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Re-cap



A perceptron is a computing element with input 

lines having associated weights and the cell 

having a threshold value. The perceptron model 

is motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ

The Perceptron Model
•



Statement of Convergence of 

PTA

• Statement:

Whatever be the initial choice of weights and 

whatever be the vector chosen for testing, PTA 

converges if the vectors are from a linearly 

separable function.



To note

• F1: |G(Wn)| is bounded

• IF

• F2: n tends to infinity

• THEN

• F3: |G(Wn)| is unbounded



Sigmoid



Sigmoid neuron
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Sigmoid function: can saturate

• Brain saving itself from itself, in case of 

extreme agitation, emotion etc. 



Definition: Sigmoid or Logit function
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If k tends to infinity, sigmoid tends 

to the step function



Sigmoid function



Decision making under sigmoid

• Output of sigmod is between 0-1

• Look upon this value as probability of 

Class-1 (C1)

• 1-sigmoid(x) is the probability of Class-2 

(C2)

• Decide C1, if P(C1) > P(C2), else C2



Sigmoid function and multiclass 

classification

• Why can’t we use sigmoid for n-class 

classification? Have segments on the curve 

devoted to different classes, just like –infinity 

to 0.5 is for class 2 and 0.5 to plus infinity is 

class 2.

• Think about it!!



multiclass: SOFTMAX

• 2-class  multi-class (C classes)

• Sigmoid  softmax

• ith input, cth class (small c), c varies over 

classes 

• In softmax, decide for that class which 

has the highest probability



What is softmax

• Turns a vector of K real values into a 

vector of K real values that sum to 1

• Input values can be positive, 

negative, zero, or greater than one

• But softmax transforms them into 

values between 0 and 1

• so that they can be interpreted 

as probabilities.



Mathematical form

• σ is the softmax function

• Z is the input vector of size K

• The RHS gives the ith component of the output 

vector

• Input to softmax and output of softmax are of 

the same dimension 
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Softmax and Cross Entropy 

• Intimate connection between softmax

and cross entropy

• Softmax gives a vector of 

probabilities

• Winner-take-all strategy will give a 

classification decision



Winner-take-all with softmax

• Consider the softmax vector obtained 

from the example where the softmax

vector is <0.09, 0.24, 0.65>

• These values correspond to 3 classes
– For example, - positive (+), negative (-) and 

neutral (0) sentiments, given an input sentence 

like

– (a) I like the story line of the movie (+). (b) 

However the acting is weak (-). (c) The 

protagonist is a sports coach (0)



Sentence vs. Sentiment
Sentence vs. 

Sentiment

Positive Negative Neutral

Sent (a) 1 
(Pmax from 

softmax)

0 0

Sentence (b) 0 1

(Pmax from 

softmax)

0

Sentence (C) 0 0` 1
(Pmax from 

softmax)

(a) I like the story line of the movie (+). 

(b) However the acting is weak (-). 

(c) The protagonist is a sports coach (0)



Training data

• (a) I like the story line of the movie (+). 

• (b) However the acting is weak (-). 

• (c) The protagonist is a sports coach (0)

Input Output

(a) <1,0,0>

(b) <0,1,0>

(c) <0,0,1>



Finding the error

• Difference between target (T) and 

obtained (Y)

• Difference is called LOSS

• Options:
– Total Sum Square Loss (TSS)

– Cross Entropy (measures difference 

between two probability distributions)

• Softmax goes with cross entropy



Cross Entropy Function
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Cross Entropy Loss

• Can we sum up cross entropies over the instances? 

Is it allowed?

• Yes, summing up cross entropies (i.e. the total cross 

entropy loss) is equivalent to multiplying 

probabilities.

• Minimizing the total cross entropy loss is equivalent 

to maximizing the likelihood of observed data. 



