
CS772: Deep Learning for

Natural Language Processing

(DL-NLP)

Course Summary

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week 14 of 10th April, 2023

Week1

Natural Language Processing

Art, science and technique of making

computers understand and generate

language

NLP is layered Processing,

Multidimensional too

Morphology

POS tagging

Chunking

Parsing

Semantics

Discourse and Coreference

Increased

Complexity

Of

Processing

Algorithm

Problem

Language

Hindi

Marathi

English

French
Morph

Analysis

Part of Speech

Tagging

Parsing

Semantics

CRF

HMM

MEMM

NLP

Trinity

Main Challenge: AMBIGUITY

Example

• (from a TV serial) “You met the boy; how

did you find him?”

Example (cntd.)

• “You met the boy; how did you find him;

did you like him?”

Example (cntd.)

• “You met the boy; how did you find him;

through some reference?”

Topics to be covered

• Single Neuron, perceptron and sigmoid;

application to NLP; text classification

• Multilayered FFNN, Backpropagation; Softmax

Application to NLP; Multiclass NLP problems

• Recurrent Neural Net (RNN); Application to

NLP- seq2seq

• Recursive Neural Net; Application to NLP

Parsing

• Convolutional Neural Nets; Multimodal NLP

• Transformers; Application to MT, QA, NLG

Major Topics covered in CS626,

last sem

• NLP and Ambiguity

• POS Tagging

• Named Entity Recognition

• Word Sense Disambiguation

• Wordnet and Lexical Resources

• Alignment and EM Algorithm

• Machine Translation and MT Evaluation

• Conversational AI and Pragmatics

Evaluation Scheme (tentative)

• 40%: Reading, Thinking,

Comprehending
– Quizzes (20%) (4 nos.)

– Endsem (20%)

• 60%: Doing things, Hands on
– Assignments (20%)

– Course Project (40%)

Quizzes and Endsem

• ONE/TWO subjective questions- only

one page

• Rest MCQs on Moodle

Assignments and Project

• Continuous evaluation

• Meeting every two weeks to monitor

progress

• Credit for thorough literature survey

for the project work

Demoes

https://www.cfilt.iitb.ac.in/ssmt/speech2speech

https://www.cfilt.iitb.ac.in/mtsystem/translate

https://chat.openai.com/chat#

https://www.cfilt.iitb.ac.in/ssmt/speech2speech
https://www.cfilt.iitb.ac.in/mtsystem/translate
https://chat.openai.com/chat

Week2

A perceptron is a computing element with input

lines having associated weights and the cell

having a threshold value. The perceptron model

is motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ

The Perceptron Model
•

Statement of Convergence of

PTA

• Statement:

Whatever be the initial choice of weights and

whatever be the vector chosen for testing, PTA

converges if the vectors are from a linearly

separable function.

To note

• F1: |G(Wn)| is bounded

• IF

• F2: n tends to infinity

• THEN

• F3: |G(Wn)| is unbounded

Sigmoid

Sigmoid neuron

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m …

oi

w1

W

Xi

neti











m

j

i

jj

i

i

net

i

xwXWnet

e
o

i

0

.

1

1

Sigmoid function: can saturate

• Brain saving itself from itself, in case of

extreme agitation, emotion etc.

Definition: Sigmoid or Logit function

)1(

1

1

yy
dx

dy

e
y

x








)1(

1

1

yky
dx

dy

e
y

kx








If k tends to infinity, sigmoid tends

to the step function

Decision making under sigmoid

• Output of sigmod is between 0-1

• Look upon this value as probability of

Class-1 (C1)

• 1-sigmoid(x) is the probability of Class-2

(C2)

• Decide C1, if P(C1) > P(C2), else C2

multiclass: SOFTMAX

• 2-class  multi-class (C classes)

• Sigmoid  softmax

• ith input, cth class (small c), c varies over

classes

• In softmax, decide for that class which

has the highest probability

Mathematical form

• σ is the softmax function

• Z is the input vector of size K

• The RHS gives the ith component of the output

vector

• Input to softmax and output of softmax are of

the same dimension







K

j

Z

Z

i

j

i

e

e
Z

1

)(

Week3

Sigmoid neuron

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m …

oi

w1

W

Xi

neti











m

j

i

jj

i

i

net

i

xwXWnet

e
o

i

0

.

1

1

Softmax Neuron

neti1

oi
1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…
wC1

oi
C

netiC

oi
C-1

netiC-1

oi
1

neti2

…








C

k

net

net

c

ii

c

i

k

i
c

e

e

NETSo

1

)(

Output for class c (small c), c:1 to C

Single sigmoid neuron- weight change

rule

x0x1x2xm-2
xm-1

xm …

o

w1

1

1

1

1

10

11

)(

)1()(
1

1

)1(1

1

)1log()1(log

..

