
CS772: Deep Learning for

Natural Language Processing

(DL-NLP)

Glove, PCA, Word2vec weights, RNN

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week 6 of 6th Feb, 2023

Re-cap

Two main models for learning word vectors

• 1) global matrix factorization methods,

such as latent semantic analysis (LSA)

(Deerwester et al., 1990) and

• 2) local context window methods, such

as the skip-gram model of Mikolov

et al. (2013)

• Currently, both families suffer significant

drawbacks.

Matrix Factorization: drawback

• “most frequent words contribute a

disproportionate amount to the similarity

measure: the number of times two

words co-occur with the or and, for

example, will have a large effect on

their similarity despite conveying

relatively little about their semantic

relatedness.”

Skip Gram & CBOW: drawback

• “shallow window-based methods suffer

from the disadvantage that they do not

operate directly on the co-occurrence

statistics of the corpus. Instead,these

models scan context windows across

the entire corpus, which fails to take

advantage of the vast amount of

repetition in the data”

Can this architecture for Glove work?

0

1

0

0

Input Layer

V-dim

Hidden Layer

D-dim

V X D D X V

0.4

0.2

0.1

0.3

Representation using syntagmatic

relations: Co-occurrence Matrix

Corpora: I enjoy cricket. I like music. I like deep learning

I enjoy cricket like music deep learning

I - 1 1 2 1 1 1

enjoy 1 - 1 0 0 0 0

cricket 1 1 - 0 0 0 0

like 2 0 0 - 1 1 1

music 1 0 0 1 - 0 0

deep 1 0 0 1 0 - 1

learning 1 0 0 1 0 1 -

Solution: uses co-occurences

Dimensionality Reduction by

PCA

Intuition for Dimensionality Reduction

A
B

C D

1

2

3

4

O

•1, 2, 3, 4: are the points

•A, B, C, D: are their projections on the fitted line by linear regression

•Suppose 1, 2 form a class and 3, 4 another class

•Of course, it is easy to set up a hyper plane that will separate 1 and 2 from 3 and 4

•That will be classification in 2 dimension

•But suppose we form another attribute of these points, viz., distances of their

•projections On the line from “O”

•Then the points can be classified by a threshold on these distances

•This effectively is classification in the reduced dimension (1 dimension)

XOR problem; Projection on

regression line

will not work for AND/OR too

<0,0>

<1,1>

<1,0>

<0,1>

AND-line

OR-line

XOR-line is not

Possible!!

Cannot

Separate

{<0,0>, <1,1>}

from {<0,1>,

<1,0>}

+

-

-

-

Principal Component Analysis

Example: IRIS Data (only 3 values

out of 150)
ID Petal

Length

(a1)

Petal

Width

(a2)

Sepal

Length

(a3)

Sepal

Width

(a4)

Classific

ation

001 5.1 3.5 1.4 0.2 Iris-

setosa

051 7.0 3.2 4.7 1.4 Iris-

versicol

or

101 6.3 3.3 6.0 2.5 Iris-

virginica

Training and Testing Data

• Training: 80% of the data; 40 from each
class: total 120

• Testing: Remaining 30

• Do we have to consider all the 4
attributes for classification?

• Less attributes is likely to increase the
generalization performance (Occam
Razor Hypothesis: A simpler hypothesis
generalizes better)

The multivariate data: n instances,

p attributes

X1 X2 X3 X4 X5…Xp

x11 x12 x13 x14 x15 … x1p

x21 x22 x23 x24 x25 … x2p

x31 x32 x33 x34 x35 … x3p

x41 x42 x43 x44 x45 … x4p

…

…

xn1 xn2 xn3 xn4 xn5 … xnp

Some preliminaries
• Sample mean vector: <µ1, µ2, µ3,…, µp>

For the ith attribute: µi= (Σn
j=1xij)/n

• Variance for the ith attribute:

σi
2= [Σn

j=1 (xij - µi)
2]/ [n-1]

• Sample covariance:

cab= [Σn
j=1 ((xaj - µa)(xbj - µb))]/ [n-1]

This measures the correlation INSIDE the data

In fact, the correlation coefficient

rab= cab/ σa σb

Standardize the variables

• For each variable xij

Replace the values by

yij = (xij - µi)/σi
2

Create the Correlation Matrix

1

1

1

321

22321

11312

ppp

p

p

rrr

rrr

rrr

R

Short digression: Eigenvalues and

Eigenvectors

AX=λX

a11x1+ a12x2+ a13x3+ … a1pxp =λx1

a21x1+ a22x2+ a23x3+ … a2pxp =λx2

…

ap1x1+ ap2x2+ ap3x3+ … appxp =λxp

Here, λs are eigenvalues and the solution

<x1, x2, x3,… xp>

For each λ is the eigenvector

Short digression: To find the

Eigenvalues and Eigenvectors
Solve the characteristic function

det(A – λI)=0

Example:

-9 4

7 -6

Characteristic equation

(-9-λ)(-6- λ)-28=0

Real eigenvalues: -13, -2

Eigenvector of eigenvalue -13:

(-1, 1)

Eigenvector of eigenvalue -2:

(4, 7)

Verify:

-9 4 -1 -1

= -13

7 -6 1 1

λ 0

λI=

0 λ

Next step in finding the PCs

1

1

1

321

22321

11312

ppp

p

p

rrr

rrr

rrr

R

Find the eigenvalues and eigenvectors of R

Example

000.1607.0526.0529.0605.0

000.1763.0769.0645.0

000.1674.0662.0

000.1735.0

000.1

R

49 birds: 21 survived in a storm and 28 died.

5 body characteristics given

X1: body length; X2: alar extent; X3: beak and head length

X4: humerus length; X5: keel length

Could we have predicted the fate from the body characteristic

X1 X2 X3 X4
X5

X1

X2

X3

X4

X5

Eigenvalues and Eigenvectors of R

Eigenvalues: 3.612, 0.532, 0.386, 0.302, 0.165

First Eigen-

vector: V1

V2 V3 V4 V5

0.452 0.462 0.451 0.471 0.398

-0.051 0.300 0.325 0.185 -0.877

0.691 0.341 -0.455 -0.411 -0.179

-0.420 0.548 -0.606 0.388 0.069

0.374 -0.530 -0.343 0.652 -0.192

Which principal components are

important?

• Total variance in the data=

λ1+ λ2+ λ3+ λ4+ λ5

= sum of diagonals of R= 5

• First eigenvalue= 3.616 ≈ 72% of total
variance 5

• Second ≈ 10.6%, Third ≈ 7.7%, Fourth ≈
6.0% and Fifth ≈ 3.3%

• First PC is the most important and
sufficient for studying the
classification

Forming the PCs

• Z1= 0.451X1+0.462X2+0.451X3+0.471X4+0.398X5

• Z2= -0.051X1+0.300X2+0.325X3+0.185X4 -0.877X5

• For all the 49 birds find the first two

principal components

• This becomes the new data

• Classify using them

For the first bird

X1=156, X2=245, X3=31.6, X4=18.5, X5=20.5

After standardizing

Y1=(156-157.98)/3.65=-0.54,

Y2=(245-241.33)/5.1=0.73,

Y3=(31.6-31.5)/0.8=0.17,

Y4=(18.5-18.46)/0.56=0.05,

Y5=(20.5-20.8)/0.99=-0.33

PC1 for the first bird=

Z1= 0.45X(-0.54)+ 0.46X(0.725)+0.45X(0.17)+0.47X(0.05)+0.39X(-
0.33)

=0.064

Similarly, Z2= 0.602

Reduced Classification Data

• Instead of

• Use

X1 X2 X3 X4 X5

49

rows

Z1 Z2

49 rows

Correlation in NLP Tasks

• For PCA, correlation is the crux of the matter

• We did not have an NLP example

• Think about correlation in NLP situations:

– How can we merge strongly related attributes to form

new attributes?

– Co-occurrence matrix; which words are very

strongly correlated and why?

– POS tagging

– Parsing

– Semantic graph

Difference between Explainability & Causality

(1/2)

• NLP research is continuously pushing the frontiers

of explainability to understand causality

• Difference can be understood with the following

example -

– A doctor knows that when body has jaundice it

becomes yellowish. But why? “Yellowness is

NOT an explanation of jaundice

Difference between Explainability & Causality

(2/2)
– Causal explanation: Liver malfunctioning

released increased amount of Bilirubin which

makes the urine yellow

– Explainability as it is done today: surface signals

are taken

– Deeper signals (causes)- we need to look at

other segments of data

– Thus explainability needs to navigate through

databases to get into causality. Explainability is a

surface signal while causality is a deeper signal.

PCA of co-occurrence matrix

– Sum of eigenvalues= sum of

diagonale elements

– What implication does this have for the

co-occurrence matrix?

Working out a simple case of

word2vec

Example (1/3)

● 4 words: heavy, light, rain, shower

○ Heavy: U0 <0,0,0,1>

○ light: U1: <0,0,1,0>

○ rain: U2: <0,1,0,0>

○ shower: U3: <1,0,0,0>

● We want to predict as follows:

○ Heavy rain

○ Light shower

Note

• Any bigram is theoretically possible,

but actual probability differs

• E.g., heavy-heavy, heavy-light are

possible, but unlikely to occur

• Language imposes constraints on

what bigrams are possible

• Domain and corpus impose further

restriction

Example (2/3)

● Input-Output

○ Heavy: U0 <0,0,0,1>, light: U1: <0,0,1,0>,

rain: U2: <0,1,0,0>, shower: U3:

<1,0,0,0>

● Heavy: V0 <0,0,0,1>, light: V1: <0,0,1,0>,

rain: V2: <0,1,0,0>, shower: V3: <1,0,0,0>

Example (3/3)

● heavy rain

○ heavy: U0 <0,0,0,1>

○ rain: V2: <0,1,0,0>

● light shower

● light: U1: <0,0,1,0>, shower: V3:

<1,0,0,0>

Word2vec n/w

Input

for

‘heavy’

Projection

(dim: 2)

Uheavy

Output

for

‘rain’
1

0.6

Vrain

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

0

0

0

0.38

0.01

0.01

Heavy: U0 <0,0,0,1>

light: U1: <0,0,1,0>

rain: U2: <0,1,0,0>

shower: U3: <1,0,0,0>

Heavy: V0 <0,0,0,1>

light: V1: <0,0,1,0>

rain: V2: <0,1,0,0>

shower: V3: <1,0,0,0>

Chain of thinking

• P(rain|heavy) should be the highest

• So the output from V2 should be the

highest because of softmax

• This way of converting an English

statement into probability in insightful

Developing word2vec weight

change rule

Illustrated with 4 words only

Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

Convention: Capital letter for NAME of

neuron; small letter for output from the

same neuron

U2; u2

U1; u1

U0; u0

H0; h0

Diverging and converging

Weight (Word) vectors

Notation Convention

• Weights indicated by small ‘w’

• Index close to ‘w’ is for the

destination neuron

• The other index is for the source

neuron

Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small

letter for output from the same neuron

More notation

• Net input to hidden and output layer

neurons play an important role in BP

• Net input to hidden layer neurons: netH0

and netH1

• Net input to output layer neurons: netV0,

netV1, netV2, netV3

Outputs at the outermost layer

3210

3

3210

2

3210

1

3210

0

3

2

1

0

VVVV

V

VVVV

V

VVVV

V

VVVV

V

netnetnetnet

net

netnetnetnet

net

netnetnetnet

net

netnetnetnet

net

eeee

e
v

eeee

e
v

eeee

e
v

eeee

e
v

Output

vector

V

V2; v2

V3; v3

V1; v1

V0; v0

H1; h1

H0; h0

wV2H1

wV2H0

Note

• No non-linearity in the hidden layer

• Why?

• Hidden layer should do ONLY

dimensionality reduction

• Can be proved: hidden layer with

linearity gives the principal

components (will discuss of which

Matrix)

Why Dimensionality Reduction?

• The vectors of words represent their

distributional similarity

• Dimensionality reduction achieves

capturing commonality of these

distributional similarities across

words

Developing “netvi” (1/2)

32101

32100

10

31211101

30201000

10000

uwuwuwuwh

uwuwuwuwh

hwhwnet

UHUHUHUH

UHUHUHUH

HVHVV

Output

vector

V

V2; v2

V3; v3

V1; v1

V0; v0

H1; h1

H0; h0

wV0H1

wV0H0

U3; u3

U2; u2

U1; u1

U0; u0

Developing “netvi” (2/2)

• For “heavy”, only u0 is 1, u1=u2=u3=0

• So,

10

00

0100

011000000

01

00

1

0

HV

HV

UHUH

UHHVUHHVv

UH

UH

w

w
ww

wwwwnet

wh

wh

More Notation

• Weight vector FROM U0 is called

WU0 (capital ‘W’)

• Weight vector INTO V0 is called WV0

• Slight liberty with notation, but has

intuitive advantage

For “heavy” (=U0), the value of

netv0

T

VUV WWnet
000

.

Output

vector

V

V2; v2

V3; v3

V1; v1

V0; v0

H1; h1

H0; h0

wV0H1

wV0H0

U3; u3

U2; u2

U1; u1

U0; u0

wH1U0

wH0U0

For “heavy” (=U0), values of other

netvis

T

VUV

T

VUV

T

VUV

T

VUV

WWnet

WWnet

WWnet

WWnet

303

202

101

000

.

.

.

.

We want to maximize

P(‘rain’=V2|’heavy’=U0)

• This probability is in terms of

softmax.

3210

2

2

02)'|''('

VVVV

V

netnetnetnet

net

eeee

e
v

UheavyVrainP

Equivalent to

• minimize -log[P(‘rain’=V2|’heavy’=U0)]

)log(

)log(

)]'|''('log[

3210

20

3210

2

02

VVVV

VVVV

netnetnetnetT

VU

netnetnetnet

V

eeeeWW

eeeenet

UheavyVrainP

Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small

letter for output from the same neuron

Computing ΔwV2H0

02

02

HV

HV
w

E
w

0112000220 UHHVUHHV

T

VU wwwwWW

00002

0000

0003020100

02

00

02

)1().1(

.

.
)

22

2

....

.

