CS772: Deep Learning for Natural Language Processing (DL-NLP)

Word Vectors

Pushpak Bhattacharyya
Computer Science and Engineering
Department
IIT Bombay
Week 4 of $23^{\text {rd }}$ Jan, 2023

Re-cap

Sigmoid neuron

Softmax Neuron

Output for class c (small c), c:1 to C

Single sigmoid neuron- weight change

 rule

Multiple neurons in the output layer: softmax+cross entropy loss (1/2): illustrated with 2 neurons and single training data point

Softmax and Cross Entropy (2/2)

$$
\begin{aligned}
& E=-t_{1} \log o_{1}-t_{0} \log o_{0} \\
& o_{1}=\frac{e^{n e t_{1}}}{e^{n e t_{1}}+e^{n e t_{0}}}, o_{0}=\frac{e^{n e t_{0}}}{e^{n e t_{1}}+e^{n e t_{0}}}
\end{aligned}
$$

$$
\frac{\partial E}{\partial w_{11}}=-\frac{t_{1}}{o_{1}} \frac{\partial o_{1}}{\partial w_{11}}--\frac{t_{0}}{o_{0}} \frac{\partial o_{0}}{\partial w_{11}}
$$

$$
\frac{\partial o_{1}}{\partial w_{11}}=\frac{\partial o_{1}}{\partial n e t_{1}} \cdot \frac{\partial n e t_{1}}{\partial w_{11}}+\frac{\partial o_{1}}{\partial n e t_{0}} \cdot \frac{\partial n e t_{0}}{\partial w_{11}}=o_{1}\left(1-o_{1}\right) x_{1}+0
$$

$$
\frac{\partial o_{0}}{\partial w_{11}}=\frac{\partial o_{0}}{\partial n e t_{1}} \cdot \frac{\partial n e t_{1}}{\partial w_{11}}+\frac{\partial o_{0}}{\partial n e t_{0}} \cdot \frac{\partial n e t_{0}}{\partial w_{11}}=-o_{1} o_{0} x_{1}+0
$$

$$
\Rightarrow \frac{\partial E}{\partial w_{11}}=-t_{1}\left(1-o_{1}\right) x_{1}+t_{0} o_{1} x_{1}=-t_{1}\left(1-o_{1}\right) x_{1}+\left(1-t_{1}\right) o_{1} x_{1}
$$

$$
=\left[-t_{1}+t_{1} o_{1}+o_{1}-t_{1} o_{1}\right] x_{1}=-\left(t_{1}-o_{1}\right) x_{1}
$$

$$
\Delta w_{11}=-\eta \frac{\partial E}{\partial w_{11}}=\eta\left(t_{1}-o_{1}\right) x_{1}
$$

Weight change rule with TSS

Single neuron: sigmoid+total sum

 square (tss) loss$$
\begin{align*}
& \text { Lets consider wlg } w_{1} \text {. Change is } \\
& \text { weight } \Delta w_{1}=-\eta \delta L / \delta w_{1} \\
& \eta=\text { learning rate, } \\
& L=l o s s=1 / 2(t-0)^{2} \text {, } \\
& \text { t=target, o=observed output } \\
& \frac{\partial L}{\partial w_{1}}=\frac{\partial L}{\partial o} \cdot \frac{\partial o}{\partial n e t} \cdot \frac{\partial n e t}{\partial w_{1}} \\
& L=\frac{1}{2}(t-o)^{2} \Rightarrow \frac{\partial L}{\partial o}=-(t-o)(1) \\
& o=\frac{1}{1+e^{-n e t}}(\text { sigmoid }) \Rightarrow \frac{\partial o}{\partial n e t}=o(1-o)(2) \\
& n e t=\sum_{i=0}^{n} w_{i} x_{i} \Rightarrow \frac{\partial n e t}{\partial w_{1}}=x_{1} \tag{3}\\
& \Rightarrow \Delta w_{1}=\eta(t-o) o(1-o) x_{1}
\end{align*}
$$