xot
w

E
w

x
w

net
xwnet

oo
net

o
sigmoid

e
o

oo

ot

o

t

o

t

o

E

ototE

w

net

net

o

o

E

w

E

m

j

jj

net































































Δw1 = η(t-o)x1

net

Multiple neurons in the output layer: softmax+cross entropy

loss (1/2): illustrated with 2 neurons and single training data

point

x2

o0

x0
x1xm-2xm-1

xm

…

w11

o1

net1 net0
































































)1(

)1(

,

,

,

1101

1000

1

1

1

0

0

1

0

0

01

01

01

01

0

01

1

oooo

oooo

net

o

net

o

net

o

net

o

NET

O

ee

e
o

ee

e
o

netnetNET

ooO

netnet

net

netnet

net

Softmax and Cross Entropy (2/2)

01

0

01

1

01

0011

,

loglog

netnet

net

netnet

net

ee

e
o

ee

e
o

ototE









111

11

11

1111111111

111111110111

11

101

11

0

0

0

11

1

1

0

11

0

111

11

0

0

1

11

1

1

1

11

1

11

0

0

0

11

1

1

1

11

)(

)(][

)1()1()1(

0..

0)1(..

xot
w

E
w

xotxotoott

xotxotxotxot
w

E

xoo
w

net

net

o

w

net

net

o

w

o

xoo
w

net

net

o

w

net

net

o

w

o

w

o

o

t

w

o

o

t

w

E













































































Weight change rule with TSS

Single neuron: sigmoid+total sum

square (tss) loss

x0x1x2xn-2
xn-1

xn …

o

w1

Lets consider wlg w1. Change is

weight Δw1= -ηδL/ δw1

η= learning rate,

L=loss= ½(t-o)2,
t=target, o=observed output

11

1

10

2

11

)1()(

)3(

)2()1()(
1

1

)1()()(
2

1

..

xoootw

x
w

net
xwnet

oo
net

o
sigmoid

e
o

ot
o

L
otL

w

net

net

o

o

L

w

L

n

i

ii

net
















































net

Single neuron: sigmoid+total sum

square (tss) loss (cntd)

x0x1x2xn-2
xn-1

xn …

o

w1

i

i

n

i

ii

net

xoootw

x
w

net
xwnet

oo
net

o
sigmoid

e
o

ot
o

L
otL

w

net

net

o

o

L

w

L

)1()(

)3(

)2()1()(
1

1

)1()()(
2

1

..

1

10

2

11
















































Δw1 = η(t-o)o(1-o)x1

net

Multiple neurons in the output layer:

sigmoid+total sum square (tss) loss

o0

x0
x1x2

xn-2xn-1
xn

…

w11

o1

net1 net0

Δw11 = η(t1-o1)o1(1-o1)x1

Target vector: <t1, t0>

Observed vector:

<o1, o0>

TSS Loss= ½[(t1-o1)
2+

(t0-o0)
2]

General Backpropagation Rule

ijj

k

kkj ooow)1()(
layernext

 




)1()(jjjjj ooot 

iji jow 
• General weight updating rule:

• Where

for outermost layer

for hidden layers

Week4

Deriving the word vector: setting






























||

1'

.

||

1'

.

.

210

210

'

'

ln.

)|(

)|(

)|(

]...,...,,,[:

...,...,,,:

V

j

VV

ww

V

j

VV

VV

ij

ij

ij

i

d

i

k

iii

w

s

m

s

i

ssss

j
wiw

ji

j
wiw

jwiw

i

eVVLL

e

e
wwP

wwPL

wwPJ

vvvvvV

wwwwwW WS: word sequence in the sth

Sentence

Vwi: word vector of wi

Deriving the word vector: Optimization

(1/2)


















































||

1'

||

1'

0

210

210210

210210

'

0

'

0

'

.

]'...,'...,',','[:

]...,...,,,[]...,...,,,[:

]...,...,,,[]...,...,,,[:

V

j

vu

V

j

vu

k

k

k

kk

d

k

ww

dkw

dk

j

d

j

k

jjj

w

dk

i

d

i

k

iii

w

kk

d

k

kk

d

k

ji

j

j

i

e

e
u

v
u

LL

vuVV

vvvvvV

vvvvvvvvvvV

uuuuuvvvvvV

Deriving the word vector: Optimization

)().|('''

||

1'
||

1'

'
||

1'

||

1'

'

0

||

1'

||

1'

||

1'

'

0

'

0

'

0

'

0

'

0

'

0

kkkij

V

j

kV

j

vu

k

vuV

j

k

V

j

vu

kk

d

k
k

vuV

j

kV

j

vu

vu

k

V

j

k

vEvvwwPv

e

ve

v

e

vu
u

e

v

e

e
u

v

kk

d

k

kk

d

k

kk

d

k

kk

d

k

kk

d

k

kk

d

k



























































































Deriving the word vector, Gradient

Descent: Δuk

)](['kk

k

k vEv
u

LL
u 




 

Example

• We want, say, P(‘bark’|’dog’)

• Take the weight vector FROM ‘dog’ neuron

TO projection layer (call this Udog)

• Take the weight vector TO ‘bark’ neuron

FROM projection layer (call this Ubark)

• When initialized, Udog and Ubark give the initial

estimates of word vectors of ‘dog’ and ‘bark’

