CS772: Deep Learning for Natural Language Processing (DL-NLP)

Introduction cntd, flavour of neural computation, perceptron
Pushpak Bhattacharyya
Computer Science and Engineering Department
IIT Bombay
Week 1 of $2^{\text {nd }}$ Jan, 2023

Course Content: Task vs. Technique Matrix

Books

- 1. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.
- 2. Dan Jurafsky and James Martin, Speech and Language Processing, 3rd Edition, 2019.

Books (2/2)

- 4. Christopher Manning and Heinrich Schutze, Foundations of Statistical NaturalLanguage Processing, MIT Press, 1999.
- 5. Pushpak Bhattacharyya, Machine Translation, CRC Press, 2017.

Journals and Conferences

- Journals: Computational Linguistics, Natural Language Engineering, Journal of Machine Learning Research (JMLR), Neural Computation, IEEE Transactions on Neural Networks
- Conferences: ACL, EMNLP, NAACL, EACL, AACL, NeuriPS, ICML

Useful NLP, ML, DL libraries

- NLTK
- Scikit-Learn
- Pytorch
- Tensorflow (Keras)
- Huggingface
- Spacy
- Stanford Core NLP

Nature of DL-NLP

(

\qquad

(
-
\square
\square
\square
\square

3 Generations of NLP

- Rule based NLP is also called Model Driven NLP
- Statistical ML based NLP (Hidden Markov Model, Support Vector Machine)
- Neural (Deep Learning) based NLP Illustration with POS tagging

Neural Parsing

Data

[The man] $]_{N P}$ [
 [

$s^{\text {saw }}$ VBD

[[the boy] $]_{N P}$
]vp
[with [a telescope] $\left.]_{\text {NP }}\right]_{P P}$

Classification Decisions

- Are there any brackets to be inserted at a position p ?
- If the answer to (a) is yes, which bracket- opening or closing?
- If closing bracket, which label to insert

Steps (1/2)

- In the first pass, the representation from two consecutive word-units is obtained by (a) concatenating the vectors of these words, and (b) passing the concatenation through the recurrent n / w.
- The resulting combination-unit is (a) premultiplied by a learnt weight vector, (b) the product added with a bias term, (c) the result passed through a non-linear function, to obtain a score for the unit.

Steps (2/2)

- The highest scoring combination-unit is retained and a new sequence obtained by deleting the word-units constituting the combination-unit.
- The new sequence is treated like in the previous pass, combining bi-grams.
- Retained combination-units also pass through a feedforward network with softmax final layer, to obtain the labels $N P, V P, P P$ etc.
- The process stops with the finding of the start symbol S.

Example (1/2)

- ${ }_{0}$ the ${ }_{1}$ man $_{2}$ saw $_{3}$ the ${ }_{4}$ boy $_{5}$ with $_{6} a_{7}$ telescope ${ }_{8}$
${ }_{0} C^{1}{ }_{02}{ }_{1} C^{1}{ }_{13}{ }_{2} C^{1}{ }_{24}{ }_{3} C^{1}{ }_{354} C^{1}{ }_{46}{ }_{5} C^{1}{ }_{57}{ }_{6} C^{1}{ }_{68}$; assume $C^{1}{ }_{02}$ ('the man') has the highest score; the upper right suffix ' 1 ' indicates pass- 1 ; 'the man' is replaced with its representation $C^{1}{ }_{02}$ along with the label $N P$
${ }_{0} C^{1}{ }_{02} N_{1} P_{1}$ saw $_{2}$ the ${ }_{3}$ boy $_{4}$ with $_{5} a_{6}$ telescope 7 ; new sequence
- (after combining, scoring and filtering) ${ }_{0} \mathrm{C}^{1}{ }_{02} N P_{1}$ saw $_{2} \mathrm{C}^{2}{ }_{24} \mathrm{NP}_{3}$ with ${ }_{4} a_{5}$ telescope ${ }_{6}$; upper right suffix '2' indicates pass-2

Example (2/2)