HUHHV

UHUH

UHWWWWWWWW

WW

UH

HV

ovwvw

wvw

w
eeee

e
w

w

E
UVUVUVUV

UV

o/p of hidden neuron H0

)log(

)log(

3210

20

3210

2

VVVV

VVVV

netnetnetnetT

VU

netnetnetnet

V

eeeeWW

eeeenetE

Interpretation of weight change rule

for V2

• If v2 is close to 1, change in weight

too is small

• wH0U0 is equal to the input to H0

(since u0=1) and to its output too,

since hidden neurons simply transmit

the output.

Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small

letter for output from the same neuron

Change in other weights to output layer, say, V1,

due to input U0

01

01

HV

HV
w

E
w

00001

00

0003020100

01

01

11

1

....

.

.

.
)

0

HUHHV

UH

UHWWWWWWWW

WW

HV

ovwvw

wv

w
eeee

e

w

E
UVUVUVUV

UV

0112000220 UHHVUHHV

T

VU wwwwWW

)log(

)log(

3210

20

3210

2

VVVV

VVVV

netnetnetnetT

VU

netnetnetnet

V

eeeeWW

eeeenetE

Interpretation of weight change rule for V1

• Assume wH0U0 to be positive

• For training U0V2, i.e., ‘heavy’’rain’, if v2 is

not 1, ΔwV2H0 is +ve

• For the same input, ΔwV1H0 is negative

• So the two weight changes are of opposite

sign.

• The effect is that while v2 increases, v1

decrease for the input U0, as it should be since

we want to increase P(‘rain’|’heavy’) and

depress all other probabilities

Weight change for input to hidden layer, say,

wH0U0

00

00

UH

UH
w

E
w

0112000220 UHHVUHHV

T

VU wwwwWW

)log(

)log(

3210

20

3210

2

VVVV

VVVV

netnetnetnetT

VU

netnetnetnet

V

eeeeWW

eeeenetE

Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small

letter for output from the same neuron

Cntd: Weight change for input to hidden layer,

say, wH0U0

])1[(3102

3210

....

....

0301000200

0302010002

03020100

03

03

02

02

01

01

00

00

02

00

vwvwvwwvw

vwvwvwvww

eeee

ewewewew
w

w

E

HVHVHVHVUH

HVHVHVHVHV

WWWWWWWW

WW

HV

WW

HV

WW

HV

WW

HV

HV

UH

UVUVUVUV

UVUVUVUV

Need for efficiency

• Hierarchical softmax

• Negative sampling

• We have to update |H|.|V| weights in the

hidden to output layer

• |H|=dimension of hidden layer, |V|=vocab size

• For 300 dimension word vector and 100,000

words vocabulary, 30 million weights need to

be updated for every input word!!

• Efficiency measures to be discussed

Softmax, Cross Entropy and

RELU

Cross Entropy Function

x

xQxPQPH)(log)(),(2

P is target distribution, Q is observed

distribution

e.g., Positive, Negative, Neutral Sentiment

x: input sentence: The movie was excellent

P(x): <1,0,0>, Q(x): <0.9,0.02,0.08>, (say)

H(P,Q)=-log0.9=log(10/9)

Deriving weight change rules

Cross Entropy Softmax combination

A very ubiquitous combination in neural

combination

Foundation: Gradient descent

Change is weight Δwji= -

ηδL/ δwji

η= learning rate, L=loss,

wji= weight of connection

from the ith neuron to jth

L

wji

B

A

At A, δL/ δwji is negative, so

Δwji is positive. At B, δL/ δwji

Is positive, so so Δwji is

negative. L *always

decreases. Greedy algo.

Single neuron: sigmoid+cross

entropy loss

x0x1x2xn-2
xn-1

xn …

o

w1

1

1

1

1

10

11

)(

)3(

)2()1()(
1

1

)1(
)1(1

1

)1log()1(log

..

xot
w

L
w

x
w

net
xwnet

oo
net

o
sigmoid

e
o

oo

ot

o

t

o

t

o

L

ototL

w

net

net

o

o

L

w

L

n

i

ii

net

Δw1 = η(t-o)x1

net

FFNN with O1-O2 softmax, all hidden neurons

RELU, Cross Entropy Loss

68

O2

H22

H12

X2

O1

H21

H11

X1

W11,1
W12,1

W11,2
W12,2

W21,11

W22,11

W22,12
W21,12

W1,21W2,22

W2,21

W1,22

net2 net1

We will apply the

Δwji=ηδjoi rule

Gradient Descent Rule and the

General Weight Change Equation

1

2121,1

1

1

net

E

hw

o

o

O2

H22

O1

H21

W2,22

W2,21

W1,22

net2

W1,21

net1

1122 loglog ototE

)(,

)(

)(

)1(

))(()1(

..