• The weights and therefore the word vectors

get fixed by back propagation

Input to Projection (shown for one

neuron only)

Input

for

‘dog’

Projection

(dim: d)

Udog

Output

for

‘bark’

1

1

Ubark

Modelling P(context word|input word)

(2/2)

• To model the probability, first compute dot

product of udog and vbark

• Exponentiate the dot product

• Take softmax over all dot products over the

whole vocabulary

)exp(

)exp(
)'|''('

R

T

dog

VocabularyR

bark

T

dog

UU

UU
dogbarkP






P(‘bark’|’dog’) (1/2)

)exp(

)exp(
)'|''('

R

T

dog

VocabularyR

bark

T

dog

UU

UU
dogbarkP






))exp(log())'|''('log(R

T

dog

VocabularyR

bark

T

dog UUUUdogbarkP 


Word2vec architectures

Mikolov 2013

Classic work

• Caught the attention of the world by

equations like

‘king’-’man’+’woman’=‘queen’

N-dimensional space

‘king’

‘man’

‘woman’

‘-man’

‘king’-’man’

‘king’-’man’+’woman=‘queen’

Skip Gram
(context: prev word and next word)

0

1

0

0

Input Layer

V-dim

Hidden Layer

D-dim

V X D

D X V

D X V

Softmax

Layer
Truth

1

0

0

0

0

0

0

1

CBOW

v

v

V X D

V X D

D X V

Input Layer

Hidden Layer

D-dim

Softmax

Layer

V-dim

0

1

0

0

Truth

Symbolic approach to

representing word meaning

Syntagmatic and Paradigmatic

Relations

• Syntagmatic and paradigmatic relations

– Lexico-semantic relations: synonymy,

antonymy, hypernymy, mernymy, troponymy

etc. CAT is-a ANIMAL

– Coccurence: CATS MEW

• Resources to capture semantics:

– Wordnet: primarily paradigmatic relations

– ConceptNet: primarily Syntagmatic

Relations

Fundamental Device- Lexical

Matrix (with examples)

Word Meanings

Word Forms

F1 F2 F3 … Fn

M1

(depend)

E1,1

(bank)

E1,2

(rely)

E1,3

M2

(bank)

E2,2

(embankme

nt)

E2,…

M3

(bank)

E3,2 E3,3

… …

Mm Em,n

Week5

Two main models for learning word vectors

• 1) global matrix factorization methods,

such as latent semantic analysis (LSA)

(Deerwester et al., 1990) and

• 2) local context window methods, such

as the skip-gram model of Mikolov

et al. (2013)

• Currently, both families suffer significant

drawbacks.

Matrix Factorization: drawback

• “most frequent words contribute a

disproportionate amount to the similarity

measure: the number of times two

words co-occur with the or and, for

example, will have a large effect on

their similarity despite conveying

relatively little about their semantic

relatedness.”

Skip Gram & CBOW: drawback

• “shallow window-based methods suffer

from the disadvantage that they do not

operate directly on the co-occurrence

statistics of the corpus. Instead,these

models scan context windows across

the entire corpus, which fails to take

advantage of the vast amount of

repetition in the data”

Can this architecture for Glove work?

0

1

0

0

Input Layer

V-dim

Hidden Layer

D-dim

V X D D X V

0.4

0.2

0.1

0.3

Representation using syntagmatic

relations: Co-occurrence Matrix

Corpora: I enjoy cricket. I like music. I like deep learning

I enjoy cricket like music deep learning

I - 1 1 2 1 1 1

enjoy 1 - 1 0 0 0 0

cricket 1 1 - 0 0 0 0

like 2 0 0 - 1 1 1

music 1 0 0 1 - 0 0

deep 1 0 0 1 0 - 1

learning 1 0 0 1 0 1 -

Solution: uses co-occurences

Dimensionality Reduction by

PCA

Intuition for Dimensionality Reduction

A
B

C D

1

2

3

4

O

•1, 2, 3, 4: are the points

•A, B, C, D: are their projections on the fitted line by linear regression

•Suppose 1, 2 form a class and 3, 4 another class

•Of course, it is easy to set up a hyper plane that will separate 1 and 2 from 3 and 4

•That will be classification in 2 dimension

•But suppose we form another attribute of these points, viz., distances of their

•projections On the line from “O”

•Then the points can be classified by a threshold on these distances

•This effectively is classification in the reduced dimension (1 dimension)

Principal Component Analysis

Example: IRIS Data (only 3 values

out of 150)
ID Petal

Length

(a1)

Petal

Width

(a2)

Sepal

Length

(a3)

Sepal

Width

(a4)

Classific

ation

001 5.1 3.5 1.4 0.2 Iris-

setosa

051 7.0 3.2 4.7 1.4 Iris-

versicol

or

101 6.3 3.3 6.0 2.5 Iris-

virginica

Training and Testing Data

• Training: 80% of the data; 40 from each
class: total 120

• Testing: Remaining 30

• Do we have to consider all the 4
attributes for classification?

