
CS772: Deep Learning for 

Natural Language Processing 

(DL-NLP)

Course Summary

Pushpak Bhattacharyya

Computer Science and Engineering 
Department

IIT Bombay

Week 14 of 10th April, 2023



Week1



Natural Language Processing

Art, science and technique of making 

computers understand and generate 

language



NLP is layered Processing, 

Multidimensional too
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Main Challenge: AMBIGUITY



Example

• (from a TV serial) “You met the boy; how 

did you find him?”



Example (cntd.)

• “You met the boy; how did you find him; 

did you like him?”



Example (cntd.)

• “You met the boy; how did you find him; 

through some reference?”



Topics to be covered

• Single Neuron, perceptron and sigmoid; 

application to NLP; text classification

• Multilayered FFNN, Backpropagation; Softmax 

Application to NLP; Multiclass NLP problems

• Recurrent Neural Net (RNN); Application to 

NLP- seq2seq

• Recursive Neural Net; Application to NLP 

Parsing

• Convolutional Neural Nets; Multimodal NLP

• Transformers; Application to MT, QA, NLG 



Major Topics covered in CS626, 

last sem

• NLP and Ambiguity

• POS Tagging

• Named Entity Recognition

• Word Sense Disambiguation

• Wordnet and Lexical Resources

• Alignment and EM Algorithm

• Machine Translation and MT Evaluation

• Conversational AI and Pragmatics



Evaluation Scheme (tentative)

• 40%: Reading, Thinking, 

Comprehending
– Quizzes (20%) (4 nos.)

– Endsem (20%)

• 60%: Doing things, Hands on
– Assignments (20%)

– Course Project (40%)



Quizzes and Endsem

• ONE/TWO subjective questions- only 

one page

• Rest MCQs on Moodle



Assignments and Project

• Continuous evaluation

• Meeting every two weeks to monitor 

progress

• Credit for thorough literature survey 

for the project work



Demoes

https://www.cfilt.iitb.ac.in/ssmt/speech2speech

https://www.cfilt.iitb.ac.in/mtsystem/translate

https://chat.openai.com/chat#

https://www.cfilt.iitb.ac.in/ssmt/speech2speech
https://www.cfilt.iitb.ac.in/mtsystem/translate
https://chat.openai.com/chat
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A perceptron is a computing element with input 

lines having associated weights and the cell 

having a threshold value. The perceptron model 

is motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ

The Perceptron Model
•



Statement of Convergence of 

PTA

• Statement:

Whatever be the initial choice of weights and 

whatever be the vector chosen for testing, PTA 

converges if the vectors are from a linearly 

separable function.



To note

• F1: |G(Wn)| is bounded

• IF

• F2: n tends to infinity

• THEN

• F3: |G(Wn)| is unbounded



Sigmoid



Sigmoid neuron
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Sigmoid function: can saturate

• Brain saving itself from itself, in case of 

extreme agitation, emotion etc. 



Definition: Sigmoid or Logit function
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Decision making under sigmoid

• Output of sigmod is between 0-1

• Look upon this value as probability of 

Class-1 (C1)

• 1-sigmoid(x) is the probability of Class-2 

(C2)

• Decide C1, if P(C1) > P(C2), else C2



multiclass: SOFTMAX

• 2-class  multi-class (C classes)

• Sigmoid  softmax

• ith input, cth class (small c), c varies over 

classes 

• In softmax, decide for that class which 

has the highest probability



Mathematical form

• σ is the softmax function

• Z is the input vector of size K

• The RHS gives the ith component of the output 

vector

• Input to softmax and output of softmax are of 

the same dimension 
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Sigmoid neuron
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Softmax Neuron
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Single sigmoid neuron- weight change 

rule
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Multiple neurons in the output layer: softmax+cross entropy

loss (1/2): illustrated with 2 neurons and single training data 
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Softmax and Cross Entropy (2/2)
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Weight change rule with TSS



Single neuron: sigmoid+total sum 

square (tss) loss
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Single neuron: sigmoid+total sum 

square (tss) loss (cntd)
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Multiple neurons in the output layer: 

sigmoid+total sum square (tss) loss

o0

x0
x1x2

xn-2xn-1
xn

…

w11

o1
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Δw11 = η(t1-o1)o1(1-o1)x1

