CS772: Deep Learning for Natural Language Processing (DL-NLP)

Word2vec and Glove
Pushpak Bhattacharyya
Computer Science and Engineering
Department
IIT Bombay
Week 5 of 30th Jan, 2023

Re-cap

Deriving the word vector: setting

$W^{s}: w_{0}^{s}, w_{1}^{s}, w_{2}^{s}, \ldots w_{i}^{s}, \ldots w_{m}^{s}$
$V_{w_{i}}:\left[v_{0}^{i}, v_{1}^{i}, v_{2}^{i}, \ldots v_{k}^{i}, \ldots v_{d}^{i}\right]$
$J=P\left(w_{j} \mid w_{i}\right)$
$L=-P\left(w_{j} \mid w_{i}\right)$
$P\left(w_{j} \mid w_{i}\right)=\frac{e^{V_{w_{i}} \cdot V_{w_{j}}}}{\sum_{j^{\prime}=1}^{|V|} e^{V_{w_{i}} \cdot V_{w_{j}}}}$
$L L=-V_{w_{i}} \cdot V_{w_{j}}+\ln \left(\sum_{j^{\prime}=1}^{|N|} e^{V_{w_{i}} \cdot V_{w_{j}}}\right)$
W^{S} : word sequence in the $s^{\text {th }}$ Sentence
$V_{w i}$: word vector of w_{i}

Deriving the word vector: Optimization

$$
\begin{aligned}
& V_{w_{i}}:\left[v_{0}^{i}, v_{1}^{i}, v_{2}^{i}, \ldots v_{k}^{i}, \ldots v_{d}^{i} 1 /[2)\right. \\
& V_{w_{j}}:\left[v_{0}^{j}, v_{1}^{j}, v_{2}^{j}, \ldots v_{k}^{j}, \ldots v_{d}^{j}, u_{2}, \ldots u_{k}, \ldots u_{d}\right] \\
& V_{w_{j}}:\left[v_{0}^{\prime}, v_{1}, v_{2}^{\prime}, \ldots v_{k}^{\prime}, \ldots v_{d}^{\prime}\right] \\
& \left.V_{w_{i}}, \ldots v_{k}^{\prime}, \ldots v_{d}^{\prime}\right] \\
& V_{w_{j}}=\sum_{k=0}^{d} u_{k} v_{k} \\
& \frac{\partial L L}{\partial u_{k}}=-v_{k}+\frac{\frac{\partial}{\partial u_{k}}\left(\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{j}}\right)}{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}}}
\end{aligned}
$$

Deriving the word vector: Optimization

$$
\begin{aligned}
& =-v_{k}+\frac{\sum_{j^{\prime}=1}^{|V|} \frac{\partial}{\partial u_{k}}\left(e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}}\right)}{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}}}=-v_{k}+\frac{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}} \frac{\partial}{\partial u_{k}}\left(\sum_{k=0}^{d} u_{k} v_{k}^{\prime}\right)}{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}}} \\
& =-v_{k}+\frac{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{k=0}^{d} u_{k} v_{k}^{\prime}} v_{k}^{\prime}}{\sum_{j^{\prime}=1}^{|V|} e^{\sum_{i=0}^{d} u_{k} v_{k}^{\prime}}}=-v_{k}+\sum_{j^{\prime}=1}^{|V|} P\left(w_{j^{\prime}} \mid w_{i}\right) \cdot v_{k^{\prime}}=-v_{k}+E\left(v_{k^{\prime}}\right)
\end{aligned}
$$

Deriving the word vector, Gradient Descent: Δu_{k}

$\Delta u_{k}=-\eta \frac{\partial L L}{\partial u_{k}}=\eta\left[v_{k}-E\left(v_{k^{\prime}}\right)\right]$

Example

- We want, say, P('bark'|'dog')
- Take the weight vector FROM 'dog' neuron TO projection layer (call this $U_{\text {dog }}$)
- Take the weight vector TO 'bark' neuron FROM projection layer (call this $U_{\text {bark }}$)
- When initialized, $U_{\text {dog }}$ and $U_{\text {bark }}$ give the initial estimates of word vectors of 'dog' and 'bark'
- The weights and therefore the word vectors get fixed by back propagation

Input to Projection (shown for one neuron only)

Modelling P(context word/input word)

 (2/2)- To model the probability, first compute dot product of $u_{\text {dog }}$ and $v_{\text {bark }}$ Exponentiate the dot product
- Take softmax over all dot products over the whole vocabulary

$$
P\left(\text { 'bark }^{\prime} \mid{ }^{\prime} d o g^{\prime}\right)=\frac{\exp \left(U_{\text {dog }}^{T} U_{\text {bara }}\right)}{\sum_{\text {REDocabulary }} \exp \left(U_{\text {dog }}^{T} U_{R}\right)}
$$