• Less attributes is likely to increase the
generalization performance (Occam
Razor Hypothesis: A simpler hypothesis
generalizes better)

The multivariate data: n instances,

p attributes

X1 X2 X3 X4 X5… Xp

x11 x12 x13 x14 x15 … x1p

x21 x22 x23 x24 x25 … x2p

x31 x32 x33 x34 x35 … x3p

x41 x42 x43 x44 x45 … x4p

…

…

xn1 xn2 xn3 xn4 xn5 … xnp

Week6

PCA: Example

























000.1607.0526.0529.0605.0

000.1763.0769.0645.0

000.1674.0662.0

000.1735.0

000.1

R

49 birds: 21 survived in a storm and 28 died.

5 body characteristics given

X1: body length; X2: alar extent; X3: beak and head length

X4: humerus length; X5: keel length

Could we have predicted the fate from the body characteristic

X1 X2 X3 X4
X5

X1

X2

X3

X4

X5

Eigenvalues and Eigenvectors of R

Eigenvalues: 3.612, 0.532, 0.386, 0.302, 0.165

First Eigen-

vector: V1

V2 V3 V4 V5

0.452 0.462 0.451 0.471 0.398

-0.051 0.300 0.325 0.185 -0.877

0.691 0.341 -0.455 -0.411 -0.179

-0.420 0.548 -0.606 0.388 0.069

0.374 -0.530 -0.343 0.652 -0.192

Which principal components are

important?

• Total variance in the data=

λ1+ λ2+ λ3+ λ4+ λ5

= sum of diagonals of R= 5

• First eigenvalue= 3.616 ≈ 72% of total
variance 5

• Second ≈ 10.6%, Third ≈ 7.7%, Fourth ≈
6.0% and Fifth ≈ 3.3%

• First PC is the most important and
sufficient for studying the
classification

Forming the PCs

• Z1= 0.451X1+0.462X2+0.451X3+0.471X4+0.398X5

• Z2= -0.051X1+0.300X2+0.325X3+0.185X4 -0.877X5

• For all the 49 birds find the first two

principal components

• This becomes the new data

• Classify using them

For the first bird

X1=156, X2=245, X3=31.6, X4=18.5, X5=20.5

After standardizing

Y1=(156-157.98)/3.65=-0.54,

Y2=(245-241.33)/5.1=0.73,

Y3=(31.6-31.5)/0.8=0.17,

Y4=(18.5-18.46)/0.56=0.05,

Y5=(20.5-20.8)/0.99=-0.33

PC1 for the first bird=

Z1= 0.45X(-0.54)+ 0.46X(0.725)+0.45X(0.17)+0.47X(0.05)+0.39X(-
0.33)

=0.064

Similarly, Z2= 0.602

Reduced Classification Data

• Instead of

• Use

X1 X2 X3 X4 X5

49

rows

Z1 Z2

49 rows

Working out a simple case of

word2vec

Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small

letter for output from the same neuron

Computing ΔwV2H0

02

02

HV

HV
w

E
w






0112000220 UHHVUHHV

T

VU wwwwWW 

00002

0000

0003020100

02

00

02

)1().1(

.

.
)

22

2

....

.

HUHHV

UHUH

UHWWWWWWWW

WW

UH

HV

ovwvw

wvw

w
eeee

e
w

w

E
UVUVUVUV

UV














o/p of hidden neuron H0

)log(

)log(

3210

20

3210

2

VVVV

VVVV

netnetnetnetT

VU

netnetnetnet

V

eeeeWW

eeeenetE





Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small

letter for output from the same neuron

Change in other weights to output layer, say, V1,

due to input U0

01

01

HV

HV
w

E
w






00001

00

0003020100

01

01

11

1

....

.

.

.
)

0

HUHHV

UH

UHWWWWWWWW

WW

HV

ovwvw

wv

w
eeee

e

w

E
UVUVUVUV

UV














0112000220 UHHVUHHV

T

VU wwwwWW 

)log(

)log(

3210

20

3210

2

VVVV

VVVV

netnetnetnetT

VU

netnetnetnet

V

eeeeWW

eeeenetE





Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small

letter for output from the same neuron

Cntd: Weight change for input to hidden layer,

say, wH0U0

])1[(3102

3210

....

....

0301000200

0302010002

03020100

03

03

02

02

01

01

00

00

02

00

vwvwvwwvw

vwvwvwvww

eeee

ewewewew
w

w

E

HVHVHVHVUH

HVHVHVHVHV

WWWWWWWW

WW

HV

WW

HV

WW

HV

WW

HV

HV

UH

UVUVUVUV

UVUVUVUV
















Week7

Encode - Decode Paradigm Explained

Use two RNN networks: the encoder and the decoder

मैं किताबने पढी

I read the book

h1 h2 h3h0

h4

s0 s1 s2
s3

(1) Encoder

processes one

input at a time

(4) Decoder

generates one

element at a

time

(2) A representation

of the sentence is

generated

(3) This is used

to initialize the

decoder state

Encoding

Decoding

<EOS>

s4

(5)… continue till

end of sequence

tag is generated

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/

Sequence to Sequence Learning with Neural Networks Ilya Sutskever, Oriol Vinyals, Quoc V. Le. arxiv pre-

print [link]

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/
https://arxiv.org/abs/1409.3215

FF

RNN-LSTM

softmax

This captures y<j

This captures x, c=h4

What is the decoder doing at each

time-step?

