
CS772: Deep Learning for

Natural Language Processing

(DL-NLP)

Building blocks cntd, Sigmoid, Softmax

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week 3 of 16th Jan, 2023

Re-cap

A perceptron is a computing element with input

lines having associated weights and the cell

having a threshold value. The perceptron model

is motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ

The Perceptron Model
•

Statement of Convergence of

PTA

• Statement:

Whatever be the initial choice of weights and

whatever be the vector chosen for testing, PTA

converges if the vectors are from a linearly

separable function.

To note

• F1: |G(Wn)| is bounded

• IF

• F2: n tends to infinity

• THEN

• F3: |G(Wn)| is unbounded

Sigmoid

Sigmoid neuron

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m …

oi

w1

W

Xi

neti











m

j

i

jj

i

i

net

i

xwXWnet

e
o

i

0

.

1

1

Sigmoid function: can saturate

• Brain saving itself from itself, in case of

extreme agitation, emotion etc.

Definition: Sigmoid or Logit function

)1(

1

1

yy
dx

dy

e
y

x








)1(

1

1

yky
dx

dy

e
y

kx








If k tends to infinity, sigmoid tends

to the step function

Sigmoid function

Decision making under sigmoid

• Output of sigmod is between 0-1

• Look upon this value as probability of

Class-1 (C1)

• 1-sigmoid(x) is the probability of Class-2

(C2)

• Decide C1, if P(C1) > P(C2), else C2

Sigmoid function and multiclass

classification

• Why can’t we use sigmoid for n-class

classification? Have segments on the curve

devoted to different classes, just like –infinity

to 0.5 is for class 2 and 0.5 to plus infinity is

class 2.

• Think about it!!

multiclass: SOFTMAX

• 2-class  multi-class (C classes)

• Sigmoid  softmax

• ith input, cth class (small c), c varies over

classes

• In softmax, decide for that class which

has the highest probability

What is softmax

• Turns a vector of K real values into a

vector of K real values that sum to 1

• Input values can be positive,

negative, zero, or greater than one

• But softmax transforms them into

values between 0 and 1

• so that they can be interpreted

as probabilities.

Mathematical form

• σ is the softmax function

• Z is the input vector of size K

• The RHS gives the ith component of the output

vector

• Input to softmax and output of softmax are of

the same dimension







K

j

Z

Z

i

j

i

e

e
Z

1

)(

Example


















67.0,24.0,09.

09.2039.772.2

09.20
,

09.2039.772.2

39.7
,

09.2039.772.2

72.2
)(

09.20,39.7,72.2

3,2,1

3,2,1

321

321

Z

eee

ZZZ

Z



Softmax and Cross Entropy

• Intimate connection between softmax

and cross entropy

• Softmax gives a vector of

probabilities

• Winner-take-all strategy will give a

classification decision

Winner-take-all with softmax

• Consider the softmax vector obtained

from the example where the softmax

vector is <0.09, 0.24, 0.65>

• These values correspond to 3 classes
– For example, - positive (+), negative (-) and

neutral (0) sentiments, given an input sentence

like

– (a) I like the story line of the movie (+). (b)

However the acting is weak (-). (c) The

protagonist is a sports coach (0)

Sentence vs. Sentiment
Sentence vs.

Sentiment

Positive Negative Neutral

Sent (a) 1
(Pmax from

softmax)

0 0

Sentence (b) 0 1

(Pmax from

softmax)

0

Sentence (C) 0 0` 1
(Pmax from

softmax)

(a) I like the story line of the movie (+).

(b) However the acting is weak (-).

(c) The protagonist is a sports coach (0)

Training data

• (a) I like the story line of the movie (+).

• (b) However the acting is weak (-).

• (c) The protagonist is a sports coach (0)

Input Output

(a) <1,0,0>

(b) <0,1,0>

(c) <0,0,1>

Finding the error

• Difference between target (T) and

obtained (Y)

• Difference is called LOSS

• Options:
– Total Sum Square Loss (TSS)

– Cross Entropy (measures difference

between two probability distributions)

• Softmax goes with cross entropy

Cross Entropy Function





CkNx

kxQkxPQPH
,1

2

,1

),(log),(),(

x varies over N data instances, c varies over C classes

P is target distribution; Q is observed distribution

Cross Entropy Loss

• Can we sum up cross entropies over the instances?

Is it allowed?

• Yes, summing up cross entropies (i.e. the total cross

entropy loss) is equivalent to multiplying

probabilities.