22

11

111221

1211

21

2

2
11

1

1

1

2

21

1

11

2

1

otSimilarly

ot

ototot

otot

oo
o

t
oo

o

t

net

o

o

E

net

o

o

E

net

E

O

O

ΔW1,21=η(t1-o1)h21

Weight Change for Hidden Layer, W21,11

70

O2

H22

H12

O1

H21

H11

W21,11

W22,11

W22,12
W21,12

W2,22 W2,21

W1,22

)(_');('.

)(;.

2121

21

2121
21

21

11

11,21

11,21

2121

21

21

21

HRELUderivativerHr
h

E

Houtputh
net

h

h

E

net

E

net

E

h
w

E
w

HH

H

H

H

net2 net1

W1,21

derivativeRELUdeltaatedbackpropag

HrWW

WW

h

net

net

E

h

net

net

E

h

E

ooH

oo

.

)(')...(

).().(

..

2121,2221,1

21,2221,1

21

2

221

1

121

121

1

ΔW21,11=η[(t2-o2)W2,21+(t1-o1)W1,21].r’(H21).h11

An Example

There is a pure feedforward network 2-2-2

(2 input, 2 hidden and 2 output neurons).

Input neurons are called X1 and X2 (right

to left when drawn on paper, X1 to the

right of X2). Similarly hidden neurons are

H1 and H2 (right to left) and output

neurons are O1 and O2 (right to left). H1

and H2 are RELU neurons. O1 and O2

form a softmax layer.

Remember: weight change rules

72

W2
11

O2

H2

X2

O1

H1

X1

W1
11

W1
21

W1
22

W1
21

W2
22

W2
21

W2
12

net2 net1
1122 loglog ototE

ΔW2
11=η(t1-o1)h1

ΔW1
11=η[(t2-o2)W

2
21+(t1-o1)W

1
11].r’(H1).h1

Why is RELU a solution for

vanishing or exploding gradient?

Vanishing/Exploding Gradient
74

O2

H22

H12

X2

O1

H21

H11

X1

W11,1
W12,1

W11,2
W12,2

W21,11

W22,11

W22,12
W21,12

W1,21W2,22
W2,21

W1,22

δx1

δH12
δH11

δH22
δH21 δH21δH22

δO2
δO1

δO2
δO1

δO2
δO1

δO2
δO1

δx1=[W11,1δH11+W12,1δH12].derivative of

activation at X1=[W11,1δH11+W12,1δH12].1

(convention)

W12,1
W11,1

W22,12 W21,12

W21,11

W22,11

W2,22

W1,21W2,21 W1,21 W2,21

W1,22
W1,22

W2,22

Vanishing/Exploding Gradient
75

δx1

δH12
δH11

δH22
δH21 δH21δH22

δO2
δO1

δO2
δO1

δO2
δO1

δO2
δO1

δx1=W11,1δH11+W21,1δH12 [2

terms]

=W11,1(W21,11δH21+

W22,11δH22).r’(H11)+

W21,1(W21,12δH21+

W22,12δH22). r’(H12) [4 terms]

= (4 terms involving δo1) + (4

terms involving δo2)

δs get multiplied by

derivatives of RELU which

are 1 or 0; hence δs from

the output layer pass as

such or as 0

W21,1
W11,1

W22,12 W21,12

W21,11

W22,11

W2,22

W1,21W2,21 W1,21 W2,21

W1,22
W1,22

W2,22

W11,1W21,11W1,21

Vanishing/Exploding Gradient
76

δx1

δH12
δH11

δH22
δH21 δH21δH22

δO2
δO1

δO2
δO1

δO2
δO1

δO2
δO1

With ‘B’ as branching factor and

‘L’ as number of levels,

There will be BL terms in the final

Expansion of δx1. Also each term

Will be product of L weights
O2

H22

H12

X2

O1

H21

H11

X1

W12,1

W11,2
W12,2

W21,11
W22,11

W22,12
W21,12

W2,22
W2,21

W1,22

How can gradients explode

• Station derivatives multiply

• If <0, progressive attenuation of product

• Now the sigmoid function can be in the form

of y=K[1/(1+e-x)]

• Derivative= K.y.(1-y)

• If K is more than 1, the product of gradients

can become larger and larger, leading to

explosion of gradient

• K needs to be >1, to avoid saturation of

neurons

Can happen for tanh too

• Tanh: y=[(ex-e-x)/(ex+e-x)]

• Derivative= (1-y)(1+y)

• If we take a neuron with K.tanh, we can

again have explosion of gradient if K>1

• Why K needs to be >1?

