
CS772: Deep Learning for

Natural Language Processing

(DL-NLP)

RNN, Encoder-Decoder, A*, CNN

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week 7 of 13th Feb, 2023

Re-cap

PCA: Example

000.1607.0526.0529.0605.0

000.1763.0769.0645.0

000.1674.0662.0

000.1735.0

000.1

R

49 birds: 21 survived in a storm and 28 died.

5 body characteristics given

X1: body length; X2: alar extent; X3: beak and head length

X4: humerus length; X5: keel length

Could we have predicted the fate from the body characteristic

X1 X2 X3 X4
X5

X1

X2

X3

X4

X5

Eigenvalues and Eigenvectors of R

Eigenvalues: 3.612, 0.532, 0.386, 0.302, 0.165

First Eigen-

vector: V1

V2 V3 V4 V5

0.452 0.462 0.451 0.471 0.398

-0.051 0.300 0.325 0.185 -0.877

0.691 0.341 -0.455 -0.411 -0.179

-0.420 0.548 -0.606 0.388 0.069

0.374 -0.530 -0.343 0.652 -0.192

Which principal components are

important?

• Total variance in the data=

λ1+ λ2+ λ3+ λ4+ λ5

= sum of diagonals of R= 5

• First eigenvalue= 3.616 ≈ 72% of total
variance 5

• Second ≈ 10.6%, Third ≈ 7.7%, Fourth ≈
6.0% and Fifth ≈ 3.3%

• First PC is the most important and
sufficient for studying the
classification

Forming the PCs

• Z1= 0.451X1+0.462X2+0.451X3+0.471X4+0.398X5

• Z2= -0.051X1+0.300X2+0.325X3+0.185X4 -0.877X5

• For all the 49 birds find the first two

principal components

• This becomes the new data

• Classify using them

For the first bird

X1=156, X2=245, X3=31.6, X4=18.5, X5=20.5

After standardizing

Y1=(156-157.98)/3.65=-0.54,

Y2=(245-241.33)/5.1=0.73,

Y3=(31.6-31.5)/0.8=0.17,

Y4=(18.5-18.46)/0.56=0.05,

Y5=(20.5-20.8)/0.99=-0.33

PC1 for the first bird=

Z1= 0.45X(-0.54)+ 0.46X(0.725)+0.45X(0.17)+0.47X(0.05)+0.39X(-
0.33)

=0.064

Similarly, Z2= 0.602

Reduced Classification Data

• Instead of

• Use

X1 X2 X3 X4 X5

49

rows

Z1 Z2

49 rows

Working out a simple case of

word2vec

Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small

letter for output from the same neuron

Computing ΔwV2H0

02

02

HV

HV
w

E
w

0112000220 UHHVUHHV

T

VU wwwwWW

00002

0000

0003020100

02

00

02

)1().1(

.

.
)

22

2

....

.

HUHHV

UHUH

UHWWWWWWWW

WW

UH

HV

ovwvw

wvw

w
eeee

e
w

w

E
UVUVUVUV

UV

o/p of hidden neuron H0

)log(

)log(

3210

20

3210

2

VVVV

VVVV

netnetnetnetT

VU

netnetnetnet

V

eeeeWW

eeeenetE

Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small

letter for output from the same neuron

Change in other weights to output layer, say, V1,

due to input U0

01

01

HV

HV
w

E
w

00001

00

0003020100

01

01

11

1

....

.

.

.
)

0

HUHHV

UH

UHWWWWWWWW

WW

HV

ovwvw

wv

w
eeee

e

w

E
UVUVUVUV

UV

0112000220 UHHVUHHV

T

VU wwwwWW

)log(

)log(

3210

20

3210

2

VVVV

VVVV

netnetnetnetT

VU

netnetnetnet

V

eeeeWW

eeeenetE

Word2vec n/w

Input

vector

U

Output

vector

V

V2; v2

Weights go from all neurons to

all neurons in the next layer; shown

For only one input and output

U3; u3

V3; v3

V1; v1

V0; v0

H1; h1

U2; u2

U1; u1

U0; u0

H0; h0

wH1U0

wH0U0

wV2H1

wV2H0

Capital letter for NAME of neuron; small

letter for output from the same neuron

Cntd: Weight change for input to hidden layer,

say, wH0U0

])1[(3102

3210

....