How to minimize loss

• Gradient descent approach

• Backpropagation Algorithm

• Involves derivative of the input-output 

function for each neuron

• FFNN with BP is the most important 

TECHNIQUE for us in the course



Sigmoid and Softmax neurons



Sigmoid neuron
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Softmax Neuron
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Notation

• i=1..N 

• N i-o pairs, i runs over the training data

• j=0…m, m components in the input 

vector, j runs over the input dimension 

(also weight vector dimension)

• k=1…C, C classes (C components in the 

output vector)



• Capital letter for vectors

• Small letter for scalars 

(therefore for vector 

components) 

• Xi: ith input vector

• oi: output (scalar)

• W: weight vector

• neti: W.Xi

• There are n input-output 

observations

Fix Notations: Single Neuron (1/2)
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W and each Xi has m components

W:<wm, wm-1, …, w2, w0>

Xi:<xi
m, xi

m-1, …, xi
2, x

i
0>

Upper suffix i indicates ith input

Fix Notations: Single Neuron (2/2)
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Fixing Notations: Multiple neurons in 

o/p layer
oi

1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…

wCm

oi
C

netiC neti1

oi
C-1

netiC-1

oi
2

neti2

…

Now, Oi and NETi are vectors for ith input 

Wk is the weight vector for cth output neuron, c=1..C



Fixing Notations
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Target Vector, Ti: <tiC tiC-1…ti2 ti1>, i for ith input. Only 

one of these C componets is 1, rest are 0



Maximum Likelihood and Cross 

Entropy Loss



Fixing concepts

• The random variable is the class value of the 

input

• So we are interested in the probability

P(Oi|Xi), where Oi is the output vector 

given the input vector Xi

• Each component oi
c of Oi is the probability of 

Xi belonging to the class c (c=1…C)

• Notice that C components are redundant, 

since probability(class-c)=

1-Σprobability(class≠c)

• So in case of 2-class, one sigmoid neuron



Interpreting oi

• oi value is between 0 and 1

• Interpreted as probability

• 2-class situation, oi value is looked upon as 

probability of class being 1

• That is, P(Class=1 for ith input)

= oi=1/(1+e-neti)

• Each training data instance is labeled as 1 or 

0

• Target value ti=1/0, for ith input



Likelihood L of observation (2 

classes)
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Maximize likelihood=Minimize 

cross entropy

• -LL is called the cross entropy

• Regarded as loss or error

• We give this the notation E

• Minimizing cross entropy brings oi close to ti

(Why?)

• Established: equivalence between 

maximization of likelihood observation and 

minimization of cross entropy loss 



Generalizing 2-class to multiclass: 

SOFTMAX

• 2-class  multi-class (C classes)

• Sigmoid  softmax

• ith input, cth class (small c), k varies over 

classes 
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Softmax Neuron

neti1

oi
1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…
wC1

oi
C

netiC

oi
C-1

netiC-1

oi
1

neti2

…

,

)(

1










C

k

net

net

ci

i

c

i

k

i
c

e

e

NETSo

Target Vector, Ti: <tiC tiC-1…ti2 ti1>, i for ith input. 

Only one of these C componets is 1, rest are 0.



Compare and contrast Sigmoid and 

Softmax
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Interpreting oi
c

• oi
c value is between 0 and 1

• Interpreted as probability

• Multi-class situation

• oi
c value is the probability of the class 

being ‘c’ for the ith input

• That is, 

P(Class of ith input=c)=oi
c



Likelihood L of observations in 

case of softmax
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For softmax also Maximize 

likelihood=Minimize cross entropy

• -LL is called the cross entropy

• Regarded as loss or error

• Given the notation E

• Established again: equivalence between 

maximization of likelihood of observation 

and minimization of cross entropy loss 



Derivatives



Derivative of sigmoid

)1(

)1(
1

.
1

11

)1ln(ln

,
1

1

ii

i

i

i

net

net
net

neti

i

i

neti

th

net

i

oo
net

o

o
e

e
e

enet

o

o

eo

inputifor
e

o

i

i

i

i

i

i




































Derivative of Softmax
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Derivative of Softmax: Case-1, 

class c for O and NET same
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Derivative of Softmax: Case-2, 

class c’ in netic’ different from class 
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Finding weight change rule



Foundation: Gradient descent

Change is weight Δwji= 

-ηδE/ δwji

η= learning rate, 

E=loss, wji= weight of 

connection from the ith

neuron to jth

E 

wji

B 

A 

At A, δE/ δwji is negative, 

so Δwji is positive. 