• To take care of situations where #inputs

and individual components of input are

large

• This is to avoid saturation of the neuron

Recurrent Neural Network

Acknowledgement:
1. http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-

introduction-to-rnns/

By Denny Britz

2. Introduction to RNN by Jeffrey Hinton

http://www.cs.toronto.edu/~hinton/csc2535/lectures.html

3. Dr. Anoop Kunchukuttan, Microsoft and ex-CFILT

79

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.cs.toronto.edu/~hinton/csc2535/lectures.html

Sequence processing m/c

80

Meaning of state
• State vector constituted of states of neurons

• State of a neuron activation, i.e., output of

the neuron corresponding to an input

• E.g., state vector for the XOR n/w is <h1, h2, o>

o

w22

x2 x1

w11

w12 w21

H2 H1

w31
w32

E.g. POS Tagging

82

Purchased Videocon machine

VBD
NNP NN

Note that POS of “purchased” is ambiguous with possibilities as VBD or VBN or

JJ

“I purchased Videocon machine” vs. “my purchased Videocon machine is

running well”

POS Annotation

• Who_WP is_VZ the_DT prime_JJ

minister_NN of _IN India_NNP

?_PUNC

• Becomes the training data for ML

based POS tagging

3 Generations of POS tagging

techniques

• Rule Based POS Tagging
– Rule based NLP is also called Model Driven

NLP

• Statistical ML based POS Tagging

(Hidden Markov Model, Support

Vector Machine)

• Neural (Deep Learning) based POS

Tagging

Noisy Channel Model

W T

(wn, wn-1, … , w1) (tm, tm-1, … , t1)

Noisy Channel

Sequence W is transformed into

sequence T

T*=argmax(P(T|W))

T

W*=argmax(P(W|T))

W
85

HMM: Generative Model

^_^ People_N Jump_V High_R ._.

^ N

V

V

N

A

N

.

Lexical

Probabilities

Bigram

Probabilities

This model is called Generative model.

Here words are observed from tags as states.

This is similar to HMM.

week-of-24aug20cs626-hmm:pushpak86

I

h0 h1

o1 o2
o3 o4

c1

a11 a12 a13

a14

Decision on a piece of text

E.g. Sentiment Analysis

87

I

h0 h1

o1 o2
o3 o4

c2

a21
a22

a23

a24

like

h2

88

I

h0 h1

o1 o2
o3 o4

c3

a31 a32 a33

a34

like the

h3
h2

89

I

h0 h1

o1 o2
o3 o4

c4

a41

a42
a43

a44

like the

h3
h2

camera

h4

90

I

h0 h1

o1 o2
o3 o4

c5

a51

a52
a53

a54

like the

h3
h2

camera <EOS>

h4 h5

Positive

sentiment

91

Recurrent Neural Networks: two

key Ideas

𝑥𝑖−1𝑥2𝑥1 𝑐(𝑥𝑖)

1. Summarize context information into a single vector

𝑐(𝑥𝑖) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑖−1)

Nature of 𝑷(.)

n-gram LM: look-up table

FF LM: 𝑐 𝑥𝑖 = 𝐺 𝑥𝑖−1, 𝑥𝑖−2 (trigram LM)

RNN LM: 𝑐 𝑥𝑖 = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑖−1) (unbounded

context)

𝑃(𝑥𝑖|𝑐 𝑥𝑖)

Function G requires

all context inputs at

once

How does RNN

address this

problem?

Two Key Ideas (cntd)

𝑥3𝑥2𝑥1

𝑐(𝑥2)

2. Recursively construct the

context

𝑐(𝑥3)𝑐(𝑥1)𝑐(𝑥0)

𝑐(𝑥𝑖) = 𝐹(𝑐 𝑥𝑖−1 , 𝑥𝑖)

We just need two inputs to construct the context

vector:

- Context vector of previous timestep

- Current input

The context vector state/hidden state/contextual

representation

𝐹 . can be implemented as

𝑐(𝑥𝑖) = 𝜎 𝑊𝑐𝑐(𝑥𝑖−1 +𝑊𝑥 𝑥𝑖 + 𝑏1)

Like a feed-forward network

𝑊𝑥 𝑊𝑥 𝑊𝑥

𝑊𝑐 𝑊𝑐 𝑊𝑐

𝑥3𝑥2𝑥1

𝑜1 𝑜2 𝑜3

𝑜(𝑥𝑖) = 𝑊𝑜𝑐(𝑥𝑖) + 𝑏2
We are generally interested in categorical outputs

Ƹ𝑧𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜(𝑥𝑖))
= 𝑃(𝑦𝑖|𝑐𝑡𝑥(𝑥𝑖))

𝑐(𝑥2) 𝑐(𝑥3)𝑐(𝑥1)
𝑐(𝑥0)

Ƹ𝑧1 Ƹ𝑧2 Ƹ𝑧3

𝑊𝑐 𝑊𝑐 𝑊𝑐

𝑊𝑥 𝑊𝑥 𝑊𝑥

𝑊𝑜𝑊𝑜𝑊𝑜

The same parameters are used at each time-step

Model size does not depend on sequence length

Long range context is modeled

𝑦1 𝑦2 𝑦3

𝑧𝑖
𝑤 = 𝑃(𝑦𝑖 = 𝑤|𝑐𝑡𝑥(𝑥𝑖))