....

0301000200

0302010002

03020100

03

03

02

02

01

01

00

00

02

00

vwvwvwwvw

vwvwvwvww

eeee

ewewewew
w

w

E

HVHVHVHVUH

HVHVHVHVHV

WWWWWWWW

WW

HV

WW

HV

WW

HV

WW

HV

HV

UH

UVUVUVUV

UVUVUVUV

Softmax, Cross Entropy and

RELU

FFNN with O1-O2 softmax, all hidden neurons

RELU, Cross Entropy Loss

17

O2

H22

H12

X2

O1

H21

H11

X1

W11,1
W12,1

W11,2
W12,2

W21,11

W22,11

W22,12
W21,12

W1,21W2,22

W2,21

W1,22

net2 net1

We will apply the

Δwji=ηδjoi rule

Gradient Descent Rule and the

General Weight Change Equation

1

2121,1

1

1

net

E

hw

o

o

O2

H22

O1

H21

W2,22

W2,21

W1,22

net2

W1,21

net1

1122 loglog ototE

)(,

)(

)(

)1(

))(()1(

..

22

11

111221

1211

21

2

2
11

1

1

1

2

21

1

11

2

1

otSimilarly

ot

ototot

otot

oo
o

t
oo

o

t

net

o

o

E

net

o

o

E

net

E

O

O

ΔW1,21=η(t1-o1)h21

Weight Change for Hidden Layer, W21,11

19

O2

H22

H12

O1

H21

H11

W21,11

W22,11

W22,12
W21,12

W2,22 W2,21

W1,22

)(_');('.

)(;.

2121

21

2121
21

21

11

11,21

11,21

2121

21

21

21

HRELUderivativerHr
h

E

Houtputh
net

h

h

E

net

E

net

E

h
w

E
w

HH

H

H

H

net2 net1

W1,21

derivativeRELUdeltaatedbackpropag

HrWW

WW

h

net

net

E

h

net

net

E

h

E

ooH

oo

.

)(')...(

).().(

..

2121,2221,1

21,2221,1

21

2

221

1

121

121

1

ΔW21,11=η[(t2-o2)W2,21+(t1-o1)W1,21].r’(H21).h11

Vanishing/Exploding Gradient
20

δx1

δH12
δH11

δH22
δH21 δH21δH22

δO2
δO1

δO2
δO1

δO2
δO1

δO2
δO1

δx1=W11,1δH11+W21,1δH12 [2

terms]

=W11,1(W21,11δH21+

W22,11δH22).r’(H11)+

W21,1(W21,12δH21+

W22,12δH22). r’(H12) [4 terms]

= (4 terms involving δo1) + (4

terms involving δo2)

δs get multiplied by

derivatives of RELU which

are 1 or 0; hence δs from

the output layer pass as

such or as 0

W21,1
W11,1

W22,12 W21,12

W21,11

W22,11

W2,22

W1,21W2,21 W1,21 W2,21

W1,22
W1,22

W2,22

W11,1W21,11W1,21

RNN: Sequence processing m/c

21

POS Tagging with RNN

22

Purchased Videocon machine

VBD
NNP NN

Note that POS of “purchased” is ambiguous with possibilities as VBD or VBN or

JJ

“I purchased Videocon machine” vs. “my purchased Videocon machine is

running well”

HMM: Generative Model

^_^ People_N Jump_V High_R ._.

^ N

V

V

N

A

N

.

Lexical

Probabilities

Bigram

Probabilities

This model is called Generative model.

Here words are observed from tags as states.

This is similar to HMM.

week-of-24aug20cs626-hmm:pushpak23

I

h0 h1

o1 o2
o3 o4

c1

a11 a12 a13

a14

Decision on a piece of text

E.g. Sentiment Analysis

24

I

h0 h1

o1 o2
o3 o4

c2

a21
a22

a23

a24

like

h2

25

I

h0 h1

o1 o2
o3 o4

c3

a31 a32 a33

a34

like the

h3
h2

26

I

h0 h1

o1 o2
o3 o4

c4

a41

a42
a43

a44

like the

h3
h2

camera

h4

27

I

h0 h1

o1 o2
o3 o4

c5

a51

a52
a53

a54

like the

h3
h2

camera <EOS>

h4 h5

Positive

sentiment

28

Neural Search and Decoding

Two approaches to Search

• Rule/Knowledge based:

– BFS, DFS, Djikstra, A, A*

• Data and ML based:

– Viterbi, Beam

A* Algorithm

What is AI?