P('bark'|'dog') (1/2)

$$
P\left(\left(\left.^{\prime} b a r k^{\prime}\right|^{\prime} \operatorname{dog}^{\prime}\right)=\frac{\exp \left(U_{d o g}^{T} U_{\text {bark }}\right)}{\sum_{\text {RsVocabulary }} \exp \left(U_{\text {dog }}^{T} U_{R}\right)}\right.
$$

$\log \left(P\left(\right.\right.$ 'bark' $\left.\left.\left.^{\prime}\right|^{\prime} \operatorname{dog}^{\prime}\right)\right)=U_{d o g}^{T} U_{\text {bark }}-\log \left(\sum_{\text {REVocabulary }} \exp \left(U_{d o g}^{T} U_{R}\right)\right)$

Word2vec architectures

Mikolov 2013

Classic work

- Caught the attention of the world by equations like

> ‘king'-'man'+'woman’=‘queen’

Skip Gram

(context: prev word and next word)

Input Layer

CBOW

Symbolic approach to representing word meaning

Syntagmatic and Paradigmatic

 Relations- Syntagmatic and paradigmatic relations
- Lexico-semantic relations: synonymy, antonymy, hypernymy, mernymy, troponymy etc. CAT is-a ANIMAL
- Coccurence: CATS MEW

Resources to capture semantics:

- Wordnet: primarily paradigmatic relations
- ConceptNet: primarily Syntagmatic Relations

Syntagmatic and Paradigmatic Relations cntd.

- There are interesting studies for English on the syntagmatic and paradigmatic association
The study finds that when a subject hears a word the words that come on hearing, are 50\% syntagmatic and 50\% paradigmatic
- Thus on hearing 'dog', the words 'animal', 'mammal', 'tail' etc. are pulled as paradigmatic and 'bark', 'friend', 'police' etc. as syntagmatic In particular, word vectors capture syntagmatic relations

Fundamental Device- Lexical Matrix (with examples)

Word Meanings	Word Forms				
	F_{1}	F_{2}	F ${ }_{3}$...	F_{n}
M ${ }_{1}$	$\begin{gathered} \text { (depend) } \\ \mathrm{E}_{1,1} \end{gathered}$	(bank) $\mathrm{E}_{1,2}$	$\begin{gathered} \text { (rely) } \\ \mathrm{E}_{1,3} \end{gathered}$		
M_{2}		(bank) $\mathrm{E}_{2,2}$		$\begin{gathered} \text { (embankme } \\ n t) \\ \mathrm{E}_{2, \ldots} \end{gathered}$	
M ${ }_{3}$		(bank) $\mathrm{E}_{3,2}$	$\mathrm{E}_{3,3}$		
...				\ldots	
M_{m}					$\mathrm{E}_{\mathrm{m}, \mathrm{n}}$

Wordnet

Princeton Wordnet for English developed over 15 years. Released 1992.

Eurowordnet- linked structure of European language wordnets built in 1998 over 3 years.

IndoWordnet completed in 2010; effort of 10 years.

Basic Principle

- Words in natural languages are polysemousmeaning has many ('poly') meanings ('sems')
- However, when synonymous words are put together, a unique meaning often emerges.
- Use is made of Relational Semantics.
- Competing scheme: Componential Semantics, where a word is represented by features, e.g.,
- Features: <Large?, Domesticable?, carnivorous?, furry?>
- Tiger: <1, 0, 1, 1>, Cat: <0,1,1, 1>, Cow: <1, 1, 0, 0>

Lexical and Semantic relations in wordnet

1. Synonymy
2. Hypernymy / Hyponymy (kind-of)
3. Antonymy
4. Meronymy / Holonymy (part of)
5. Gradation
6. Entailment
7. Troponymy (manner of)

1,3 and 5 are lexical (word to word), rest are semantic (synset to synset).

WordNet Sub-Graph

Entailment: fundamental meaning relation linking verbs

Principles behind creation of Synsets

Three principles:

Minimality: (first decide the exact synonyms that are minimally needed to make the meaning unique)

Coverage: for that sense include ALL the words in the synset

Replacability: at least the first few words should be able to replace one anothere

Synset creation: example

Home

John's home was decorated with lights on the occasion of Christmas.
Having worked for many years abroad, John Returned home.

House

John's house was decorated with lights on the occasion of Christmas.
Mercury is situated in the eighth house of John's horoscope.

Synsets (continued)

\{house\} is ambiguous.
\{house, home\} has the sense of a social unit living together;
Is this the minimal unit?
\{family, house\} will make the unit completely unambiguous.

For coverage:
\{family, household, house\} ordered according to frequency.
Replacability of the most frequent words is a requirement which is satisfied

Representation using syntagmatic relations: Co-occurrence Matrix

Corpora: I enjoy cricket. I like music. I like deep learning

	I	enjoy	cricket	like	music	deep	learning
I	-	1	1	2	1	1	1
enjoy	1	-	1	0	0	0	0
cricket	1	1	-	0	0	0	0
like	2	0	0	-	1	1	1
music	1	0	0	1	-	0	0
deep	1	0	0	1	0	-	1
learning	1	0	0	1	0	1	-

Collocation and Co-occurrence

- Collocation: Two or more words that tend to appear frequently together.
- Heavy rain
- Scenic view
- Co-occurrence: A relation between two or more phenomena such that they tend to occur together.
- Thunder co-occurs with lightning
- Bread and butter.

