
and that is no longer than half of the original text(s)
and usually significantly less than that.

Metric:
Compression Ratio= #wordg;mman/H#WOrdyocument



NLP Layer

Pragmatics

Semantics

Syntax

| exical Level



Summarization Categorization

* Broad Categorization

* Extractive: sentences from the input text form part
of summary

* Abstractive: Essence+Natural Language
Generation

* Other categorizations:
* # Document: Single and Multi document
* Purpose: Generic and Query focused

* Miscellaneous: Personalized, Sentiment-based,
Update, E-mail-based, web-based

148



Handling Morphology in Abstractive
Summarization

Fasttext tried solving the morphology generation
problem by BPE (byte pair encoding)

Given “going”, divide the string into “go” and “ing”
Use these parts to generate say “walking”
Each subword will have its own probability

If not subwording, then no way other than showing all
forms of the root word: go, went, going, gone

Languages differ in morphological complexity
French more complex than English

149



Computation of Summaries



REIM20: pushpak

Hierarchical Encoder-Decoder
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SummaRUNNer

Classification

Layer

Sentence layer

Word layer

Input Layer

Sentence 1 Sentence 2 Sentence 3

[1]

Figure 1: SummaRuNNer: A two-layer RNN based sequence classifier 152



Summarization with Pointer-Generator
Network

Extended
Vocabulary

Final Dlstrlbutmn

________________

Context Vector I I I
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Source Text Partial Summanry

: . [2]
Figure: Pointer-generator Model 153



BART

. BERT (12 layers) +

5 B BB GPT (12 layers)

b4 444
Bidirectional I:> Autoregressive . Pre-trained on
<_Encoder Decoder 160GB of news,

I\ t é f E <sT>I\ é é 3 books and web text

Fig 1: BART architecture. o Fine-tuned on
CNN/DM dataset

Lewis, Mike, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke
Zettlemoyer. "Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension.”
arXiv preprint arXiv:1910.13461 (2019). 154



Now GPT...

1. Generative Pre-training
2. Supervised Fine Tuning

3. Reinforcement Learning with Human
Feedback (RLHF)



Opinion/Review Summaries



Properties of Opinion Summaries

. Monotonicity: As more sentences are added to
opinion summary, subjectivity increases along
with information content

. Diminishing Return: If multiple sentences of
varying intensity are added to opinion summary,
the effect of lower intensity diminishes in
presence of higher intensity bearing polar
sentences



Examples from cricket: diminishing return
A: Rahul Dravid Is a great batsman

B: Rahul Dravid Is a very consistent player

AUB:
Rahul Dravid is a great batsman. He is a very
consistent player
Compare B and A U B; “effect” of B diminished in
presence of A

When asked to summarize AUB In one sentence, B IS
likely to be dropped



Example from cricket: coverage

A: “Sachin Is a great batsman”
B: "His backfoot batting is unmatchable”
C: "He also bowls decent spin”

If the budget allows only two subjective sentences,
then picking up A and B have captured only batting

Picking up C with the one of A and B would have
covered both aspects (i.e. batting and bowling)

Sentences are not overlapping in aspects, hence no
diminishing return

Higher intensity dominates



Submodular Function (1/2)

Finite set V
Set Function F: 2V—>R, F()=0

Definition: F : 2¥ — R is submodular iff

¥A,B cV,F(A)+F (B)=F (ANB)+F (A UB)



Submodular Function (2/2)

Equivalent definition:
Yk €V, VA cV,
F(A U{k})-F(A) Is non-increasing
(diminishing return)
=
VACB,Vké&A,
F(Au{})-FA)=zF (B Uk} -F(B)
Example of Submodular Functions: Cut
Functions, Set Cover



Extractive Summarization and Submodularity

e FiIndasetS cV

* S s set of sentences in summary, V IS
set of sentences in Document

* which maximizes a submodular function
f(S) subject to budget constraints.