Generate output give the current input and

state/context

Wo=wt. for output layer;

Wc= wt. for generating next state

(context);

Wx= wt. for the input layer

Input Sequence: (𝑥1 𝑥2 𝑥3 𝑥4… . . 𝑥𝑖 …… . 𝑥𝑁)

Output Sequence: (𝑦1 𝑦2 𝑦3 𝑦4… . . 𝑦𝑖 …… . 𝑦𝑁)

Sequence Labelling Task

Input and output sequences have the same length

Variable length input

Output contains categorical labels

Output at any time-step typically depends on neighbouring output labels and input

elements

Part-of-speech

tagging

Recurrent Neural Network is a powerful model to learn sequence labelling

tasks

How do we model language modeling

as a sequence labeling task?

The capital of Maharashtra is Mumbai

capital of Maharashtra is MumbaiThe

<BOS>

<EOS>

The output sequence is one-time step ahead of the input sequence

Training Language Models
Input: large monolingual corpus

- Each example is a tokenized sentence (sequence of words)

- At each time step, predict the distribution of the next word given all previous words

- Loss Function:

- Minimize cross-entropy between actual distribution and predicted distribution

- Equivalently, maximize the likelihood

At a single time-step:

𝐽𝑖 𝜃 = 𝐶𝐸 𝑧𝑖 , Ƹ𝑧𝑖 = −σ𝑤∈𝑉 𝑧𝑖
𝑤 log 𝑧𝑖

𝑤 = − log𝑧𝑖
𝐿

Average over time steps for example n:

𝐽𝑛 𝜃 =
1

𝑇
σ𝑖=1
𝑇 𝐽𝑖 𝜃

Average over entire corpus:

𝐽(𝜃) =
1

𝑁
σ𝑘=1
𝑁 𝐽𝑛 𝜃

How do we learn model

parameters?

More on that later!

where 𝑦𝑖 =
𝐿

How do we evaluate quality of language models?

Evaluate the ability to predict the next word given a

context

Evaluate the probability of a testset of

sentences

Standard test sets exist for evaluating language models: Penn Treebank, Billion Word Corpus,

WikiText

Evaluating Language Models

Evaluating LM (cntd.)

• Ram likes to play -----
– Cricket: high probability, low entropy, low perplexity

(relatively very high frequency for ‘like to play

cricket’)

– violin: -do- (relatively high frequency possibility for

‘like to play violin’

– Politics: moderate probability, moderate entropy,

moderate perplexity (relatively moderate frequency

‘like to play politics’

– milk: almost 0 probability, very high entropy, very

high perplexity (relatively very low possibility for ‘like

to play milk’

So an LM that predicts ‘milk’ is bad!

Language Model Perplexity

Perplexity: exp 𝐽 𝜃

𝐽(𝜃) is cross-entropy on the test set

Cross-entropy is measure of difference between actual and

predicted distribution

Lower perplexity and cross-entropy is better

Training objective matches evaluation metric

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-

words/

n-gram

RNN variants

RNN models outperform n-gram models

A special kind of RNN network – LSTM- does even later we will

see that soon

Importance of Probabilistic Language Modelling (1/2)

• In early days, researchers used context free grammar

for language models

– Is a given string of words in language or not

– Example:

• Ram saw Shyam (correct word order)

• Ram Shyam saw (incorrect word order)

– However, belongingness to language is not a black

and white issue

– There are no grammatical and ungrammatical

sentences, only sentences with probabilities

Importance of Probabilistic Language

Modelling (2/2)
• Example:

– Indian English: You will go to the movie, no?

– US/UK English: You will go to the movie, won’t you?

• English has different forms through differences in regional

dialects and even through periods of time

– English language evolves every year, new words and their

different sentence positions are introduced

• Hence we cannot assign 0/1 value to sentences

– But we can assign probabilities to word orders

– Equivalent to Prob (Wn | W1,W2,...Wn-1)

BPTT

The equivalence between feedforward nets and recurrent

nets

A B C

A0 B0 C0

A1 B1 C1

A3 B3 C3

A2 B2 C2

w1 w4

w2 w3

w1 w2 W3 W4

time=0

time=2

time=1

time=3

Assume that there is a time

delay of 1 in using each

connection.

The recurrent net is just a

layered net that keeps

reusing the same weights.

w1 w2 W3 W4

w1 w2 W3 W4

105

Loss/Error= E

BPTT illustration

A0 B0 C0

A1 B1 C1

A3 B3 C3

A2 B2 C2

w1 w2 W3 W4

time=0

time=2

time=1

time=3

w1 w2 W3 W4

w1 w2 W3 W4

106

Loss/Error= E

Δw3
i

Δw2
i

Δw1
i

Δwi= Δw3
i+ Δw2

i+ Δw1
i

Vanishing/Exploding

Gradient can strike!!!