Project Idea

- Detect oxymorons given a piece of text.
- Oxymoron: A figure of speech in which apparently contradictory terms appear in conjunction.
- Original copy
- Awfully good
- Silent scream

Co-occurence Matrix

Fundamental to NLP
Also called Lexical Semantic Association (LSA)

Very sparse, many 0s in each row
Apply Principal Component Analysis (PCA) or Singular Value Decomposition (SVD)
Do Dimensionality Reduction; merge columns with high internal affinity (e.g., cricket and bat)

Compression achieves better semantics capture

GLOVE

Pennigton et al, 2014

Two main models for learning word vectors

- 1) global matrix factorization methods, such as latent semantic analysis (LSA) (Deerwester et al., 1990) and
- 2) local context window methods, such as the skip-gram model of Mikolov et al. (2013)
- Currently, both families suffer significant drawbacks.

Drawbacks

- Methods like LSA efficiently leverage statistical information, but they do relatively poorly on the word analogy task,
- indicating a sub-optimal vector space structure.
- Skip-gram may do better on the analogy task, but they poorly utilize the statistics of the corpus
- since they train on separate local context windows instead of on global co-occurrence pointe

Matrix Factorization Methods

- LSA: "term-document" matrix
- Rows \rightarrow words or terms, and columns \rightarrow documents in the corpus.
- Hyperspace Analogue to Language (HAL) (Lund and Burgess, 1996): "termterm" matrix
- rows and columns \rightarrow words and
- entries \rightarrow the number of times a given word occurs in the context of another given word

Matrix Factorization: drawback

- "most frequent words contribute a disproportionate amount to the similarity measure: the number of times two words co-occur with the or and, for example, will have a large effect on their similarity despite conveying relatively little about their semantic relatedness."

Skip Gram \& CBOW: drawback

- "shallow window-based methods suffer from the disadvantage that they do not operate directly on the co-occurrence statistics of the corpus. Instead,these models scan context windows across the entire corpus, which fails to take advantage of the vast amount of repetition in the data"

chitecture for Glove work?

Input Layer
Hidden Layer

V-dim
D-dim

Representation using syntagmatic relations: Co-occurrence Matrix

Corpora: I enjoy cricket. I like music. I like deep learning

	I	enjoy	cricket	like	music	deep	learning
I	-	1	1	2	1	1	1
enjoy	1	-	1	0	0	0	0
cricket	1	1	-	0	0	0	0
like	2	0	0	-	1	1	1
music	1	0	0	1	-	0	0
deep	1	0	0	1	0	-	1
learning	1	0	0	1	0	1	-

Solution: uses co-occurences

$$
J=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(w_{i}^{T} \tilde{w}_{j}+b_{i}+\tilde{b}_{j}-\log X_{i j}\right)^{2}
$$

Working out a simple case of word2vec

Example (1/3)

- 4 words: heavy, light, rain, shower
- Heavy: $U_{0}<0,0,0,1>$
- light: U_{1} : <0,0,1,0>
- rain: $\left.U_{2}:<0,1,0,0\right\rangle$
shower: U_{3} : <1,0,0,0>
- We want to predict as follows:
-Heavy \rightarrow rain
- Light \rightarrow shower

Note

- Any bigram is theoretically possible, but actual probability differs
- E.g., heavy-heavy, heavy-light are possible, but unlikely to occur
- Language imposes constraints on what bigrams are possible
- Domain and corpus impose further restriction

Example (2/3)

- We will call input as U and output as V
- Heavy: $U_{0}<0,0,0,1>$, light: $U_{1}:<0,0,1,0>$, rain: $\left.U_{2}:<0,1,0,0\right\rangle$, shower: U_{3} :
<1,0,0,0>
- Heavy: $\left.V_{0}<0,0,0,1\right\rangle$, light: $\left.V_{1}:<0,0,1,0\right\rangle$, rain: V_{2} : $\langle 0,1,0,0\rangle$, shower: $\left.V_{3}:<1,0,0,0\right\rangle$

Example (3/3)

- heavy \rightarrow rain
- heavy: $U_{0}<0,0,0,1>$

$$
\rightarrow
$$

- rain: V_{2} : < 0, 1,0,0>
- light \rightarrow shower
- light: $U_{1}:<0,0,1,0>, \rightarrow$ shower: V_{3} :
<1,0,0,0>

Word2vec n/w

Chain of thinking

- $P($ rain |heavy) should be the highest
- So the output from V2 should be the highest because of softmax
- This way of converting an English statement into probability in insightful