Target vector: <t1, t0>

Observed vector: 

<o1, o0>

TSS Loss= ½[(t1-o1)
2+

(t0-o0)
2]



General Backpropagation Rule
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Deriving the word vector: setting
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Deriving the word vector: Optimization 

(1/2)
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Deriving the word vector: Optimization
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Deriving the word vector, Gradient 

Descent: Δuk
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Example

• We want, say, P(‘bark’|’dog’)

• Take the weight vector FROM ‘dog’ neuron 

TO projection layer (call this Udog)

• Take the weight vector TO ‘bark’ neuron 

FROM projection layer (call this Ubark)

• When initialized, Udog and Ubark give the initial 

estimates of word vectors of ‘dog’ and ‘bark’

• The weights and therefore the word vectors 

get fixed by back propagation



Input to Projection (shown for one 

neuron only)

Input

for

‘dog’

Projection

(dim: d)

Udog

Output

for

‘bark’

1

1

Ubark



Modelling P(context word|input word) 

(2/2)

• To model the probability, first compute dot 

product of udog and vbark

• Exponentiate the dot product

• Take softmax over all dot products over the 

whole vocabulary
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P(‘bark’|’dog’) (1/2)
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Word2vec architectures

Mikolov 2013



Classic work

• Caught the attention of the world by 

equations like

‘king’-’man’+’woman’=‘queen’

N-dimensional space

‘king’

‘man’

‘woman’

‘-man’

‘king’-’man’

‘king’-’man’+’woman=‘queen’



Skip Gram
(context: prev word and next word)
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CBOW
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Symbolic approach to 

representing word meaning



Syntagmatic and Paradigmatic 

Relations

• Syntagmatic and paradigmatic relations

– Lexico-semantic relations: synonymy, 

antonymy, hypernymy, mernymy, troponymy

etc. CAT is-a ANIMAL

– Coccurence: CATS MEW

• Resources to capture semantics:

– Wordnet: primarily paradigmatic relations

– ConceptNet: primarily Syntagmatic 

Relations



Fundamental Device- Lexical 

Matrix (with examples) 

Word Meanings

Word Forms

F1 F2 F3 … Fn

M1

(depend)

E1,1

(bank)

E1,2

(rely)

E1,3

M2

(bank)

E2,2

(embankme

nt)

E2,…

M3

(bank)

E3,2 E3,3

… …

Mm Em,n
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Two main models for learning word vectors

• 1) global matrix factorization methods, 

such as latent semantic analysis (LSA) 

(Deerwester et al., 1990) and 

• 2) local context window methods, such 

as the skip-gram model of Mikolov

et al. (2013) 

• Currently, both families suffer significant 

drawbacks. 



Matrix Factorization: drawback

• “most frequent words contribute a

disproportionate amount to the similarity 

measure: the number of times two 

words co-occur with the or and, for 

example, will have a large effect on

their similarity despite conveying 

relatively little about their semantic 

relatedness.” 



Skip Gram & CBOW: drawback

• “shallow window-based methods suffer 

from the disadvantage that they do not 

operate directly on the co-occurrence 

statistics of the corpus. Instead,these

models scan context windows across 

the entire corpus, which fails to take 

advantage of the vast amount of 

repetition in the data” 



Can this architecture for Glove work?
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Representation using syntagmatic 

relations: Co-occurrence Matrix

Corpora: I enjoy cricket. I like music. I like deep learning

I enjoy cricket like music deep learning

I - 1 1 2 1 1 1

enjoy 1 - 1 0 0 0 0

cricket 1 1 - 0 0 0 0

like 2 0 0 - 1 1 1

music 1 0 0 1 - 0 0

deep 1 0 0 1 0 - 1

learning 1 0 0 1 0 1 -



Solution: uses co-occurences



Dimensionality Reduction by 

PCA



Intuition for Dimensionality Reduction

A
B

C D

1

2

3

4

O

•1, 2, 3, 4: are the points

•A, B, C, D: are their projections on the fitted line by linear regression

•Suppose 1, 2 form a class and 3, 4 another class

•Of course, it is easy to set up a hyper plane that will separate 1 and 2 from 3 and 4