• Minimizing the total cross entropy loss is equivalent

to maximizing the likelihood of observed data.

How to minimize loss

• Gradient descent approach

• Backpropagation Algorithm

• Involves derivative of the input-output

function for each neuron

• FFNN with BP is the most important

TECHNIQUE for us in the course

Sigmoid and Softmax neurons

Sigmoid neuron

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m …

oi

w1

W

Xi

neti











m

j

i

jj

i

i

net

i

xwXWnet

e
o

i

0

.

1

1

Softmax Neuron

neti1

oi
1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…
wC1

oi
C

netiC

oi
C-1

netiC-1

oi
1

neti2

…








C

k

net

net

c

ii

c

i

k

i
c

e

e

NETSo

1

)(

Output for class c (small c), c:1 to C

Notation

• i=1..N

• N i-o pairs, i runs over the training data

• j=0…m, m components in the input

vector, j runs over the input dimension

(also weight vector dimension)

• k=1…C, C classes (C components in the

output vector)

• Capital letter for vectors

• Small letter for scalars

(therefore for vector

components)

• Xi: ith input vector

• oi: output (scalar)

• W: weight vector

• neti: W.Xi

• There are n input-output

observations

Fix Notations: Single Neuron (1/2)

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m

…

oi

w1

W

Xi

neti

W and each Xi has m components

W:<wm, wm-1, …, w2, w0>

Xi:<xi
m, xi

m-1, …, xi
2, x

i
0>

Upper suffix i indicates ith input

Fix Notations: Single Neuron (2/2)

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m

…

oi

W

Xi

neti

Fixing Notations: Multiple neurons in

o/p layer
oi

1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…

wCm

oi
C

netiC neti1

oi
C-1

netiC-1

oi
2

neti2

…

Now, Oi and NETi are vectors for ith input

Wk is the weight vector for cth output neuron, c=1..C

Fixing Notations

oi
1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…
wC1

oi
C

netiC neti1

oi
C-1

netiC-1

oi
2

neti2

…

Target Vector, Ti: <tiC tiC-1…ti2 ti1>, i for ith input. Only

one of these C componets is 1, rest are 0

Maximum Likelihood and Cross

Entropy Loss

Fixing concepts

• The random variable is the class value of the

input

• So we are interested in the probability

P(Oi|Xi), where Oi is the output vector

given the input vector Xi

• Each component oi
c of Oi is the probability of

Xi belonging to the class c (c=1…C)

• Notice that C components are redundant,

since probability(class-c)=

1-Σprobability(class≠c)

• So in case of 2-class, one sigmoid neuron

Interpreting oi

• oi value is between 0 and 1

• Interpreted as probability

• 2-class situation, oi value is looked upon as

probability of class being 1

• That is, P(Class=1 for ith input)

= oi=1/(1+e-neti)

• Each training data instance is labeled as 1 or

0

• Target value ti=1/0, for ith input

Likelihood L of observation (2

classes)

)]1log()1(log[

)1log()1(log,log

0/1,)1()(

.

1

1

)1(

1

iiii
N

i

iiii
N

i

iti
N

i

ti

ototLL

ototLLlikelihood

tooL

pairsoiofnoNFor

ii























Maximize likelihood=Minimize

cross entropy

• -LL is called the cross entropy

• Regarded as loss or error

• We give this the notation E

• Minimizing cross entropy brings oi close to ti

(Why?)

• Established: equivalence between

maximization of likelihood observation and

minimization of cross entropy loss

Generalizing 2-class to multiclass:

SOFTMAX

• 2-class  multi-class (C classes)

• Sigmoid  softmax

• ith input, cth class (small c), k varies over

classes

,)(

1





C

k

net

net

c

ii

c
i
k

i
c

e

e
NETSo

Softmax Neuron

neti1

oi
1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…
wC1

oi
C

netiC

oi
C-1

netiC-1

oi
1

neti2

…

,

)(

1










C

k

net

net

ci

i

c

i

k

i
c

e

e

NETSo

Target Vector, Ti: <tiC tiC-1…ti2 ti1>, i for ith input.

Only one of these C componets is 1, rest are 0.