Single neuron: sigmoid+total sum

 square (tss) loss (cntd)

$$
\Delta w_{1}=\eta(t-0) o(1-0) x_{1}
$$

Multiple neurons in the output layer: sigmoid+total sum square (tss) loss

General Backpropagation Rule

- General weight updating rule:

$$
\Delta w_{j i}=\eta \delta j o_{i}
$$

- Where

$$
\begin{aligned}
\delta_{j} & =\left(t_{j}-o_{j}\right) o_{j}\left(1-o_{j}\right) \quad \text { for outermost layer } \\
& =\sum_{k \in \text { next layer }}\left(w_{k j} \delta_{k}\right) o_{j}\left(1-o_{j}\right) o_{i} \text { for hidden layers }
\end{aligned}
$$

Word Vectors

Deriving the word vector: setting

$W^{s}: w_{0}^{s}, w_{1}^{s}, w_{2}^{s}, \ldots w_{i}^{s}, \ldots w_{m}^{s}$
$V_{w_{i}}:\left[v_{0}^{i}, v_{1}^{i}, v_{2}^{i}, \ldots v_{k}^{i}, \ldots v_{d}^{i}\right]$
$J=P\left(w_{j} \mid w_{i}\right)$
$L=-P\left(w_{j} \mid w_{i}\right)$
$P\left(w_{j} \mid w_{i}\right)=\frac{e^{V_{w_{i}} \cdot V_{w_{j}}}}{\sum_{j^{\prime}=1}^{|V|} e^{V_{w_{i}} \cdot V_{w_{j}}}}$
$L L=-V_{w_{i}} \cdot V_{w_{j}}+\ln \left(\sum_{j^{\prime}=1}^{|N|} e^{V_{w_{i}} \cdot V_{w_{j}}}\right)$
W^{S} : word sequence in the $s^{\text {th }}$ Sentence
$V_{w i}$: word vector of w_{i}

Deriving the word vector: Optimization

$$
\begin{aligned}
& V_{w_{i}}:\left[v_{0}^{i}, v_{1}^{i}, v_{2}^{i}, \ldots v_{k}^{i}, \ldots v_{d}^{i} 1 /[2)\right. \\
& V_{w_{j}}:\left[v_{0}^{j}, v_{1}^{j}, v_{2}^{j}, \ldots v_{k}^{j}, \ldots v_{d}^{j}, u_{2}, \ldots u_{k}, \ldots u_{d}\right] \\
& V_{w_{j}}:\left[v_{0}^{\prime}, v_{1}, v_{2}^{\prime}, \ldots v_{k}^{\prime}, \ldots v_{d}^{\prime}\right] \\
& \left.V_{w_{i}}, \ldots v_{k}^{\prime}, \ldots v_{d}^{\prime}\right] \\
& V_{w_{j}}=\sum_{k=0}^{d} u_{k} v_{k} \\
& \frac{\partial L L}{\partial u_{k}}=-v_{k}+\frac{\frac{\partial}{\partial u_{k}}\left(\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{j}}\right)}{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}}}
\end{aligned}
$$

Deriving the word vector: Optimization

$$
\begin{aligned}
& =-v_{k}+\frac{\sum_{j^{\prime}=1}^{|V|} \frac{\partial}{\partial u_{k}}\left(e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}}\right)}{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}}}=-v_{k}+\frac{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}} \frac{\partial}{\partial u_{k}}\left(\sum_{k=0}^{d} u_{k} v_{k}^{\prime}\right)}{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}}} \\
& =-v_{k}+\frac{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}} v_{k}^{\prime}}{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{i=0}^{d} u_{k} v_{k}^{\prime}}}=-v_{k}+\sum_{j^{\prime}=1}^{|V|} P\left(w_{j^{\prime}} \mid w_{i}\right) \cdot v_{k^{\prime}}=-v_{k}+E\left(v_{k^{\prime}}\right)
\end{aligned}
$$

Deriving the word vector, Gradient Descent: Δu_{k}

$\Delta u_{k}=-\eta \frac{\partial L L}{\partial u_{k}}=\eta\left[v_{k}-E\left(v_{k^{\prime}}\right)\right]$

Representation

How to input text to neural net? Issue

 of REPRESENTATION Inputs have to be sets of numbers - We will soon see whyThese numbers form REPRESENTATIONS

- What is a good representation? At what granularity: words, n-grams, phrases, sentences

Issues

- What is a good representation? At what granularity: words, n-grams, phrases, sentences
- Sentence is important- (a) I bank with SBI; (b) I took a stroll on the river bank; (c) this bank sanctions loans quickly Each 'bank' should have a different representation
- We have to LEARN these representations

Principle behind representation

- Proverb: "A man is known by the company he keeps"
- Similarly: "A word is known/represented by the company it keeps"
- "Company" \rightarrow Distributional Similarity

Representation: to learn or not learn?