•That will be classification in 2 dimension

•But suppose we form another attribute of these points, viz., distances of their 

•projections On the line from “O”

•Then the points can be classified by a threshold on these distances

•This effectively is classification in the reduced dimension (1 dimension)



Principal Component Analysis



Example: IRIS Data (only 3 values 

out of 150)
ID Petal 

Length 

(a1)

Petal 

Width 

(a2)

Sepal 

Length 

(a3)

Sepal 

Width 

(a4)

Classific

ation

001 5.1 3.5 1.4 0.2 Iris-

setosa 

051 7.0 3.2 4.7 1.4 Iris-

versicol

or 

101 6.3 3.3 6.0 2.5 Iris-

virginica 



Training and Testing Data

• Training: 80% of the data; 40 from each 
class: total 120

• Testing: Remaining 30

• Do we have to consider all the 4 
attributes for classification? 

• Less attributes is likely to increase the 
generalization performance (Occam 
Razor Hypothesis: A simpler hypothesis 
generalizes better)



The multivariate data: n instances, 

p attributes

X1 X2 X3 X4 X5… Xp

x11 x12 x13 x14 x15 … x1p

x21 x22 x23 x24 x25 … x2p

x31 x32 x33 x34 x35 … x3p

x41 x42 x43 x44 x45 … x4p

…

…

xn1 xn2 xn3 xn4 xn5 … xnp
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PCA: Example
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000.1763.0769.0645.0

000.1674.0662.0

000.1735.0

000.1

R

49 birds: 21 survived in a storm and 28 died.

5 body characteristics given

X1: body length; X2: alar extent; X3: beak and head length

X4: humerus length; X5: keel length

Could we have predicted the fate from the body characteristic

X1 X2 X3 X4
X5

X1

X2

X3

X4

X5



Eigenvalues and Eigenvectors of R

Eigenvalues: 3.612, 0.532, 0.386, 0.302, 0.165

First Eigen-

vector: V1

V2 V3 V4 V5

0.452 0.462 0.451 0.471 0.398

-0.051 0.300 0.325 0.185 -0.877

0.691 0.341 -0.455 -0.411 -0.179

-0.420 0.548 -0.606 0.388 0.069

0.374 -0.530 -0.343 0.652 -0.192



Which principal components are 

important?

• Total variance in the data= 

λ1+ λ2+ λ3+ λ4+ λ5

= sum of diagonals of R= 5

• First eigenvalue= 3.616 ≈ 72% of  total 
variance 5

• Second ≈ 10.6%, Third ≈ 7.7%, Fourth ≈ 
6.0% and Fifth ≈ 3.3%

• First PC is the most important and 
sufficient for studying the 
classification



Forming the PCs

• Z1= 0.451X1+0.462X2+0.451X3+0.471X4+0.398X5

• Z2= -0.051X1+0.300X2+0.325X3+0.185X4 -0.877X5

• For all the 49 birds find the first two 

principal components

• This becomes the new data

• Classify using them



For the first bird

X1=156, X2=245, X3=31.6, X4=18.5, X5=20.5

After standardizing

Y1=(156-157.98)/3.65=-0.54, 

Y2=(245-241.33)/5.1=0.73, 

Y3=(31.6-31.5)/0.8=0.17, 

Y4=(18.5-18.46)/0.56=0.05, 

Y5=(20.5-20.8)/0.99=-0.33 

PC1 for the first bird=

Z1= 0.45X(-0.54)+ 0.46X(0.725)+0.45X(0.17)+0.47X(0.05)+0.39X(-
0.33)

=0.064

Similarly, Z2= 0.602



Reduced Classification Data

• Instead of

• Use

X1 X2 X3 X4 X5

49 

rows

Z1 Z2

49 rows



Working out a simple case of 

word2vec 



Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small 

letter for output from the same neuron



Computing ΔwV2H0
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Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small 

letter for output from the same neuron



Change in other weights to output layer, say, V1, 

due to input U0
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Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small 

letter for output from the same neuron



Cntd: Weight change for input to hidden layer, 

say, wH0U0
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Encode - Decode Paradigm Explained