- ${ }_{0} C^{1}{ }_{02 _} N P_{1}$ saw ${ }_{2} C^{2}{ }_{24} N P_{3}$ with ${ }_{4} C^{3}{ }_{46 _} N P_{5}$; $3^{\text {rd }}$ pass; 'a telescope' is an NP
${ }_{0} C^{1}{ }_{02 _} N P_{1} C^{4}{ }_{13}$ VP ${ }_{2}$ with ${ }_{4} C^{3}{ }_{46} _N P_{5} ; 4^{\text {th }}$ pass; 'saw' and NP ('a boy') give rise to a $V P$ ${ }_{0} C^{1}{ }_{02 _} N P_{1} C^{4}{ }_{13} V P_{2} C^{5}{ }_{25 _} P P_{3} ; 5^{\text {th }}$ pass; 'with' and NP ('a telescope') produce a VP
- ${ }_{0} C^{1}{ }_{02 _} N P{ }_{1} C^{6}{ }_{13} V P_{2} ; 6^{\text {th }}$ pass; $V P$ ('saw the boy') + PP ('with a telescope') $\rightarrow V P$
${ }_{0} C^{7}{ }_{02}$ S ; $7^{\text {th }}$ pass; $S \rightarrow N P V P ; S$ found; TERMINATE

RcNN based parse tree of "the man...": Parse Tree-1 (man has telescope)

Neural parsing objective function

$$
\begin{gathered}
J=\sum_{i}\left[s\left(x_{i}, y_{i}\right)-\max _{y \in A\left(x_{i}\right)}\left(s\left(x_{i}, y\right)+\Delta\left(y, y_{i}\right)\right)\right] \\
s\left(x_{i}, y_{i}\right)=\sum_{d \in T\left(y_{i}\right)} s_{d}\left(c_{p}, c_{q}\right)
\end{gathered}
$$

RcNN \rightarrow RNN \rightarrow FFNN \rightarrow Perceptron

The Perceptron

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

- Step function / Threshold function
- $y=1$ for \sum wixi $>=\theta$
$=0$ otherwise

Features of Perceptron

- Input output behavior is discontinuous and the derivative does not exist at $\Sigma w i x i=\theta$
Σ wixi $-\theta$ is the net input denoted as net
- Referred to as a linear threshold element linearity because of x appearing with power 1
- $y=f(n e t)$: Relation between y and net is nonlinear

Computation of Boolean functions: AND

X1	x2	y
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights \&thresholds) need to be found.

Computing parameter values

$$
\begin{aligned}
& \mathrm{w} 1^{*} 0+\mathrm{w} 2{ }^{*} 0<=\theta \rightarrow \theta>=0 ; \text { since } y=0 \\
& \mathrm{w} 1^{*} 0+\mathrm{w} 2{ }^{*} 1<=\theta \rightarrow \mathrm{w} 2<=\theta ; \text { since } y=0 \\
& \mathrm{w} 1^{*} 1+\mathrm{w} 2 * 0<=\theta \rightarrow \mathrm{w} 1<=\theta ; \text { since } y=0 \\
& \mathrm{w} 1^{*} 1+w 2{ }^{*} 1>\theta \rightarrow \mathrm{w} 1+w 2>\theta ; \text { since } y=1 \\
& \mathrm{w} 1=\mathrm{w} 2==0.5
\end{aligned}
$$

satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions

- OR can be computed using values of $w 1$ $=\mathrm{w} 2=1 \quad$ and $=0.5$
- XOR function gives rise to the following inequalities:

$$
\begin{aligned}
& w 1^{*} 0+w 2^{*} 0<=\theta \rightarrow \theta>=0 \\
& w 1^{*} 0+w 2 * 1>\theta \rightarrow w 2>\theta \\
& w 1^{*} 1+w 2 * 0>\theta \rightarrow w 1>\theta \\
& w 1^{*} 1+w 2 * 1<=\theta \rightarrow w 1+w 2<=\theta
\end{aligned}
$$

Threshold functions

n \# Boolean functions ($2^{\wedge} 2^{\wedge} n$) \#Threshold Functions (2n2)

1	4	4
2	16	14
3	256	128
4	$64 K$	1008

Functions computable by perceptrons- threshold functions,
\#TF becomes negligibly small for larger values of \#BF.
For $n=2$, all functions except XOR and XNOR are

- Step function / Threshold function
- y $=1$ for Σ wixi $>=\theta$
=0 otherwise

Features of Perceptron

Input output behavior is discontinuous and the derivative does not exist at Σ wixi $=\theta$
$\Sigma_{1, n} w_{i} x_{i}-\theta$ is the net input denoted as net

Referred to as a linear threshold element linearity because of x appearing with power 1 $y=f(n e t)$: Relation between y and net is nonlinear

Perceptron Training Algorithm (PTA)

Preprocessing:

1. The computation law is modified to

$$
\begin{aligned}
& y=1 \text { if } \sum w_{i} x_{i}>\theta \\
& y=0 \text { if } \sum w_{i} x_{i}<\theta
\end{aligned}
$$

$\xrightarrow{>}$

PTA - preprocessing cont...