Decoding

Ram ate rice with the spoon

राम ने चम्मच से चावल खाये

Searching for the best translations in the space of all

translations

राम ने

चावल

चम्मच

खा ललया

चम्मच से

चावल

खाये

• Incremental construction

• Each hypothesis is scored using the model

• Hypotheses are maintained in a priority
queue

Empty

Hypothesis

Partial

Hypothesis

Final

Hypothesis

Hypothesis

Expansion

मैं किताबने पढी

I read the book

h1 h2 h3

h0

h4

s0 s1 s2
s3

Encoding

Decoding

<EOS>

s4

h4

Feed the encoder state as input at

each decoder timestep

The entire source sentence is

represented by a single vector

Problems

● Insufficient to represent to capture all the syntactic and

semantic complexities

○ Solution: Use a richer representation for the sentences

● Long-term dependencies: Source sentence representation

not useful after few decoder time steps

○ Solution: Make source sentence information when making

the next prediction

○ Even better, make RELEVANT source sentence

information available

Encode - Attend - Decode Paradigm

I read the book

s1 s1 s3s0

s4

Annotation

vectors Represent the source sentence by

the set of output vectors from the

encoder

Each output vector at time t is a

contextual representation of the

input at time t

Let’s call these encoder output

vectors annotation vectors

e1 e2 e3 e4

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR 2015.

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-3/

CNN

Two motivation points

• 1. Reduced number of parameters

• 2. Stepwise extraction of features

• These two are applicable to any AI

situation, and not only vision and

image processing

CNN= feedforward like + recurrent

like!

• Whatever we learnt so far in FF-BP is useful

to understand CNN

• So also is the case with RNN (and LSTM)

• Input divided into regions and fed forward

• Window slides over the input: input changes,

but ‘filter’ parameters remain same

• That is like RNN

Genesis: Neocognitron

(Fukusima, 1980)

Week8

CNN Genesis: Neocognitron

(Fukusima, 1980)

A typical ConvNet

Lecun, Bengio, Hinton, Nature, 2015

Why CNN became a rage: image

Image

Captioning-1

Image

Captioning-2

Role of ImageNet

• Million images from the web

• 1,000 different classes

• Spectacular results!

• Almost halving the error rates of the

best competing approaches1.

Learning in CNN

• Automatically learns the

values of its filters

• For example, in Image

Classification learn to
– detect edges from raw pixels in the first layer,

– then use the edges to detect simple shapes in

the second layer,

– and then use these shapes to deter higher-level

features, such as facial shapes in higher layers.

– The last layer is then a classifier that uses

these high-level features.

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Credit: Denny Britz

CNN for NLP

CNN-FF for Sarcasm

Comparison of results (1: sarcastic, 0: non-

sarcastic)

back

Sentiment Annotation and Eye

Movement

Sarcastic

Longer

Fixations

Multiple

Regressive

Saccades

Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya, Learning Cognitive Features

from Gaze Data for Sentiment and Sarcasm Classification Using Convolutional Neural

Network, ACL 2017, Vancouver, Canada, July 30-August 4, 2017.

https://www.cse.iitb.ac.in/~pb/papers/acl17-cogfeatures.pdf

Neural Network Architecture

Input Embeddings Local Features Global Features

104

Results – Sarcasm Detection

105

Attention and Transformer

Arguably, the most important application-

MACHINE TRANSLATION

Two Pillars of Transformer

Transformer

Attention + Positional Encoding

= Transformer

Week9

Prompting, Reasoning, Bias, SSMT, QE,

APE, Fake-News & Half-Truth

Detection, Query Intent Detection and

Speech Emotion Recognition

Week10

A classic diagram and a classic paper

http://nlp.seas.harvard.edu/2018/04/03/attention.html

http://jalammar.github.io/illustrated-transformer/

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. "Attention is all you need." NeurIPS

(2017).

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/

Attention: Self, Multi-headed,

Cross

Self Attention Block

Attention

V1 V2 V3 V4

Y1 Y2 Y3 Y4

Bank of the river

Word Embedding and Contextual Word

Embedding

• Consider the phrase “bank of the river”

• Word embeddings of ‘bank’, ‘of’, ‘the’,

‘river’: V1, V2, V3, V4

• Now create a ‘score’ vector Si for each

word vector

• S1: (V1.V1, V1.V2, V1.V3, V1.V4)

• Similarly, S2, S3, S4

S-matrix





















44434241

34333231

24232221

14131211

ssss

ssss

ssss

ssss

S

S-scaled matrix





















44434241

34333231

24232221

14131211

ssss

ssss

ssss

ssss

1

kd
scaledS

W-matrix













 






















k

i
i

d

vectorS
softvectorW

wwww

wwww

wwww

wwww

W

max

44434241

34333231

24232221

14131211

Y-matrix

414313212111

44434241

34333231

24232221

14131211

.... VwVwVwVwvectorY

yyyy

yyyy

yyyy

yyyy

Y

i 





















Attention Block

Attention

V1 V2 V3 V4

Y1 Y2 Y3 Y4

Bank of the river

Query, Key and Value

V
d

KQ
softVKQattention

k

T

.
.