Use two RNN networks: the encoder and the decoder

मैं किताबने पढी

I read the book

h1 h2 h3h0

h4

s0 s1 s2
s3

(1) Encoder 

processes one 

input at a time

(4) Decoder 

generates one 

element at a 

time

(2) A representation 

of the sentence is 

generated

(3) This is used 

to initialize the 

decoder state

Encoding

Decoding

<EOS>

s4

(5)… continue till 

end of sequence 

tag is generated

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/

Sequence to Sequence Learning with Neural Networks Ilya Sutskever, Oriol Vinyals, Quoc V. Le. arxiv pre-

print [link]

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/
https://arxiv.org/abs/1409.3215


FF

RNN-LSTM

softmax

This captures y<j

This captures x, c=h4

What is the decoder doing at each 

time-step?



Decoding

Ram    ate rice   with the spoon

राम ने चम्मच से चावल खाये

Searching for the best translations in the space of all 

translations



राम ने

चावल

चम्मच

खा ललया

चम्मच से

चावल

खाये

• Incremental construction

• Each hypothesis is scored using the model

• Hypotheses are maintained in a priority 
queue 

Empty 

Hypothesis

Partial 

Hypothesis

Final 

Hypothesis

Hypothesis 

Expansion



मैं किताबने पढी

I read the book

h1 h2 h3

h0

h4

s0 s1 s2
s3

Encoding

Decoding

<EOS>

s4

h4

Feed the encoder state as input at 

each decoder timestep



The entire source sentence is 

represented by a single vector

Problems

● Insufficient to represent to capture all the syntactic and 

semantic complexities

○ Solution: Use a richer representation for the sentences

● Long-term dependencies: Source sentence representation 

not useful after few decoder time steps

○ Solution: Make source sentence information when making 

the next prediction

○ Even better, make RELEVANT source sentence 

information available



Encode - Attend - Decode Paradigm

I read the book

s1 s1 s3s0

s4

Annotation 

vectors Represent the source sentence by 

the set of output vectors from the 

encoder

Each output vector at time t is a 

contextual representation of the 

input at time t

Let’s call these encoder output 

vectors annotation vectors

e1 e2 e3 e4

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR 2015.

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-3/



CNN



Two motivation points

• 1. Reduced number of parameters

• 2. Stepwise extraction of features

• These two are applicable to any AI 

situation, and not only vision and 

image processing



CNN= feedforward like + recurrent 

like!

• Whatever we learnt so far in FF-BP is useful 

to understand CNN

• So also is the case with RNN (and LSTM)

• Input divided into regions and fed forward

• Window slides over the input: input changes, 

but ‘filter’ parameters remain same

• That is like RNN



Genesis: Neocognitron

(Fukusima, 1980)
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CNN Genesis: Neocognitron

(Fukusima, 1980)



A typical ConvNet

Lecun, Bengio, Hinton, Nature, 2015



Why CNN became a rage: image

Image

Captioning-1

Image

Captioning-2



Role of ImageNet

• Million images from the web

• 1,000 different classes

• Spectacular results! 

• Almost halving the error rates of the 

best competing approaches1. 



Learning in CNN

• Automatically learns the 

values of its filters

• For example, in Image 

Classification learn to 
– detect edges from raw pixels in the first layer, 

– then use the edges to detect simple shapes in 

the second layer, 

– and then use these shapes to deter higher-level 

features, such as facial shapes in higher layers. 

– The last layer is then a classifier that uses 

these high-level features.



http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/



Credit:  Denny Britz

CNN for NLP



CNN-FF for Sarcasm



Comparison of results (1: sarcastic, 0: non-

sarcastic)

back



Sentiment Annotation and Eye 

Movement

Sarcastic

Longer

Fixations

Multiple 

Regressive 

Saccades



Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya, Learning Cognitive Features 

from Gaze Data for Sentiment and Sarcasm Classification Using Convolutional Neural 

Network, ACL 2017, Vancouver, Canada, July 30-August 4, 2017.

https://www.cse.iitb.ac.in/~pb/papers/acl17-cogfeatures.pdf


Neural Network Architecture

Input Embeddings Local Features Global Features

104



Results – Sarcasm Detection

105



Attention and Transformer

Arguably, the most important application-

MACHINE TRANSLATION



Two Pillars of Transformer

Transformer

Attention                     +               Positional Encoding

= Transformer



Week9

Prompting, Reasoning, Bias, SSMT, QE, 

APE, Fake-News & Half-Truth 

Detection, Query Intent Detection and 

Speech Emotion Recognition



Week10



A classic diagram and a classic paper

http://nlp.seas.harvard.edu/2018/04/03/attention.html

http://jalammar.github.io/illustrated-transformer/

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. 