2. Absorb θ as a weight

3. Negate all the zero-class examples

Example to demonstrate preprocessing

- OR perceptron

1-class <1,1>, <1,0> , <0,1>
0-class <0,0>

Augmented x vectors:-
1 -class <-1,1,1>, <-1,1,0> , <-1,0,1>
0-class <-1,0,0>

Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing cont..

Now the vectors are

\[

\]

Perceptron Training Algorithm

1. Start with a random value of w ex: <0,0,0...>
2. Test for $w x_{i}>0$ If the test succeeds for $i=1,2, \ldots n$ then return w
3. Modify $w, w_{\text {next }}=w_{\text {prev }}+x_{\text {fail }}$

PTA on NAND

$$
\begin{array}{ccc}
\text { W2 } & \text { W1 } & \mathrm{VO}==\Theta \\
\mathrm{X} 2 & \mathrm{X} 1 & \mathrm{X} 0=-1
\end{array}
$$

Preprocessing

NAND Augmented: NAND-0 class Negated

X 2	X 1	X 0	Y		X 2	X 1	X 0
0	0	-1	1	$\mathrm{~V} 0:$	0	0	-1
0	1	-1	1		$\mathrm{~V} 1:$	0	1
-1							
1	0	-1	1		V2:	1	0
	-1						
1	1	-1	0		$\mathrm{~V} 3:$	-1	-1

Vectors for which $\mathrm{W}=<\mathrm{W} 2 \mathrm{~W} 1 \mathrm{~W} 0>$ has to be found such that W. $\mathrm{V}_{\mathrm{i}}>0$

PTA Algo steps

Algorithm:

1. Initialize and Keep adding the failed vectors until $\mathrm{W} . \mathrm{Vi}>0$ is true.

$$
\begin{aligned}
& \text { Step 0: } W=<0,0,0\rangle \\
& W_{1}=\langle 0,0,0\rangle+\langle 0,0,-1\rangle \quad\left\{V_{0} \text { Fails }\right\} \\
& =\langle 0,0,-1\rangle \\
& \mathrm{W}_{2}=<0,0,-1>+<-1,-1,1>\left\{\mathrm{V}_{3} \text { Fails }\right\} \\
& =<-1,-1,0> \\
& \mathrm{W}_{3}=\langle-1,-1,0\rangle+\langle 0,0,-1\rangle \quad\{\mathrm{V} 0 \text { Fails }\} \\
& =\langle-1,-1,-1\rangle \\
& \mathrm{W}_{4}=\left\langle-1,-1,-1>+<0,1,-1>\left\{\mathrm{V}_{1} \text { Fails }\right\}\right. \\
& =<-1,0,-2>
\end{aligned}
$$

Trying convergence

$$
\begin{array}{rlrl}
\mathrm{W}_{5} & = & <-1,0,-2>+<-1,-1,1> & \left\{\mathrm{V}_{3} \text { Fails }\right\} \\
& = & <-2,-1,-1> & \\
\mathrm{W}_{6}= & <-2, & -1,-1>+<0,1,-1> & \left\{\mathrm{V}_{1} \text { Fails }\right\} \\
& = & <-2,0,-2> & \\
\mathrm{W}_{7}= & <-2,0,-2>+<1,0,-1> & \left\{\mathrm{V}_{0} \text { Fails }\right\} \\
& =<-1,0,-3> & \\
\mathrm{W}_{8}=<-1, & 0,-3>+<-1,-1,1> & \left\{\mathrm{V}_{3} \text { Fails }\right\} \\
& =<-2,-1,-2> & \\
& \begin{array}{rlrl}
\mathrm{W} 9 & = & <-2,-1,-2>+<1,0,-1> & \left\{\mathrm{V}_{2} \text { Fails }\right\} \\
& = & <-1,-1,-3>
\end{array}
\end{array}
$$