At B, δE/ δwji is positive, 

so Δwji is negative. 

E always decreases. 

Greedy algo.



Gradient Descent is Greedy!

• Gradient Descent is greedy- always 

moves in the direction of reducing error

• Probabilistically also move in the 

direction of increasing error, to be able to 

come out of local minimum

• Nature randomly introduces some 

variation, and a totally new species 

emerges

• Darwin’s theory of evolution



Genetic Algorithm

• Genetic Algorithms: adaptive heuristic 

search algorithms

• used to generate high-quality solutions 

for optimization problems and search 

problems

• To evolve the generation, genetic 

algorithms use the following operators, 

all PROBABILSTICALLY
– Selection, Cross over, Mutation



Single sigmoid neuron and cross entropy

loss, derived for single data point, hence 

dropping upper right suffix i
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Multiple neurons in the output layer: softmax+cross entropy

loss (1/2): illustrated with 2 neurons and single training data 

point
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Softmax and Cross Entropy (2/2)
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Can be generalized

• When E is Cross Entropy Loss

• The change in any weight is 

learning rate * diff between target and 

observed outputs * input at the 

connection



Weight change rule with TSS



Single neuron: sigmoid+total sum 

square (tss) loss
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Lets consider wlg w1. Change is 

weight Δw1= -ηδL/ δw1

η= learning rate, 

L=loss= ½(t-o)2,
t=target, o=observed output
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Single neuron: sigmoid+total sum 

square (tss) loss (cntd)
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Multiple neurons in the output layer: 

sigmoid+total sum square (tss) loss

o0

x0
x1x2

xn-2xn-1
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w11
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net1 net0

Δw11 = η(t1-o1)o1(1-o1)x1

Target vector: <t1, t0>

Observed vector: 

<o1, o0>

TSS Loss= ½[(t1-o1)
2+

(t0-o0)
2]



CE Loss and TSS Loss

• Can we sum up cross entropies over the instances? 

Is it allowed?

• Yes, summing up cross entropies (i.e. the total cross 

entropy loss) is equivalent to multiplying 

probabilities.

• Minimizing the total cross entropy loss is equivalent 

to maximizing the likelihood of observed data. 



Backpropagation

With total sum square loss (TSS)



Backpropagation algorithm

• Fully connected feed forward 
network

• Pure FF network (no jumping of 
connections over layers)

Hidden layers

Input layer            

(n i/p neurons)
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Gradient Descent Equations

i

ji

j

ji

j

th

j

ji

j

jji

ji

ji

jo
w

net
jw

j
net

E

net
w

net

net

E

w

E

w

E
w






































)neuron j at theinput (

)10 rate, learning(

A quantity of great

importance



Backpropagation – for outermost 

layer
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Observations from ∆wji
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Backpropagation for hidden layers

Hidden layers

Input layer            

(n i/p neurons)

Output layer    

(m o/p neurons)
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k is propagated backwards to find value of j



Backpropagation – for hidden 

layers
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give rise to vanishing

and exploding

Gradient problem



Back-propagation- for hidden layers: 

Impact on net input on a neuron
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● Oj affects the net 

input coming to all 

the neurons in 

next layer



General Backpropagation Rule
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• General weight updating rule:

• Where 

for outermost layer

for hidden layers



Why Symbolic AI community did not 

see the merit of backpropagation

• Symbolic AI is theory and modelling driven; 

Connectionist AI is data and experimentation 

driven

• Rationalism and empiricism have been 

competing approaches

• Symbolic AI people did not see the possibility 

of arrival of huge amount of data and exploiting 

the inherent regularities data to train the 

humongous number of parameters of neural 

net



Project ideas

1. Interpretation of word vector 

components.

2. Inconsistency detection - Given a set of 

sentences in a system, detect if there is 

internal inconsistency (using sentence 

vectors)