max),,(















Query, Key and Value with

LEANABLE Parameter (1/2)

VW
d

KWQW
softVKQattention V

k

TKQ

.
.

max),,(















WQ, WK and WV can be the weights of 3

linear layers of neurons which can be

learnt by gradient descent

Query, Key and Value with

LEANABLE Parameter (2/2)

)()).((VWKWQW VK

T

Q 

WQ, WK and WV can be the weights of 3

linear layers of neurons which can be learnt

by gradient descent

Week11

Attempts at Automation

• InstructGPT:
– Command/Request/Order  Response

• ChatGPT:
– Carry out a conversation

– Respect context (state), personalization, quality

and quantity and respond

• Input: I have been promoted

• Appropriate response: I am

delighted/congratulations/great ..

• Inappropriate: why did they promote you?

Gricean Maxims: Cooperative Principle in

Converstaion (Wikipedia)

• Quantity, Quality, Relation, and

Manner

• Paul Grice, philosopher of language

• “Make your contribution such as is

required, at the stage at which it occurs,

by the accepted purpose or direction of

the talk exchange in which you are

engaged”.

• Captures the LINK between utterances

Maxim of Quantity (length and depth)

• Be informative, and submaxims are:
– Make your contribution as informative as is

required (for the current purposes of the

exchange).

– Do not make your contribution more informative

than is required.

• Grice’s analogy: "If you are assisting me to mend

a car, I expect your contribution to be neither more

nor less than is required. If, for example, at a

particular stage I need four screws, I expect you to

hand me four, rather than two or six."

Maxim of Quality (truth)

• Be Truthful

• Submaxims:
– Do not say what you believe is false.

– Do not say that for which you lack

adequate evidence

• Grice’s analogy: "I expect your contributions

to be genuine and not spurious. If I need sugar

as an ingredient in the cake you are assisting

me to make, I do not expect you to hand me

salt; if I need a spoon, I do not expect a trick

spoon made of rubber."

Maxim of Relation (relevance)

• Information is relevant to the current

exchange; therefore omitting any

irrelevant information

• Grice’s analogy for this maxim: "I expect a

partner’s contribution to be appropriate to the

immediate needs at each stage of the

transaction. If I am mixing ingredients for a

cake, I do not expect to be handed a good

book, or even an oven cloth (though this might

be an appropriate contribution at a later

stage)."

Maxim of Manner (clarity)

• Be perspicuous

• Submaxims:
– Avoid obscurity of expression — i.e., avoid

language that is difficult to understand.

– Avoid ambiguity — i.e., avoid language that can be

interpreted in multiple ways.

– Be brief — i.e., avoid unnecessary prolixity.

– Be orderly — i.e., provide information in an order

that makes sense, and makes it easy for the

recipient to process it.

Week12

AI chatbots compared: Bard vs.

Bing vs. ChatGPT

https://www.theverge.com/2023/3/24/236533

77/ai-chatbots-comparison-bard-bing-

chatgpt-gpt-4

Comparison: Chatbots

Google’s Bard (https://bard.google.com/),

Microsoft’s Bing

(https://www.theverge.com/2023/3/24/23653377/ai-

chatbots-comparison-bard-bing-chatgpt-gpt-4),

OpenAI’s ChatGPT (https://chat.openai.com/chat#)

https://www.theverge.com/2023/3/21/23649794/google-chatgpt-rival-bard-ai-chatbot-access-hands-on
https://www.theverge.com/2022/12/8/23499728/ai-capability-accessibility-chatgpt-stable-diffusion-commercialization

3 stages of LLM based CAI

• Generative Pretraining (GP)

• Supervised Fine Tuning (SFT)

• Reinforcement Learning from Human

Feedback (RLHF)

Enter Pragmatics

Modeling

• Dialogue Act Classification (DAC): f Dialogue
Sequence, eDialogue turn labels

• Dialogue Intent: f dialogue sequence, e dialogue
turns with Intent like ‘question’, ‘elaboration’,
‘affirmation’, ‘command/request’ etc.