- 1-hot representation does not capture many nuances, e.g., semantic similarity - But is a good starting point
- Collocations also do not fully capture all the facets
- But is a good starting point

So learn the representation...

- Learning Objective
- MAXIMIZE CONTEXT PROBABILITY

Foundations-1: Embedding

- Way of taking a discrete entity to a continuous space
- E.g., 1, 2, 3, 2.7, 2/9, 22 ${ }^{1 / 2}, \ldots$ are numerical symbols
- But they are points on the real line
- Natural embedding
- Words' embedding not so intuitive!

	1	2	3	4
$2 / 9$		1	2.7	
0				

Foundations-2: Purpose of Embedding

- Enter geometric space Take advantage of "distance measures"Euclidean distance, Riemannian distance and so on
- "Distance" gives a way of computing similarity

Foundations-3: Similarity and

 difference- Recognizing similarity and differencefoundation of intelligence
- Lot of Pattern Recognition is devoted to this task (Duda, Hart, Stork, $2^{\text {nd }}$ Edition, 2000)
- Lot of NLP is based on Text Similarity
- Words, phrases, sentences, paras and so on (verticals)
- Lexical, Syntactic, Semantic, Pragmatic (Horizontal)

Similarity study in MT

English:

ISO-Metricity

Across Cross-lingual Mapping

This involves strong assumption that embedding spaces across languages are isomorphic, which is not true specifically for distance languages (Søgaard et al. 2018). However, without this assumption unsupervised NMT is not possible.

Søgaard, Anders, Sebastian Ruder, and Ivan Vulić. 2018. On the limitations of unsupervised bilingual dictionary induction. ACL

Foundations-4: Syntagmatic and Paradigmatic Relations

- Syntagmatic and paradigmatic relations
- Lexico-semantic relations: synonymy, antonymy, hypernymy, mernymy, troponymy etc. CAT is-a ANIMAL
- Coccurence: CATS MEW
- Wordnet: primarily paradigmatic relations
- ConceptNet: primarily Syntagmatic Relations
 semantic relations (hyper/hypo, mero/holo etc.)

Lexical and Semantic relations in wordnet

1. Synonymy (e.g., house, home)
2. Hypernymy / Hyponymy (kind-of, e.g., cat \longleftrightarrow animal)
3. Antonymy (e.g., white and black)
4. Meronymy / Holonymy (part of, e.g., cat and tail)
5. Gradation (e.g., sleep \rightarrow doze \rightarrow wake up)
6. Entailment (e.g., snoring \rightarrow sleeping)
7. Troponymy (manner of, e.g., whispering and talking)
1, 3 and 5 are lexical (word to word), rest are semantic (synset to synset).

‘Paradigmatic Relations’ and

 'Substitutability'- Words in paradigmatic relations can substitute each other in the sentential context
E.g., 'The cat is drinking milk' \rightarrow 'The animal is drinking milk'
- Substitutability is a foundational concept in linguistics and NLP

Foundations-5: Learning and Learning Objective

- Probability of getting the context words given the target should be maximized (skip gram)
- Probability of getting the target given context words should be maximized (CBOW)

Learning objective (skip gram)

$$
\begin{aligned}
& J^{\prime}(\theta)=\frac{1}{T} \prod_{t=1}^{T} \prod_{\substack{-m \leq j \leq m \\
j \neq 0}} p\left(w_{t+j} \mid w_{t} ; \theta\right) \\
& J(\theta)=-\frac{1}{T} \prod_{t=1}^{T} \prod_{\substack{-m \leq j \leq m \\
j \neq 0}} p\left(w_{t+j} \mid w_{t} ; \theta\right)
\end{aligned}
$$

Minimize $L=-\sum_{t=1}^{T} \sum_{\substack{-m \leq j \leq m \\ j \neq 0}} \log \left[p\left(w_{t+j} \mid w_{t} ; \theta\right)\right]$