Compare and contrast Sigmoid and

Softmax

inputifor
e

osigmoid th

net

i
i
,

1

1
:




,:max

1





C

k

net

net
i

c
i
k

i
c

e

e
osoft

ith input, cth class (small c), k varies

over classes 1 to C

Interpreting oi
c

• oi
c value is between 0 and 1

• Interpreted as probability

• Multi-class situation

• oi
c value is the probability of the class

being ‘c’ for the ith input

• That is,

P(Class of ith input=c)=oi
c

Likelihood L of observations in

case of softmax

i

k

i

k

C

k

N

i

i

k

i

k

C

k

N

i

i

k

i

k

N

i

ti

k

C

k

otLL

otLLlikelihood

arerestisstofoneonlyipatternaFor

toL

pairsoiofnoNFor

i
k

log

log,log

0,1,

0/1,)(

.

11

11

1 1











 









For softmax also Maximize

likelihood=Minimize cross entropy

• -LL is called the cross entropy

• Regarded as loss or error

• Given the notation E

• Established again: equivalence between

maximization of likelihood of observation

and minimization of cross entropy loss

Derivatives

Derivative of sigmoid

)1(

)1(
1

.
1

11

)1ln(ln

,
1

1

ii

i

i

i

net

net
net

neti

i

i

neti

th

net

i

oo
net

o

o
e

e
e

enet

o

o

eo

inputifor
e

o

i

i

i

i

i

i


































Derivative of Softmax

patterninputi

e

e
o th

C

k

net

net
i

c
i
k

i
c

,

1






Derivative of Softmax: Case-1,

class c for O and NET same

)1(

1.
1

1
1

)ln(ln

1

1

i

c

i

ci

c

i

c

i

c

net

C

k

net
i

c

i

c

i

c

C

k

neti

c

i

c

oo
net

o

oe

e
net

o

o

eneto

i
c

i
k

i
k






















Derivative of Softmax: Case-2,

class c’ in netic’ different from class

c of O

i

c

i

ci

c

i

k

i

c

net

C

k

net
i

c

i

c

i

c

C

k

neti

c

i

c

oo
net

O

oe

e
net

o

o

eneto

i

c

i
k

i
k

'

'

'

'

'

.
1

0
1

)ln(ln

1

1






















Finding weight change rule

Foundation: Gradient descent

Change is weight Δwji=

-ηδE/ δwji

η= learning rate,

E=loss, wji= weight of

connection from the ith

neuron to jth

E

wji

B

A

At A, δE/ δwji is negative,

so Δwji is positive.

At B, δE/ δwji is positive,

so Δwji is negative.

E always decreases.

Greedy algo.

Gradient Descent is Greedy!

• Gradient Descent is greedy- always

moves in the direction of reducing error

• Probabilistically also move in the

direction of increasing error, to be able to

come out of local minimum

• Nature randomly introduces some

variation, and a totally new species

emerges

• Darwin’s theory of evolution

Genetic Algorithm

• Genetic Algorithms: adaptive heuristic

search algorithms

• used to generate high-quality solutions

for optimization problems and search

problems

• To evolve the generation, genetic

algorithms use the following operators,

all PROBABILSTICALLY
– Selection, Cross over, Mutation

Single sigmoid neuron and cross entropy

loss, derived for single data point, hence

dropping upper right suffix i

x0x1x2xm-2
xm-1

xm …

o

w1

1

1

1

1

10

11

)(

)1()(
1

1

)1(1

1

)1log()1(log

..

xot
w

E
w

x
w

net
xwnet

oo
net

o
sigmoid

e
o

oo

ot

o

t

o

t

o

E

ototE

w

net

net

o

o

E

w

E

m

j

jj

net































































Δw1 = η(t-o)x1

net

Multiple neurons in the output layer: softmax+cross entropy

loss (1/2): illustrated with 2 neurons and single training data

point

x2

o0

x0
x1xm-2xm-1

xm

…

w11

o1

net1 net0
































































)1(

)1(

,

,

,

1101

1000

1

1

1

0

0

1

0

0

01

01

01

01

0

01

1

oooo

oooo

net

o

net

o

net

o

net

o

NET

O

ee

e
o

ee

e
o

netnetNET

ooO

netnet

net

netnet

net

Softmax and Cross Entropy (2/2)

01

0

01

1

01

0011

,

loglog

netnet

net

netnet

net

ee

e
o

ee

e
o

ototE









111

11

11

1111111111

111111110111

11

101

11

0

0

0

11

1

1

0

11

0

111

11

0

0

1

11

1

1

1

11

1

11

0

0

0

11

1

1

1

11

)(

)(][

)1()1()1(

0..