Gomez, Lukasz Kaiser, and Illia Polosukhin. "Attention is all you need." NeurIPS

(2017).

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/


Attention: Self, Multi-headed, 

Cross



Self Attention Block

Attention

V1 V2 V3 V4

Y1 Y2 Y3 Y4

Bank of the river



Word Embedding and Contextual Word 

Embedding

• Consider the phrase “bank of the river”

• Word embeddings of ‘bank’, ‘of’, ‘the’, 

‘river’: V1, V2, V3, V4

• Now create a ‘score’ vector Si for each 

word vector

• S1: (V1.V1, V1.V2, V1.V3, V1.V4)

• Similarly, S2, S3, S4



S-matrix
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S-scaled matrix





















44434241

34333231

24232221

14131211

ssss

ssss

ssss

ssss

1

kd
scaledS



W-matrix
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Y-matrix

414313212111

44434241

34333231

24232221

14131211

.... VwVwVwVwvectorY

yyyy

yyyy

yyyy

yyyy

Y

i 























Attention Block

Attention

V1 V2 V3 V4

Y1 Y2 Y3 Y4

Bank of the river



Query, Key and Value

V
d
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softVKQattention
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Query, Key and Value with 

LEANABLE Parameter (1/2)

VW
d

KWQW
softVKQattention V

k

TKQ

.
.

max),,(















WQ, WK and WV can be the weights of 3 

linear layers of neurons which can be 

learnt by gradient descent



Query, Key and Value with 

LEANABLE Parameter (2/2)

)()).(( VWKWQW VK

T

Q 

WQ, WK and WV can be the weights of 3 

linear layers of neurons which can be learnt 

by gradient descent
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Attempts at Automation

• InstructGPT: 
– Command/Request/Order  Response

• ChatGPT:
– Carry out a conversation

– Respect context (state), personalization, quality 

and quantity and respond

• Input: I have been promoted

• Appropriate response: I am 

delighted/congratulations/great ..

• Inappropriate: why did they promote you?



Gricean Maxims: Cooperative Principle in 

Converstaion (Wikipedia)

• Quantity, Quality, Relation, and 

Manner

• Paul Grice, philosopher of language 

• “Make your contribution such as is 

required, at the stage at which it occurs, 

by the accepted purpose or direction of 

the talk exchange in which you are 

engaged”.

• Captures the LINK between utterances



Maxim of Quantity (length and depth)

• Be informative, and submaxims are:
– Make your contribution as informative as is 

required (for the current purposes of the 

exchange).

– Do not make your contribution more informative 

than is required.

• Grice’s analogy: "If you are assisting me to mend 

a car, I expect your contribution to be neither more 

nor less than is required. If, for example, at a 

particular stage I need four screws, I expect you to 

hand me four, rather than two or six."



Maxim of Quality (truth)

• Be Truthful

• Submaxims:
– Do not say what you believe is false.

– Do not say that for which you lack 

adequate evidence

• Grice’s analogy: "I expect your contributions 

to be genuine and not spurious. If I need sugar 

as an ingredient in the cake you are assisting 

me to make, I do not expect you to hand me 

salt; if I need a spoon, I do not expect a trick 

spoon made of rubber."



Maxim of Relation (relevance)

• Information is relevant to the current 

exchange; therefore omitting any 

irrelevant information

• Grice’s analogy for this maxim: "I expect a 

partner’s contribution to be appropriate to the 

immediate needs at each stage of the 

transaction. If I am mixing ingredients for a 

cake, I do not expect to be handed a good 

book, or even an oven cloth (though this might 

be an appropriate contribution at a later 

stage)."



Maxim of Manner (clarity)

• Be perspicuous

• Submaxims:
– Avoid obscurity of expression — i.e., avoid 

language that is difficult to understand.

– Avoid ambiguity — i.e., avoid language that can be 

interpreted in multiple ways.