Modelling P(context word/input word)

- We want, say, P('bark')'dog')
- Take the weight vector FROM 'dog' neuron TO projection layer (call this $u_{\text {dog }}$)
- Take the weight vector TO 'bark' neuron FROM projection layer (call this $v_{\text {bark }}$)
- When initialized $u_{\text {dog }}$ and $v_{\text {bark }}$ give the initial estimates of word vectors of 'dog' and 'bark'
- The weights and therefore the word vectors get fixed by back propagation

Modelling P(context word/input word)

 (2/2)- To model the probability, first compute dot product of $u_{\text {dog }}$ and $v_{\text {bark }}$
- Exponentiate the dot product
- Take softmax over all dot products over the whole vocabulary

$$
P\left(\text { 'bark' }\left.^{\prime}\right|^{\prime} \operatorname{dog} g^{\prime}\right)=\frac{\exp \left(u_{\text {dog }}^{T} v_{\text {bark }}\right)}{\sum_{v_{k} \text { Vocabulary }} \exp \left(u_{d o g}^{T} v_{k}\right)}
$$

Exercise

- Why cannot you model P('bark'|'dog') as the ratio of counts of <bark, dog> and <dog> in the corpus?
- Why this way of modelling probability through dot product of weight vectors of input and output words, exponentiation and soft-maxing works?

Modelling $p\left(w_{t+j} / w_{t}\right)$

Input to Projection (shown for one neuron only)

- From each input neuron, a weight vector of dim d
- Input vector is of dim V, where V is the vocab size
- Input to projection we have a weight matrix W which is $V X d$
- Each row gives the weight vector of dim d REPRESENTING that word
- E.g., rows for 'dog', 'cat, 'lamp', 'table' etc.

Projection to output

Capturing word association

Basic concept: Co-occurrence Matrix

Corpora: I enjoy cricket. I like music. I like deep learning

	I	enjoy	cricket	like	music	deep	learning
I	-	1	1	2	1	1	1
enjoy	1	-	1	0	0	0	0
cricket	1	1	-	0	0	0	0
like	2	0	0	-	1	1	1
music	1	0	0	1	-	0	0
deep	1	0	0	1	0	-	1
learning	1	0	0	1	0	1	-

Co-occurence Matrix

Fundamental to NLP
Also called Lexical Semantic Association (LSA)

Very sparse, many 0s in each row
Apply Principal Component Analysis (PCA) or Singular Value Decomposition (SVD)
Do Dimensionality Reduction; merge columns with high internal affinity (e.g., cricket and bat)

Compression achieves better semantics capture

Linguistic foundation of word representation by vectors

"Linguistics is the eye": Harris Distributional

 Hypothesis- Words with similar distributional properties have similar meanings. (Harris 1970)
- 1950s: Firth- "A word is known by the company its keeps"
- Model differences in meaning rather than the proper meaning itself

"Computation is the body": Skip gram- predict context from word

For CBOW:

Just reverse the Input-Ouput

Dog - Cat - Lamp

\{bark, police, thief, vigilance, faithful, friend, animal, milk, carnivore)

\{mew, comfort, mice, furry, guttural, purr, carnivore, milk\}

\{candle, light, flash, stand, shade, Halogen\}

Probability distributions of context words CE(dog, lamp) > CE(dog, cat)

0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0

Test of representation

- Similarity
- 'Dog' more similar to 'Cat' than 'Lamp', because
- Input- vector('dog'), output- vectors of associated words
- More similar to output from vector('cat') than from vector('lamp’)
"Linguistics is the eye, Computation is the body"

The encode-decoder deep learning network is nothing but
the implementation of
Harris's Distributional Hypothesis

Fine point in Harris Distributional Hypothesis

- Words with similar distributional properties have similar meanings. (Harris 1970)
- Harris does mentions that distributional approaches can model differences in meaning rather than the proper meaning itself

Representation Learning

Basics

- What is a good representation? At what granularity: words, n-grams, phrases, sentences
- Sentence is important- (a) I bank with SBI; (b) I took a stroll on the river bank; (c) this bank sanctions loans quickly Each 'bank' should have a different representation
- We have to LEARN these representations

Principle behind representation

- Proverb: "A man is known by the company he keeps"
- Similarly: "A word is known/represented by the company it keeps"
- "Company" \rightarrow Distributional Similarity

Starting point: 1-hot representation

- Arrange the words in lexicographic order
- Define a vector V of size $\mid L /$, where L is the lexicon
- For word w_{i} in the $i^{\text {th }}$ position, set the ith bit to 1 , all other bits being 0 .
- Problem: cosine similarity of ANY pair is 0 ; wrong picture!!