0)1(..

xot
w

E
w

xotxotoott

xotxotxotxot
w

E

xoo
w

net

net

o

w

net

net

o

w

o

xoo
w

net

net

o

w

net

net

o

w

o

w

o

o

t

w

o

o

t

w

E













































































Can be generalized

• When E is Cross Entropy Loss

• The change in any weight is

learning rate * diff between target and

observed outputs * input at the

connection

Weight change rule with TSS

Single neuron: sigmoid+total sum

square (tss) loss

x0x1x2xn-2
xn-1

xn …

o

w1

Lets consider wlg w1. Change is

weight Δw1= -ηδL/ δw1

η= learning rate,

L=loss= ½(t-o)2,
t=target, o=observed output

11

1

10

2

11

)1()(

)3(

)2()1()(
1

1

)1()()(
2

1

..

xoootw

x
w

net
xwnet

oo
net

o
sigmoid

e
o

ot
o

L
otL

w

net

net

o

o

L

w

L

n

i

ii

net
















































net

Single neuron: sigmoid+total sum

square (tss) loss (cntd)

x0x1x2xn-2
xn-1

xn …

o

w1

i

i

n

i

ii

net

xoootw

x
w

net
xwnet

oo
net

o
sigmoid

e
o

ot
o

L
otL

w

net

net

o

o

L

w

L

)1()(

)3(

)2()1()(
1

1

)1()()(
2

1

..

1

10

2

11
















































Δw1 = η(t-o)o(1-o)x1

net

Multiple neurons in the output layer:

sigmoid+total sum square (tss) loss

o0

x0
x1x2

xn-2xn-1
xn

…

w11

o1

net1 net0

Δw11 = η(t1-o1)o1(1-o1)x1

Target vector: <t1, t0>

Observed vector:

<o1, o0>

TSS Loss= ½[(t1-o1)
2+

(t0-o0)
2]

CE Loss and TSS Loss

• Can we sum up cross entropies over the instances?

Is it allowed?

• Yes, summing up cross entropies (i.e. the total cross

entropy loss) is equivalent to multiplying

probabilities.

• Minimizing the total cross entropy loss is equivalent

to maximizing the likelihood of observed data.

Backpropagation

With total sum square loss (TSS)

Backpropagation algorithm

• Fully connected feed forward
network

• Pure FF network (no jumping of
connections over layers)

Hidden layers

Input layer

(n i/p neurons)

Output layer

(m o/p neurons)
j

i

wji

….

….

….

….

Gradient Descent Equations

i

ji

j

ji

j

th

j

ji

j

jji

ji

ji

jo
w

net
jw

j
net

E

net
w

net

net

E

w

E

w

E
w






































)neuron j at theinput (

)10 rate, learning(

A quantity of great

importance

Backpropagation – for outermost

layer

ijjjjji

jjjj

N

i

jj

th

j

j

j

jj

ooootw

oootj

otE

net
net

o

o

E

net

E
j

)1()(

))1()((Hence,

)(
2

1

)layer j at theinput (

1

2





























Observations from ∆wji

ijjjjji ooootw)1()( 

 assignment meCredit/Bla 0 4.

behaviour Saturation
and/or 0 3.

and/or 1 2.

and/or 1.

if, 0















i

j

j

jj

ji

o

o

o

to

w

Backpropagation for hidden layers

Hidden layers

Input layer

(n i/p neurons)

Output layer

(m o/p neurons)

j

i

….

….

….

….

k

k is propagated backwards to find value of j

Backpropagation – for hidden

layers

)1()(

)1()(Hence,

)1()(

)1(

layernext

layernext

layernext

jj

k

kkj

jj

k

kjkj

jj

k j

k

k

jj

j

j

j

jj

iji

oow

oow

oo
o

net

net

E

oo
o

E

net

o

o

E

net

E
j

jow
























































This recursion can

give rise to vanishing

and exploding

Gradient problem

Back-propagation- for hidden layers:

Impact on net input on a neuron

j

k

● Oj affects the net

input coming to all

the neurons in

next layer

General Backpropagation Rule

)1()(
layernext

jj

k

kkj oow  




)1()(jjjjj ooot 

iji jow 
• General weight updating rule:

• Where

for outermost layer

for hidden layers

Why Symbolic AI community did not

see the merit of backpropagation

• Symbolic AI is theory and modelling driven;

Connectionist AI is data and experimentation

driven

• Rationalism and empiricism have been

competing approaches

• Symbolic AI people did not see the possibility

of arrival of huge amount of data and exploiting

the inherent regularities data to train the

humongous number of parameters of neural

net

Project ideas

1. Interpretation of word vector

components.

2. Inconsistency detection - Given a set of

sentences in a system, detect if there is

internal inconsistency (using sentence

vectors)