BPTT important points

• The forward pass at each time step.

• The backward pass computes the error
derivatives at each time step.

• After the backward pass we add together
the derivatives at all the different times
for each weight.

107

Long word sequences

• The famous book by Charles Dickens “A Tale of

Two Cities” starts the book with the famous

sentence “This was the best of times, this was the

worst of times….”

• The sentence has 119 words
• “It was the best of times, it was the worst of times, it was the age of

wisdom, it was the age of foolishness, it was the epoch of belief, it was

the epoch of incredulity, it was the season of Light, it was the season of

Darkness, it was the spring of hope, it was the winter of despair, we had

everything before us, we had nothing before us, we were all going direct

to Heaven, we were all going direct the other way--in short, the period

was so far like the present period that some of its noisiest authorities

insisted on its being received, for good or for evil, in the superlative

degree of comparison only.

The “best of times…” sentence

• Vanishing gradient will surely strike!!

• Exercise: give an example from NLP,

where exploding gradient will strike!!

Sentence-1

• Ram who is a good student and lives

in London which is a large metro, will

go to the University for higher

studies.

• राम जो एक अच्छा छात्र है और लंदन में
रहता है जो एक बड़ी मेट्रो है, उच्च अध्ययन
के ललए विश्िविद्यालय जाएगा।

Sentence-2

• Sita who is a good student and lives

in London which is a large metro, will

go to the University for higher

studies.

• स़ीता जो एक अच्छी छात्रा है और लंदन में
रहत़ी है जो एक बड़ी मेट्रो है, उच्च अध्ययन
के ललए विश्िविद्यालय जाएग़ी।

Long distance dependency: WSD

The bank

Long distance dependency: WSD

The bank that Ram

Long distance dependency: WSD

The bank that Ram used to visit

Long distance dependency: WSD

The bank that Ram used to visit 30

years before

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt. getting worried

that

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt. getting worried

that crowding of people

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt. getting worried

that crowding of people during the

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt. getting worried

that crowding of people during the

immersion ceremony

Long distance dependency: WSD

The bank that Ram used to visit 30

years before was closed due to the

lockdown with the Govt. getting worried

that crowding of people during the

immersion ceremony on the river will

aggravate the situation.

Movement of probability mass for

“bank”

• Seeing “closed”, probability mass edges

toward “financial” sense, because of strong

association between “bank” and “closed/open”

• “lockdown” pushed this probability mass

towards “river bank”

• Push further strengthened by arrival of

“crowding”, “immersion” and “river” one after

the other; “river” closes the case!

Vanishing/Exploding Gradient
126

O2

H22

H12

X2

O1

H21

H11

X1

W11,1
W12,1

W11,2
W12,2

W21,11

W22,11

W22,12
W21,12

W1,21W2,22
W2,21

W1,22

δx1

δH12
δH11

δH22
δH21 δH21δH22

δO2
δO1

δO2
δO1

δO2
δO1

δO2
δO1

δx1=[W11,1δH11+W12,1δH12].derivative of

activation at X1=[W11,1δH11+W12,1δH12].1

(convention)

W12,1
W11,1

W22,12 W21,12

W21,11

W22,11

W2,22

W1,21W2,21 W1,21 W2,21

W1,22
W1,22

W2,22

Vanishing/Exploding Gradient
127

δx1

δH12
δH11

δH22
δH21 δH21δH22

δO2
δO1

δO2
δO1

δO2
δO1

δO2
δO1

δx1=W11,1δH11+W21,1δH12 [2

terms]

=W11,1(W21,11δH21+

W22,11δH22).r’(H11)+

W21,1(W21,12δH21+

W22,12δH22). r’(H12) [4 terms]

= (4 terms involving δo1) + (4

terms involving δo2)

δs get multiplied by

derivatives of RELU which

are 1 or 0; hence δs from

the output layer pass as

such or as 0

W21,1
W11,1

W22,12 W21,12

W21,11

W22,11

W2,22

W1,21W2,21 W1,21 W2,21

W1,22
W1,22

W2,22

W11,1W21,11W1,21

Vanishing/Exploding Gradient
128

δx1

δH12
δH11

δH22
δH21 δH21δH22

δO2
δO1

δO2
δO1

δO2
δO1

δO2
δO1

With ‘B’ as branching factor and

‘L’ as number of levels,

There will be BL terms in the final

Expansion of δx1. Also each term

Will be product of L weights
O2

H22

H12

X2

O1

H21

H11

X1

W12,1

W11,2
W12,2

W21,11
W22,11

W22,12
W21,12

W2,22
W2,21

W1,22