Representation: to learn or not learn?

- 1-hot representation does not capture many nuances, e.g., semantic similarity - But is a good starting point
- Co-occurences also do not fully capture all the facets
- But is a good starting point

So learn the representation...

- Learning Objective
- MAXIMIZE CONTEXT PROBABILITY

Foundations-1: Embedding

- Way of taking a discrete entity to a continuous space
- E.g., 1, 2, 3, 2.7, 2/9, 22 ${ }^{1 / 2}, \ldots$ are numerical symbols
- But they are points on the real line
- Natural embedding
- Words' embedding not so intuitive!

	1	2	3	4
$2 / 9$		1	2.7	
0				

Foundations-2: Purpose of Embedding

- Enter geometric space
- Take advantage of "distance measures"Euclidean distance, Riemannian distance and so on
- "Distance" gives a way of computing similarity

Foundations-3: Similarity and

 difference- Recognizing similarity and differencefoundation of intelligence
- Lot of Pattern Recognition is devoted to this task (Duda, Hart, Stork, $2^{\text {nd }}$ Edition, 2000)
- Lot of NLP is based on Text Similarity
- Words, phrases, sentences, paras and so on (verticals)
- Lexical, Syntactic, Semantic, Pragmatic (Horizontal)

Similarity study in MT

English:
 Bangla:
ei kambak ti khub naram<null>

Marathi:
haa kambal khup naram aake

Manipuri:
kampor asi mon mon laui
blanket this soft soft is

.

\qquad

[^0]x^{2}

路

都 \qquad
\qquad
\qquad
\qquad
\qquad

Abstract

\qquad －

（20．0．

ISO－Metricity

－Wenciy

 ∇
Across Cross-lingual Mapping

This involves strong assumption that embedding spaces across languages are isomorphic, which is not true specifically for distance languages (Søgaard et al. 2018). However, without this assumption unsupervised NMT is not possible.

Søgaard, Anders, Sebastian Ruder, and Ivan Vulić. 2018. On the limitations of unsupervised bilingual
 dictionary induction. ACL

Foundations-4: Syntagmatic and Paradigmatic Relations

- Syntagmatic and paradigmatic relations
- Lexico-semantic relations: synonymy, antonymy, hypernymy, mernymy, troponymy etc. CAT is-a ANIMAL
- Coccurence: CATS MEW
- Wordnet: primarily paradigmatic relations
- ConceptNet: primarily Syntagmatic Relations
 semantic relations (hyper/hypo, mero/holo etc.) Hepmery

Lexical and Semantic relations in wordnet

1. Synonymy (e.g., house, home)
2. Hypernymy / Hyponymy (kind-of, e.g., cat \longleftrightarrow animal)
3. Antonymy (e.g., white and black)
4. Meronymy / Holonymy (part of, e.g., cat and tail)
5. Gradation (e.g., sleep \rightarrow doze \rightarrow wake up)
6. Entailment (e.g., snoring \rightarrow sleeping)
7. Troponymy (manner of, e.g., whispering and talking)
1, 3 and 5 are lexical (word to word), rest are semantic (synset to synset).