Monotone Submodular Objective

F(S) = L(S) + AR(S)

F(S) -> Total Utility of summary
L(S) -> Relevance
R(S) -> Diversity



Pointer Generator Network

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get
To The Point: Summarization with Pointer-Generator
Networks, ACL.



https://aclanthology.org/P17-1099

Abstract (1/2)

* Proposes a novel architecture that
augments the standard sequence-to-
seguence attentional model in two

orthogonal ways.

* First: uses a hybrid pointer-generator
network that can copy words from the
source text via pointing, which aids
accurate reproduction of information,
while retaining theability to produce novel
words through the generator



Abstract (2/2)

» Second: uses coverage to keep track of
what has been summarized, which
discourages repetition

* Applies the model to the CNN/Dally Mail
summarization task, outperforming the
current abstractive state-of-the-art by at
least 2 ROUGE points



Basic seq2seq n/w
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Figure 2: Baseline sequence-to-sequence model with attention. The model may attend to relevant words
in the source text to generate novel words, e.g., to produce the novel word beat in the abstractive summary
Germany beat Argentina 2-0 the model may attend to the words victorious and win in the source text.



Fointer Generator N/VV: Copy worad
VS. hew word

Final Distribution

"Argentina”
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Figure 3: Pointer-generator model. For each decoder timestep a generation probability pgen € [0, 1] is
calculated, which weights the probability of generating words from the vocabulary, versus copying words
from the source text. The vocabulary distribution and the attention distribution are weighted and summed
to obtain the final distribution, from which we make our prediction. Note that out-of-vocabulary article

4 4 F. T an E 1 4 4 = o Fal 4 q = L Ema " E = " 4 4



Modeling: input processing

» Tokens w; fed one-by-one into the
encoder (a single-layer bidirectional
LSTM), producing a sequence of encoder
hidden states h

» At each step t, the decoder (a single-layer
unidirectional LSTM) receives the word
embedding of the previous word



Modeling: encoder hidden states

* While training, this is the previous word of
the reference summary;

» at test time It Is the previous word emitted

by the decoder), and has decoder state
S;.

¢ = p! tanh(Wyh; + Wis; + bayn) (1)

a' = softmax(ée’) (2)

where v, W,, W, and b_,, are
learnable parameters.



Modeling: encoder hidden states

» Attention is a probabillity distribution over
the source words, that tells the decoder
where to look to produce the next word.

 Next, the attention distribution is used
to produce a weighted sum of the
encoder hidden states, known as the
context vector h*

hf =Y .dih; (3)



Modeling: vocab distribution

* The context vector Is a fixed size
representation of what has been read
from the source for this step

* |t Is concatenated with the decoder state
s, and fed through two linear layers to
produce the vocabulary distribution P, .,

Pyocar, = softmax(V'(V[s;,h*|+b)+b") (4

where V , V,, b and b, are learnable
parameters.



Modeling: probabillity distribution over vocab

* Pvocab Is a probability distribution over
all words In the vocabulary, and provides
the final distribution from which to predict

words w.

P(“’) — Pvucuh(”’} [5]



Modeling: Loss

* During training, the loss for timestep t Is
the negative log likelihood of the target
word w,* for that time step

» QOverall loss for the whole sequence Is:

loss; = —log P(w;) (6)

| Q—
loss = T Z:=ﬂ loss; (7)



Modeling: Pointer Generator

» Allows both copying words via pointing,
and generating words from a fixed
vocabulary.

» Generation probability pge,€[0,1] for
timestep t is calculated from the context

vector h.*, the decoder state s, and the
decoder input X,

Pgen = E(WE:- h: + W_: St + W_{Ir + h]’.‘fll’} (8)



Fointer Generator N/VV: Copy worad
VS. hew word

Final Distribution
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Figure 3: Pointer-generator model. For each decoder timestep a generation probability pgen € [0, 1] is
calculated, which weights the probability of generating words from the vocabulary, versus copying words
from the source text. The vocabulary distribution and the attention distribution are weighted and summed
to obtain the final distribution, from which we make our prediction. Note that out-of-vocabulary article
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Modeling: Generator Probability

» Allows both copying words via pointing,
and generating words from a fixed
vocabulary.