– Be brief — i.e., avoid unnecessary prolixity.

– Be orderly — i.e., provide information in an order 

that makes sense, and makes it easy for the 

recipient to process it.
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AI chatbots compared: Bard vs. 

Bing vs. ChatGPT

https://www.theverge.com/2023/3/24/236533

77/ai-chatbots-comparison-bard-bing-

chatgpt-gpt-4



Comparison: Chatbots

Google’s Bard (https://bard.google.com/),

Microsoft’s Bing

(https://www.theverge.com/2023/3/24/23653377/ai-

chatbots-comparison-bard-bing-chatgpt-gpt-4), 

OpenAI’s ChatGPT (https://chat.openai.com/chat#)

https://www.theverge.com/2023/3/21/23649794/google-chatgpt-rival-bard-ai-chatbot-access-hands-on
https://www.theverge.com/2022/12/8/23499728/ai-capability-accessibility-chatgpt-stable-diffusion-commercialization


3 stages of LLM based CAI

• Generative Pretraining (GP)

• Supervised Fine Tuning (SFT)

• Reinforcement Learning from Human 

Feedback (RLHF) 



Enter Pragmatics



Modeling

• Dialogue Act Classification (DAC): f Dialogue 
Sequence, eDialogue turn labels

• Dialogue Intent: f dialogue sequence, e dialogue 
turns with Intent like ‘question’, ‘elaboration’, 
‘affirmation’, ‘command/request’ etc.

6 Jan, 2014isi: ml for mt:pushpak134

)]|()([maxarg

)|(maxarg*

efPeP

fePe

e

e





P(e): “language” 
model



Elements of Pragmatics (1/2)

• Deixis (literally, ‘pointing with words’: temporal-

now, then; spatial- here, there; personal- I, you, 

he, they; definite-indefinite- this, that, those)

• Presupposition: (untie the shoe 

presupposes the shoe was tied before)



Elements of Pragmatics (2/2)

• Speech Acts: (I pronounce you man and 

wife)- locutionary, illocutionary, and 

perlocutionary

• Implicatures: (A: shall we go for a walk? B: It 

is raining outside)

• Politeness: (close the door  please close 

the door  can you close the door  would 

you mind closing the door)

• Information Structure: ordering of 

information (??The table is under the flower 

pot- odd; smaller object first mention) credit: Handke, 



The Trinity of Pragmatics

Speaker Hearer

Linguistic Expression



Diexis

Credit: 

https://doi.org/10.1093/acrefore/97801993

84655.013.213

https://doi.org/10.1093/acrefore/9780199384655.013.213


Speech Act



Kinds of Speech Act

• Locutionary

• Illocutionary

• Perlocutionary

• Performative Speech acts



Implicatures



Computational Perspective: 

Conversational AI



Dialogue Based Computation

Tulika Saha, Aditya Patra, Sriparna Saha and Pushpak 

Bhattacharyya, Towards Emotion-aided Multi-modal Dialogue Act 

Classification, Association of Computational Linguistics Conference (ACL 

2020), Seattle USA, 5-10 July, 2020.

Zihao He, Leili Tavabi, Kristina Lerman, and Mohammad Soleymani. 

2021. Speaker Turn Modeling for Dialogue Act Classification. In Findings 

of the Association for Computational Linguistics: EMNLP 2021, pages 

2150–2157, Punta Cana, Dominican Republic. Association for 

Computational Linguistics.

https://www.cse.iitb.ac.in/~pb/papers/acl20-dialogue.pdf
https://aclanthology.org/2021.findings-emnlp.185
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Summarization



SUMMARIZATION
146

• Task of automatically creating a compressed version 

of the text document (set of tweets, web-page, 

single/multi-document) that should be relevant, non-

redundant and representative of the main idea of the 

text.

• A text that is produced from one or more texts that 

conveys important information in the original text(s), 

and that is no longer than half of the original text(s) 

and usually significantly less than that.