Trying convergence

$$
\begin{array}{rlrl}
\mathrm{W}_{10} & = & <-1,-1,-3>+<-1,-1,1> & \left\{\mathrm{V}_{3} \text { Fails }\right\} \\
& =<-2,-2,-2> & \\
\mathrm{W}_{11}= & <-2, & -2,-2>+<0,1,-1> & \left\{\mathrm{V}_{1} \text { Fails }\right\} \\
& =<-2,-1,-3> & \\
\mathrm{W}_{12}= & <-2,-1,-3>+<-1,-1,1> & \left\{\mathrm{V}_{3} \text { Fails }\right\} \\
& =<-3,-2,-2> & \\
\mathrm{W}_{13}= & <-3, & -2,-2>+<0,1,-1> & \left\{\mathrm{V}_{1} \text { Fails }\right\} \\
& =<-3,-1,-3> & \\
\mathrm{W}_{14} & =<-3,-1,-3>+<0,1,-1> & \left\{\mathrm{V}_{2} \text { Fails }\right\} \\
& = & <-2,-1,-4> &
\end{array}
$$

$$
\begin{array}{rlrl}
\mathrm{W} 15= & <-2,-1,-4>+<-1,-1,1> & \text { \{V3 Fails }\} \\
& =<-3,-2,-3> & \\
\mathrm{W} 16= & <-3,-2,-3>+<1,0,-1> & \text { \{V2 Fails }\} \\
& =<-2,-2,-4> & & \\
\mathrm{W} 17= & <-2,-2,-4>+<-1,-1,1> & \text { \{V3 Fails }\} \\
& =<-3,-3,-3> & \\
\mathrm{W} 18= & <-3,-3,-3>+<0,1,-1> & \text { \{V1 Fails }\} \\
& =<-3,-2,-4> &
\end{array}
$$

$$
W 2=-3, \quad W 1=-2, \quad W 0=\Theta=-4
$$

PTA convergence

Statement of Convergence of PTA

- Statement:

Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Proof of Convergence of PTA

- Suppose w_{n} is the weight vector at the $\mathrm{n}^{\text {th }}$ step of the algorithm.
- At the beginning, the weight vector is w_{0}
- Go from w_{i} to w_{i+1} when a vector X_{j} fails the test $w_{i} X_{j}>0$ and update w_{i} as

$$
w_{i+1}=w_{i}+X_{j}
$$

- Since Xjs form a linearly separable function,
- there exits w^{*} s.t. $\mathrm{w}^{*} \mathrm{X}_{\mathrm{j}}>0$ for all j

Proof of Convergence of PTA

 (cntd.)- Consider the expression

$$
G\left(w_{n}\right)=\frac{w_{n} \cdot w^{*}}{\left|w_{n}\right|}
$$

where $\mathrm{w}_{\mathrm{n}}=$ weight at nth iteration

- $\mathrm{G}\left(\mathrm{w}_{\mathrm{n}}\right)=\left\lfloor\mathrm{w}_{\mathrm{n}}\right\rfloor \cdot\left|\mathrm{w}^{*}\right| \cdot \cos \theta$

$$
\left|w_{n}\right|
$$

where $\square=$ angle between w_{n} and w^{*}

- $G\left(w_{n}\right)=\left|w^{*}\right| \cdot \cos \theta$
- $G\left(w_{n}\right) \leq\left|w^{*}\right|($ as $-1 \leq \cos \theta \leq 1)$

Behavior of Numerator of G

$$
\begin{aligned}
& w_{n} \cdot w^{*}=\left(w_{n-1}+X^{n-1} 1_{\text {fail }}\right) \cdot w^{*} \\
= & w_{n-1} \cdot w^{*}+X^{n-1} \text { fail } \cdot w^{*} \\
= & \left(w_{n-2}+X^{n-2} \text { fail }\right) \cdot w^{*}+X^{n-1} \text { fail } \cdot w^{*} \ldots \ldots \\
= & w_{0} \cdot w^{*}+\left(X_{\text {fail }}^{0}+X_{\text {fail }}^{1}+\ldots+X^{n-1} \text { fail }\right) \cdot w^{*} \\
& w^{*} \cdot X_{\text {fail }}{ }^{\text {fal }} \text { is always positive: note carefully }
\end{aligned}
$$

- Suppose $\left|X_{j}\right| \geq \delta_{\text {min }}$, where $\delta_{\text {min }}$ is the minimum magnitude.
- Num of $G \geq\left|w_{0} \cdot w^{*}\right|+n \delta_{\text {min }}\left|w^{*}\right|$
- So, numerator of G grows with n.