• The science and technology of making

computers good at tasks that living

beings perform effortlessly
– E.g., understanding scenes, language

– Driving a car

– Identifying a person from picture even if half done

– Diagnosing problems etc.

Modern AI is highly data driven

• “Data is the new oil”

• Cannot give a theory

• Let the data give a model

• E.g. maps.google.com

AI Perspective (post-web)

Planning

Computer

Vision

NLP

Expert

Systems

Robotics

Search,

Reasoning,

Learning
IR

Search: Everywhere

Planning

• (a) which block to pick, (b) which to stack, (c) which to unstack, (d)

whether to stack a block or (e) whether to unstack an already stacked

block. These options have to be searched in order to arrive at the right

sequence of actions.

A CB A

B

C

Table

Vision

• A search needs to be carried out to find which point in the image of L

corresponds to which point in R. Naively carried out, this can become an

O(n2) process where n is the number of points in the retinal images.

World

Two eye

system

R L

Robot Path Planning

• searching amongst the options of moving Left, Right, Up or Down.

Additionally, each movement has an associated cost representing the

relative difficulty of each movement. The search then will have to find the

optimal, i.e., the least cost path.

O1

R

D

O2

Robot

Path

Natural Language Processing

• search among many combinations of parts of speech on the way to

deciphering the meaning. This applies to every level of processing- syntax,

semantics, pragmatics and discourse.

The man would like to play.

Noun
Verb

NounVerb
Verb

Preposition

Expert Systems

Search among rules, many of which can apply to a situation:

If-conditions

the infection is primary-bacteremia
AND the site of the culture is one of the sterile sites
AND the suspected portal of entry is the gastrointestinal tract

THEN

there is suggestive evidence (0.7) that infection is bacteroid

(from MYCIN)

Search building blocks

• State Space : Graph of states (Express

constraints and parameters of the problem)

• Operators : Transformations applied to the

states.

• Start state : S0 (Search starts from here)

• Goal state : {G} - Search terminates here.

• Cost : Effort involved in using an operator.

• Optimal path : Least cost path

Examples

Problem 1 : 8 – puzzle

8

4

6

5

1

7

2

1

4

7

63 3

5

8

S

2

G

Tile movement represented as the movement of the blank space.

Operators:

L : Blank moves left

R : Blank moves right

U : Blank moves up

D : Blank moves down

C(L) = C(R) = C(U) = C(D) = 1

Problem 2: Missionaries and

Cannibals

• Constraints: (i) The boat can carry at

most 2 people, (ii) On no bank should

the cannibals outnumber the

missionaries

River

R

L

Missionaries Cannibals

boat

boat

Missionaries Cannibals

• State : <#M, #C, P>

• #M = Number of missionaries on bank L

• #C = Number of cannibals on bank L

• P = Position of the boat, S0 = <3, 3, L>, G = <

0, 0, R >

• Operations

• M2 = Two missionaries take boat, M1 = One

missionary takes boat

• C2 = Two cannibals take boat, C1 = One

cannibal takes boat

• MC = One missionary and one cannibal takes

boat

<3,3,L>

<3,1,R> <2,2,R>

<3,3,L>

C2 MC

Partial search
tree

Algorithmics of Search

General Graph search Algorithm

S

A CB

F

ED

G

1 103

5 4
6

2
3

7

Graph G = (V,E)

1) Open List : S (Ø, 0)

Closed list : Ø

2) OL : A(S,1), B(S,3), C(S,10)

CL : S

3) OL : B(S,3), C(S,10), D(A,6)

CL : S, A

4) OL : C(S,10), D(A,6), E(B,7)

CL: S, A, B

5) OL : D(A,6), E(B,7)

CL : S, A, B , C

6) OL : E(B,7), F(D,8), G(D, 9)

CL : S, A, B, C, D

7) OL : F(D,8), G(D,9)

CL : S, A, B, C, D, E

8) OL : G(D,9)

CL : S, A, B, C, D, E, F

9) OL : Ø

CL : S, A, B, C, D, E,

F, G

Steps of GGS
(principles of AI, Nilsson,)

• 1. Create a search graph G, consisting solely of the

start node S; put S on a list called OPEN.