• Metric: 

Compression Ratio= #wordsummary/#worddocument



NLP Layer

Lexical Level

Syntax

Semantics

Pragmatics



Summarization Categorization

• Broad Categorization

• Extractive: sentences from the input text form part 

of summary

• Abstractive: Essence+Natural Language 

Generation 

• Other categorizations:

• # Document: Single and Multi document

• Purpose: Generic and Query focused

• Miscellaneous: Personalized, Sentiment-based, 

Update, E-mail-based, web-based
148



Handling Morphology in Abstractive 

Summarization

• Fasttext tried solving the morphology generation 

problem by BPE (byte pair encoding)

• Given “going”, divide the string into “go” and “ing”

• Use these parts to generate say “walking”

• Each subword will have its own probability 

• If not subwording, then no way other than showing all 

forms of the root word: go, went, going, gone

• Languages differ in morphological complexity

• French more complex than English
149



Computation of Summaries



Hierarchical Encoder-Decoder

27jun20webinar:pushpak151

Paragraph encoding

Paragraph encoding

Decoded Summary



SummaRuNNer

152Figure 1: SummaRuNNer: A two-layer RNN based sequence classifier 

[1]



Summarization with Pointer-Generator 

Network 

153Figure: Pointer-generator Model

Extended 

Vocabulary

[2]



BART 

154

Fig 1: BART architecture.

Lewis, Mike, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke 

Zettlemoyer. "Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension." 

arXiv preprint arXiv:1910.13461 (2019).

● BERT (12 layers) + 
GPT (12 layers)

● Pre-trained on 
160GB of news, 
books and web text

● Fine-tuned on  
CNN/DM dataset



1. Generative Pre-training 

2. Supervised Fine Tuning 

3. Reinforcement Learning with Human 

Feedback (RLHF)

Now GPT…



Opinion/Review Summaries



Properties of Opinion Summaries

● Monotonicity: As more sentences are added to 
opinion summary, subjectivity increases along 
with information content

● Diminishing Return: If multiple sentences of 
varying intensity are added to opinion summary, 
the effect of lower intensity diminishes in 
presence of higher intensity bearing polar 
sentences



Examples from cricket: diminishing return

A: Rahul Dravid is a great batsman

B: Rahul Dravid is a very consistent player

A∪B:
Rahul Dravid is a great batsman. He is a very 
consistent player

Compare B and A ∪ B; “effect” of B diminished in 
presence of A

When asked to summarize A∪B in one sentence, B is 
likely to be dropped



Example from cricket: coverage

A: “Sachin is a great batsman”
B: “His backfoot batting is unmatchable”
C: “He also bowls decent spin”

● If the budget allows only two subjective sentences, 
then picking up A and B have captured only batting

● Picking up C with the one of A and B would have 
covered both aspects (i.e. batting and bowling)

● Sentences are not overlapping in aspects, hence no 
diminishing return

● Higher intensity dominates



Submodular Function (1/2)

Finite set V 

Set Function F: 2V→R, F(φ)= 0

Definition: F : 2V → R is submodular iff

∀ A, B ⊂ V, F (A) + F (B) ≥ F (A ∩ B) + F (A ∪ B)



Submodular Function (2/2)

Equivalent definition:

∀ k ∈ V, ∀A ⊂ V, 

F(A ∪ {k})−F(A) is non-increasing 

(diminishing return)

⇔

∀A ⊂ B, ∀ k ∉ A, 

F (A ∪ {k}) − F (A) ≥ F (B ∪ {k}) − F (B)

Example of Submodular Functions: Cut 

Functions, Set Cover



Extractive Summarization and Submodularity

• Find a set S ⊆ V

• S is set of sentences in summary, V is

set of sentences in Document

• which maximizes a submodular function 

f(S) subject to budget constraints.



Monotone Submodular Objective

F(S) = L(S) + λR(S)

F(S) -> Total Utility of summary

L(S) -> Relevance

R(S) -> Diversity



Pointer Generator Network

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get 

To The Point: Summarization with Pointer-Generator 

Networks, ACL.

https://aclanthology.org/P17-1099


Abstract (1/2)

• Proposes a novel architecture that 

augments the standard sequence-to-

sequence attentional model in two 

orthogonal ways. 