» Generation probability pge,€[0,1] for
timestep t is calculated from the context

vector h.*, the decoder state s, and the
decoder input X,

Pgen = E(WE:- h: + W_: St + W_{Ir + h]’.‘fll’} (8)

where vectors wh Ws, W, and scalar bptr are learnable



Modeling: to point or to generate

* Pgen IS Used as a soft switch to choose
between generating a word from the
vocabulary by sampling from P, ., Or
copying a word from the input sequence
by sampling from the attention distribution
A P(w) = pgenPyocab(w) + (1 — pgﬂﬂ]zgm-,:w a. (9)

 |f wis an out-of-vocabulary (OOV)
word, then Pvocab(w) Is zero; similarly if

w does not appear in the source
dociiment then S. . alic 7arn



Result: superiority of pointer-generator

ROUGE METEOR
| 2 L exact match | + stem/syn/para
abstractive model (Nallapati et al., 2016)* | 35.46 | 13.30 | 32.65 - -
seg-to-seq + attn baseline (150k vocab) 3049 | 11.17 | 28.08 11.65 12.86
seg-to-seq + attn baseline (50k vocab) 31.33 | 11.81 | 28.83 12.03 13.20
pointer-generator 36.44 | 15.66 | 33.42 15.35 16.65
pointer-generator + coverage 39.53 | 17.28 | 36.38 17.32 18.72
lead-3 baseline (ours) 40.34 | 17.70 | 36.57 20.48 22.21
lead-3 baseline (Nallapati et al., 2017)* 39.2 15.7 35.5 - -
extractive model (Nallapati et al., 2017)* | 39.6 16.2 | 353 - -

Table 1: ROUGE F; and METEOR scores on the test set. Models and baselines in the top half are
abstractive, while those in the bottom half are extractive. Those marked with * were trained and evaluated
on the anonymized dataset, and so are not strictly comparable to our results on the original text. All our
ROUGE scores have a 95% confidence interval of at most 40.25 as reported by the official ROUGE
script. The METEOR improvement from the 50k baseline to the pointer-generator model, and from the
pointer-generator to the pointer-generator+coverage model, were both found to be statistically significant
using an approximate randomization test with p < 0.01.




Giving iImportance to Recall: Ref
n-grams: ROUGE



ROUGE

* Recall-Oriented Understudy for
Gisting Evaluation

 ROUGE Is a package of metrics:
ROUGE-N, ROUGE-L, ROUGE-W
and ROUGE-S



ROUGE-N

ROUGE-N 3 Y Countip(n-gram)
C ( ) D, = Ce{Candidates} n-grame (C
ount oram n - .
et Rerer Zs ) Z . match \S n ¥ >  Count(n-gram’)
— £{ ReferemceSummaries} gram, . C'c{Candidates) n-gramt € C'

Y Count(gram,)

Se{ReferenceSummaries} gram, €5

ROUGE-N incorporates Recall

Will BLEU be able to understand quality of long sentences?

Reference translation:
T S oI« AT T I[OTIT ol THST ITTINT?
Kya bloo lambe waakya ki guNvatta ko samajh paaega?

Qandidate translation:
CEECIER]

ROUGE-N:1/8
Lambe vaakya /

Modified n-gram Precision: 1




Other ROUGEs
ROUGE-L

— Considers longest common subsequence

ROUGE-W

— Weighted ROUGE-L: All common
subsequences are considered with weight
based on length

ROUGE-S

— Precision/Recall by matching skip bigrams



ROUGE v/s BLEU

Handling incorrect words Skip bigrams, ROUGE-N N-gram mismatch
Handling incorrect word order Longest common sub-sequence N-gram mismatch
Handling recall ROUGE-N incorporates missing Precision cannot detect
words ‘missing’ words. Hence, brevity
penalty!
ROUGE-N

> > Count,,,.,(gram,)

__ Se{ReferemceSummaries} gram, €5

Z Count(gram )

Se{ReferenceSummariesy gram, €5

N
BLEu=BP-exp Z wy,log py,

n=1




Thank you

http://www.cse.litb.ac.in/~pb
http://www.cfilt.iitb.ac.in



http://www.cse.iitb.ac.in/~pb
http://www.cfilt.iitb.ac.in/