6 Jan, 2014isi: ml for mt:pushpak134

)]|()([maxarg

)|(maxarg*

efPeP

fePe

e

e





P(e): “language”
model

Elements of Pragmatics (1/2)

• Deixis (literally, ‘pointing with words’: temporal-

now, then; spatial- here, there; personal- I, you,

he, they; definite-indefinite- this, that, those)

• Presupposition: (untie the shoe 

presupposes the shoe was tied before)

Elements of Pragmatics (2/2)

• Speech Acts: (I pronounce you man and

wife)- locutionary, illocutionary, and

perlocutionary

• Implicatures: (A: shall we go for a walk? B: It

is raining outside)

• Politeness: (close the door  please close

the door  can you close the door  would

you mind closing the door)

• Information Structure: ordering of

information (??The table is under the flower

pot- odd; smaller object first mention) credit: Handke,

The Trinity of Pragmatics

Speaker Hearer

Linguistic Expression

Diexis

Credit:

https://doi.org/10.1093/acrefore/97801993

84655.013.213

https://doi.org/10.1093/acrefore/9780199384655.013.213

Speech Act

Kinds of Speech Act

• Locutionary

• Illocutionary

• Perlocutionary

• Performative Speech acts

Implicatures

Computational Perspective:

Conversational AI

Dialogue Based Computation

Tulika Saha, Aditya Patra, Sriparna Saha and Pushpak

Bhattacharyya, Towards Emotion-aided Multi-modal Dialogue Act

Classification, Association of Computational Linguistics Conference (ACL

2020), Seattle USA, 5-10 July, 2020.

Zihao He, Leili Tavabi, Kristina Lerman, and Mohammad Soleymani.

2021. Speaker Turn Modeling for Dialogue Act Classification. In Findings

of the Association for Computational Linguistics: EMNLP 2021, pages

2150–2157, Punta Cana, Dominican Republic. Association for

Computational Linguistics.

https://www.cse.iitb.ac.in/~pb/papers/acl20-dialogue.pdf
https://aclanthology.org/2021.findings-emnlp.185

Week13

Summarization

SUMMARIZATION
146

• Task of automatically creating a compressed version

of the text document (set of tweets, web-page,

single/multi-document) that should be relevant, non-

redundant and representative of the main idea of the

text.

• A text that is produced from one or more texts that

conveys important information in the original text(s),

and that is no longer than half of the original text(s)

and usually significantly less than that.

• Metric:

Compression Ratio= #wordsummary/#worddocument

NLP Layer

Lexical Level

Syntax

Semantics

Pragmatics

Summarization Categorization

• Broad Categorization

• Extractive: sentences from the input text form part

of summary

• Abstractive: Essence+Natural Language

Generation

• Other categorizations:

• # Document: Single and Multi document

• Purpose: Generic and Query focused

• Miscellaneous: Personalized, Sentiment-based,

Update, E-mail-based, web-based
148

Handling Morphology in Abstractive

Summarization

• Fasttext tried solving the morphology generation

problem by BPE (byte pair encoding)

• Given “going”, divide the string into “go” and “ing”

• Use these parts to generate say “walking”

• Each subword will have its own probability

• If not subwording, then no way other than showing all

forms of the root word: go, went, going, gone

• Languages differ in morphological complexity

• French more complex than English
149

Computation of Summaries

Hierarchical Encoder-Decoder

27jun20webinar:pushpak151

Paragraph encoding

Paragraph encoding

Decoded Summary

SummaRuNNer

152Figure 1: SummaRuNNer: A two-layer RNN based sequence classifier

[1]

Summarization with Pointer-Generator

Network

153Figure: Pointer-generator Model

Extended

Vocabulary

[2]

BART

154

Fig 1: BART architecture.

Lewis, Mike, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke

Zettlemoyer. "Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension."

arXiv preprint arXiv:1910.13461 (2019).

● BERT (12 layers) +
GPT (12 layers)

● Pre-trained on
160GB of news,
books and web text

● Fine-tuned on
CNN/DM dataset

1. Generative Pre-training

2. Supervised Fine Tuning

3. Reinforcement Learning with Human

Feedback (RLHF)

Now GPT…

Opinion/Review Summaries

Properties of Opinion Summaries

● Monotonicity: As more sentences are added to
opinion summary, subjectivity increases along
with information content

● Diminishing Return: If multiple sentences of
varying intensity are added to opinion summary,
the effect of lower intensity diminishes in
presence of higher intensity bearing polar
sentences

Examples from cricket: diminishing return

A: Rahul Dravid is a great batsman

B: Rahul Dravid is a very consistent player

A∪B:
Rahul Dravid is a great batsman. He is a very
consistent player

Compare B and A ∪ B; “effect” of B diminished in
presence of A

When asked to summarize A∪B in one sentence, B is
likely to be dropped

Example from cricket: coverage

A: “Sachin is a great batsman”
B: “His backfoot batting is unmatchable”
C: “He also bowls decent spin”

● If the budget allows only two subjective sentences,
then picking up A and B have captured only batting

● Picking up C with the one of A and B would have
covered both aspects (i.e. batting and bowling)

● Sentences are not overlapping in aspects, hence no
diminishing return

● Higher intensity dominates

Submodular Function (1/2)

Finite set V

Set Function F: 2V→R, F(φ)= 0

Definition: F : 2V → R is submodular iff

∀ A, B ⊂ V, F (A) + F (B) ≥ F (A ∩ B) + F (A ∪ B)

Submodular Function (2/2)

Equivalent definition:

∀ k ∈ V, ∀A ⊂ V,

F(A ∪ {k})−F(A) is non-increasing

(diminishing return)

⇔

∀A ⊂ B, ∀ k ∉ A,

F (A ∪ {k}) − F (A) ≥ F (B ∪ {k}) − F (B)

Example of Submodular Functions: Cut

Functions, Set Cover

Extractive Summarization and Submodularity

• Find a set S ⊆ V

• S is set of sentences in summary, V is

set of sentences in Document

• which maximizes a submodular function

f(S) subject to budget constraints.