• First: uses a hybrid pointer-generator 

network that can copy words from the 

source text via pointing, which aids 

accurate reproduction of information, 

while retaining theability to produce novel 

words through the generator



Abstract (2/2)

• Second: uses coverage to keep track of 

what has been summarized, which 

discourages repetition

• Applies the model to the CNN/Daily Mail 

summarization task, outperforming the 

current abstractive state-of-the-art by at 

least 2 ROUGE points 



Basic seq2seq n/w



Pointer Generator N/W: copy word 

vs. new word



Modeling: input processing

• Tokens wi fed one-by-one into the

encoder (a single-layer bidirectional 

LSTM), producing a sequence of encoder 

hidden states hi

• At each step t, the decoder (a single-layer 

unidirectional LSTM) receives the word 

embedding of the previous word 



Modeling: encoder hidden states

• While training, this is the previous word of 

the reference summary; 

• at test time it is the previous word emitted 

by the decoder), and has decoder state 

st.

where v, Wh, Ws and battn are 

learnable parameters. 



Modeling: encoder hidden states

• Attention is a probability distribution over 

the source words, that tells the decoder 

where to look to produce the next word.

• Next, the attention distribution is used

to produce a weighted sum of the 

encoder hidden states, known as the 

context vector ht
∗



Modeling: vocab distribution

• The context vector is a fixed size 

representation of what has been read 

from the source for this step

• It is concatenated with the decoder state 

st and fed through two linear layers to

produce the vocabulary distribution Pvocab

where V , V0, b and b0 are learnable 

parameters.



Modeling: probability distribution over vocab

• Pvocab is a probability distribution over 

all words in the vocabulary, and provides 

the final distribution from which to predict 

words w.



Modeling: Loss 

• During training, the loss for timestep t is 

the negative log likelihood of the target 

word wt
∗ for that time step

• Overall loss for the whole sequence is: 



Modeling: Pointer Generator

• Allows both copying words via pointing, 

and generating words from a fixed 

vocabulary.

• Generation probability pgen∈ [0,1] for 

timestep t is calculated from the context 

vector ht
∗, the decoder state st and the 

decoder input xt



Pointer Generator N/W: copy word 

vs. new word



Modeling: Generator Probability

• Allows both copying words via pointing, 

and generating words from a fixed 

vocabulary.

• Generation probability pgen∈ [0,1] for 

timestep t is calculated from the context 

vector ht
∗, the decoder state st and the 

decoder input xt

where vectors wh
∗, ws, wx and scalar bptr are learnable 

parameters and σ is the sigmoid function



Modeling: to point or to generate

• pgen is used as a soft switch to choose 

between generating a word from the 

vocabulary by sampling from Pvocab, or 

copying a word from the input sequence 

by sampling from the attention distribution 

at

• if w is an out-of-vocabulary (OOV)

word, then Pvocab(w) is zero; similarly if 

w does not appear in the source 

document, then ∑i:wi=wat
i is zero.



Result: superiority of pointer-generator



Giving importance to Recall: Ref 

n-grams: ROUGE



ROUGE

• Recall-Oriented Understudy for 

Gisting Evaluation

• ROUGE is a package of metrics: 

ROUGE-N, ROUGE-L, ROUGE-W 

and ROUGE-S



ROUGE-N

ROUGE-N incorporates Recall
Will BLEU be able to understand quality of long sentences?

Reference translation:
क्या ब्लू लंबे वाक्य िी गुणवत्ता िो समझ पाएगा?
Kya bloo lambe waakya ki guNvatta ko samajh paaega?

Candidate translation: 
लंबे वाक्य
Lambe vaakya

ROUGE-N: 1 / 8 
Modified n-gram Precision: 1



Other ROUGEs

• ROUGE-L
– Considers longest common subsequence

• ROUGE-W
– Weighted ROUGE-L: All common 

subsequences are considered with weight 

based on length

• ROUGE-S
– Precision/Recall by matching skip bigrams



ROUGE v/s BLEU

ROUGE BLEU

Handling incorrect words Skip bigrams, ROUGE-N N-gram mismatch

Handling incorrect word order Longest common sub-sequence N-gram mismatch

Handling recall ROUGE-N incorporates missing 

words

Precision cannot detect 

‘missing’ words. Hence, brevity

penalty!



Thank you

http://www.cse.iitb.ac.in/~pb

http://www.cfilt.iitb.ac.in

http://www.cse.iitb.ac.in/~pb
http://www.cfilt.iitb.ac.in/