Behavior of Denominator of G

$$
\begin{aligned}
& \text { - }\left|w_{n}\right|=\left(w_{n} \cdot w_{n}\right)^{1 / 2} \\
& =\left[\left(w_{n-1}+X^{n-1} \text { fail }^{2}\right)^{2 / 2}\right]^{1 / 2} \\
& =\left[\left(w_{n-1}\right)^{2}+2 \cdot w_{n-1} X^{n-1}{ }_{\text {fail }}+\left(X^{n-1}{ }_{\text {fail }}\right)^{2}\right]^{1 / 2} \\
& \leq\left[\left(w_{n-1}\right)^{2}+\left(X^{n-1} \text { fail }\right)^{2}\right]^{1 / 2} \quad\left(\text { as } w_{n-1} X^{n-1} \text { fail } \leq 0\right) \\
& \leq\left[\left(w_{0}\right)^{2}+\left(X_{\text {fail }}^{0}\right)^{2}+\left(X^{1} \text { fail }\right)^{2}+\ldots .+\left(X^{n-1} \text { fail }\right)^{2}\right]^{1 / 2} \\
& \text { - }\left|X_{j}\right| \leq \delta_{\text {max }}(\max \text { magnitude }) \\
& \text { - So, Denom } \left.\leq\left[\left(w_{0}\right)^{2}+n \delta_{\text {max }}{ }^{2}\right)\right]^{1 / 2} \\
& \text { - Denom grows as } n^{1 / 2}
\end{aligned}
$$

Some Observations

- Numerator of G grows as n
- Denominator of G grows as $n^{1 / 2}$ => Numerator grows faster than denominator
- If PTA does not terminate, $\mathrm{G}\left(\mathrm{w}_{\mathrm{n}}\right)$ values will become unbounded.

Some Observations contd.

- But, as $\left|G\left(w_{n}\right)\right| \leq\left|w^{*}\right|$ which is finite, this is impossible!
- Hence, PTA has to converge.
- Proof is due to Marvin Minsky.

Convergence of PTA proved

- Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Possible project ideas

Semantics Extraction using Universal Networking Language

Sentence: I went with my friend, John, to the bank to withdraw some money but was disappointed to find it closed.


```
Current work:
Combine Machine
learning with rule
Based technique
(Janardhan)
```

```
Agt(go,l)
```

Agt(go,l)
Ptn(go,friend)
Ptn(go,friend)
Nam(friend,John)
Nam(friend,John)
Plt(go,bank)
Plt(go,bank)
Pur(go, withdraw)
Pur(go, withdraw)
Obj(withdraw,money0
Obj(withdraw,money0
Mod(money,some)
Mod(money,some)
And(go,disappoint)

```
And(go,disappoint)
```


Sentiment Analysis

"The water is boiling.": Objective
"He is boiling with anger.": Negative

Current work:

1. Tweet and Blog Sentiment
2. Indian Language Sentiment Analysis
3. Word Sense and Sentiment
4. Thwarting and (Subhabrata and Akshat, Balamurali)

Text Entailment

	TEXT	HYPOTHESIS	ENTAIL- MENT
11The Hubble is the only large visible light and ultra-violet space telescope we have in operation.	Hubble is a Space telescope.	True	
2	Google files for its long awaited IPO.	Google goes public.	True
3	After the deal closes, Teva will earn about $\$ 7$ billion a year, the company said.	Teva earns $\$ 7$ billion a year.	False

Current work: Do entailment from Semantic Graphs (Arindam, Janradhan)

Indowordnet and Multilingual Word Sense Disambiguation

Current work: Linking wordnets with SUMO Ontology; using resources of one Language for another for WSD (Salil Joshi, Arindam Chatterjee, Brijesh, Mitesh)

Cross Lingual Information Retrieval

Architecture of Sandhan

Current work: Performance Enhancement; Query expansion and disambiguation (Yogesh, Arjun, Swapnil)

Machine Translation

Large Projects funded by Yahoo, Xerox, Ministry of IT

Current work:

1. Indian Language to Indian Language
2. Statistical MT
3. Crowdsourcing and MT
4. Semantics and SMT
(Mitesh, Anoop, Victor, Somya, Abhijit, Raj,
Rahul)

Sites:
http://www,cse.iitb.ac.in/~pb http://www.cfilt.iitb.ac.in