Monotone Submodular Objective

F(S) = L(S) + λR(S)

F(S) -> Total Utility of summary

L(S) -> Relevance

R(S) -> Diversity

Pointer Generator Network

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get

To The Point: Summarization with Pointer-Generator

Networks, ACL.

https://aclanthology.org/P17-1099

Abstract (1/2)

• Proposes a novel architecture that

augments the standard sequence-to-

sequence attentional model in two

orthogonal ways.

• First: uses a hybrid pointer-generator

network that can copy words from the

source text via pointing, which aids

accurate reproduction of information,

while retaining theability to produce novel

words through the generator

Abstract (2/2)

• Second: uses coverage to keep track of

what has been summarized, which

discourages repetition

• Applies the model to the CNN/Daily Mail

summarization task, outperforming the

current abstractive state-of-the-art by at

least 2 ROUGE points

Basic seq2seq n/w

Pointer Generator N/W: copy word

vs. new word

Modeling: input processing

• Tokens wi fed one-by-one into the

encoder (a single-layer bidirectional

LSTM), producing a sequence of encoder

hidden states hi

• At each step t, the decoder (a single-layer

unidirectional LSTM) receives the word

embedding of the previous word

Modeling: encoder hidden states

• While training, this is the previous word of

the reference summary;

• at test time it is the previous word emitted

by the decoder), and has decoder state

st.

where v, Wh, Ws and battn are

learnable parameters.

Modeling: encoder hidden states

• Attention is a probability distribution over

the source words, that tells the decoder

where to look to produce the next word.

• Next, the attention distribution is used

to produce a weighted sum of the

encoder hidden states, known as the

context vector ht
∗

Modeling: vocab distribution

• The context vector is a fixed size

representation of what has been read

from the source for this step

• It is concatenated with the decoder state

st and fed through two linear layers to

produce the vocabulary distribution Pvocab

where V , V0, b and b0 are learnable

parameters.

Modeling: probability distribution over vocab

• Pvocab is a probability distribution over

all words in the vocabulary, and provides

the final distribution from which to predict

words w.

Modeling: Loss

• During training, the loss for timestep t is

the negative log likelihood of the target

word wt
∗ for that time step

• Overall loss for the whole sequence is:

Modeling: Pointer Generator

• Allows both copying words via pointing,

and generating words from a fixed

vocabulary.

• Generation probability pgen∈ [0,1] for

timestep t is calculated from the context

vector ht
∗, the decoder state st and the

decoder input xt

Pointer Generator N/W: copy word

vs. new word

Modeling: Generator Probability

• Allows both copying words via pointing,

and generating words from a fixed

vocabulary.

• Generation probability pgen∈ [0,1] for

timestep t is calculated from the context

vector ht
∗, the decoder state st and the

decoder input xt

where vectors wh
∗, ws, wx and scalar bptr are learnable

parameters and σ is the sigmoid function

Modeling: to point or to generate

• pgen is used as a soft switch to choose

between generating a word from the

vocabulary by sampling from Pvocab, or

copying a word from the input sequence

by sampling from the attention distribution

at

• if w is an out-of-vocabulary (OOV)

word, then Pvocab(w) is zero; similarly if

w does not appear in the source

document, then ∑i:wi=wat
i is zero.

Result: superiority of pointer-generator

Giving importance to Recall: Ref

n-grams: ROUGE

ROUGE

• Recall-Oriented Understudy for

Gisting Evaluation

• ROUGE is a package of metrics:

ROUGE-N, ROUGE-L, ROUGE-W

and ROUGE-S

ROUGE-N

ROUGE-N incorporates Recall
Will BLEU be able to understand quality of long sentences?

Reference translation:
क्या ब्लू लंबे वाक्य िी गुणवत्ता िो समझ पाएगा?
Kya bloo lambe waakya ki guNvatta ko samajh paaega?

Candidate translation:
लंबे वाक्य
Lambe vaakya

ROUGE-N: 1 / 8
Modified n-gram Precision: 1

Other ROUGEs

• ROUGE-L
– Considers longest common subsequence

• ROUGE-W
– Weighted ROUGE-L: All common

subsequences are considered with weight

based on length

• ROUGE-S
– Precision/Recall by matching skip bigrams

ROUGE v/s BLEU

ROUGE BLEU

Handling incorrect words Skip bigrams, ROUGE-N N-gram mismatch

Handling incorrect word order Longest common sub-sequence N-gram mismatch

Handling recall ROUGE-N incorporates missing

words

Precision cannot detect

‘missing’ words. Hence, brevity

penalty!

Thank you

http://www.cse.iitb.ac.in/~pb

http://www.cfilt.iitb.ac.in

http://www.cse.iitb.ac.in/~pb
http://www.cfilt.iitb.ac.in/