‘Paradigmatic Relations’ and

 'Substitutability'- Words in paradigmatic relations can substitute each other in the sentential context
E.g., 'The cat is drinking milk' \rightarrow 'The animal is drinking milk'
- Substitutability is a foundational concept in linguistics and NLP

Foundations-5: Learning and Learning Objective

- Probability of getting the context words given the target should be maximized (skip gram)
- Probability of getting the target given context words should be maximized (CBOW)

Learning objective (skip gram)

$$
\begin{aligned}
& J^{\prime}(\theta)=\frac{1}{T} \prod_{t=1}^{T} \prod_{\substack{-m \leq j \leq m \\
j \neq 0}} p\left(w_{t+j} \mid w_{t} ; \theta\right) \\
& J(\theta)=-\frac{1}{T} \prod_{t=1}^{T} \prod_{\substack{-m \leq j \leq m \\
j \neq 0}} p\left(w_{t+j} \mid w_{t} ; \theta\right)
\end{aligned}
$$

Minimize $L=-\sum_{t=1}^{T} \sum_{\substack{-m \leq j \leq m \\ j \neq 0}} \log \left[p\left(w_{t+j} \mid w_{t} ; \theta\right)\right]$

Modelling P(context word/input word)

- We want, say, P('bark')'dog')
- Take the weight vector FROM 'dog' neuron TO projection layer (call this $u_{\text {dog }}$)
- Take the weight vector TO 'bark' neuron FROM projection layer (call this $v_{\text {bark }}$)
- When initialized $u_{\text {dog }}$ and $v_{\text {bark }}$ give the initial estimates of word vectors of 'dog' and 'bark'
- The weights and therefore the word vectors get fixed by back propagation

Modelling P(context word/input word)

 (2/2)- To model the probability, first compute dot product of $u_{\text {dog }}$ and $v_{\text {bark }}$
- Exponentiate the dot product
- Take softmax over all dot products over the whole vocabulary

$$
P\left(\text { 'bark' }^{\prime} \mid ' d o g^{\prime}\right)=\frac{\exp \left(u_{\text {dog }}^{T} v_{\text {bark }}\right)}{\sum_{v_{k} \text { Evocobuluary }} \exp \left(u_{\text {dog }}^{T} v_{k}\right)}
$$

Exercise

- Why cannot you model P('bark'|'dog') as the ratio of counts of <bark, dog> and <dog> in the corpus?
- Why this way of modelling probability through dot product of weight vectors of input and output words, exponentiation and soft-maxing works?

Possible project ideas

Semantics Extraction using Universal Networking Language

Sentence: I went with my friend, John, to the bank to withdraw some money but was disappointed to find it closed.


```
Current work:
Combine Machine
learning with rule
Based technique
(Janardhan)
```

```
Agt(go,l)
```

Agt(go,l)
Ptn(go,friend)
Ptn(go,friend)
Nam(friend,John)
Nam(friend,John)
Plt(go,bank)
Plt(go,bank)
Pur(go, withdraw)
Pur(go, withdraw)
Obj(withdraw,money0
Obj(withdraw,money0
Mod(money,some)
Mod(money,some)
And(go,disappoint)

```
And(go,disappoint)
```


Sentiment Analysis

"The water is boiling.": Objective
"He is boiling with anger.": Negative

Current work:

1. Tweet and Blog Sentiment
2. Indian Language Sentiment Analysis
3. Word Sense and Sentiment
4. Thwarting and (Subhabrata and Akshat, Balamurali)

Text Entailment

	TEXT	HYPOTHESIS	ENTAIL- MENT
11The Hubble is the only large visible light and ultra-violet space telescope we have in operation.	Hubble is a Space telescope.	True	
2	Google files for its long awaited IPO.	Google goes public.	True
3	After the deal closes, Teva will earn about $\$ 7$ billion a year, the company said.	Teva earns $\$ 7$ billion a year.	False

Current work: Do entailment from Semantic Graphs (Arindam, Janradhan)

Indowordnet and Multilingual Word Sense Disambiguation

Current work: Linking wordnets with SUMO Ontology; using resources of one Language for another for WSD (Salil Joshi, Arindam Chatterjee, Brijesh, Mitesh)

Cross Lingual Information Retrieval

Architecture of Sandhan

Current work: Performance Enhancement; Query expansion and disambiguation (Yogesh, Arjun, Swapnil)

Machine Translation

Large Projects funded by Yahoo, Xerox, Ministry of IT

Current work:

1. Indian Language to Indian Language
2. Statistical MT
3. Crowdsourcing and MT
4. Semantics and SMT
(Mitesh, Anoop, Victor, Somya, Abhijit, Raj,
Rahul)

Sites:
http://www,cse.iitb.ac.in/~pb http://www.cfilt.iitb.ac.in

[^0]: 路