• 2. Create a list called CLOSED that is initially empty.

• 3. Loop: if OPEN is empty, exit with FAILURE.

• 4. Select the first node on OPEN, remove from

OPEN and put on CLOSED, call this node n.

• 5. if n is the goal node, exit with SUCCESS with the

solution obtained by tracing a path along the

pointers from n to s in G. (pointers are established in

step 7).

• 6. Expand node n, generating the set M of its

successors that are not ancestors of n. Install these

memes of M as successors of n in G.

GGS steps (contd.)

• 7. Maintain the least cost path and node in OPEN: to

Establish a pointer to n from those members of M that

were not already in G (i.e., not already on either OPEN

or CLOSED). Add these members of M to OPEN. For

each member of M that was already on OPEN or

CLOSED, decide whether or not to redirect its pointer to

n. For each member of M already on CLOSED, decide

for each of its descendants in G whether or not to

redirect its pointer.

• 8. Reorder the list OPEN using some strategy.

• 9. Go LOOP.

GGS is a general umbrella

S

n1

n2

g

C(n1,n2)

h(n2)

h(n1)

)(),()(2211 nhnnCnh

OL is a

queue

(BFS)

OL is

stack

(DFS)

OL is accessed by

using a functions

f= g+h

(Algorithm A)

Algorithm A

• A function f is maintained with each node

f(N) = g(N) + h(N), N is the node in the open list

• Node chosen for expansion is the one with least f

value

• BFS: h = 0, g = number of edges in the path to S

• DFS: h = 0, g =(1/no. of edges)

• Djikstra: g=path cost from S to N

• A*: h <= h*, h*=actual path cost from N to G the

goal

Algorithm A*

• One of the most important advances in AI

• g(n) = least cost path to n from S found so far

• h(n) <= h*(n) where h*(n) is the actual cost of

optimal path to G(node to be found) from n

S

n

G

g(n)

h(n)

“Optimism leads to optimality”

A* Algorithm – Definition and Properties

• f(n) = g(n) + h(n)
• The node with the least value

of f is chosen from the OL.
• f*(n) = g*(n) + h*(n), where,

g*(n) = actual cost of the
optimal path (s, n)

h*(n) = actual cost of
optimal path (n, g)

• g(n) ≥ g*(n)

• By definition, h(n) ≤ h*(n)

S s

n

goal

State space graph G

g(n)

h(n)

8-puzzle: heuristics

2 1 4

7 8 3

5 6

1 6 7

4 3 2

5 8

1 2 3

4 5 6

7 8

s n g

Example: 8 puzzle

h*(n) = actual no. of moves to transform n to g

1. h1(n) = no. of tiles displaced from their destined position.

2. h2(n) = sum of Manhattan distances of tiles from their destined

position.

h1(n) ≤ h*(n) and h1(n) ≤ h*(n)

h*

h2

h1

Comparison

A* critical points

• Goal
1. Do we know the goal?

2. Is the distance to the goal known?

3. Is there a path (known?) to the goal?

A* critical points

• About the path
Any time before A* terminates there exists

on the OL, a node from the optimal path all

whose ancestors in the optimal path are in

the CL.

This means,

There exists in the OL always a node ‘n’ s.t.

g(n) = g*(n)

Key point about A* search

S

Statement:

Let S -n1-n2-n3…ni…-nk-1-

nk(=G) be an optimal path.

At any time during the

search:

1. There is a node ni from the

optimal path in the OL

2. For ni all its ancestors

S,n1,n2,…,ni-1 are in CL

3. g(ni) = g*(ni)

S
|
n1

|
n2

|
.
.
ni

.

.
nk-1

|
nk =g

Proof of the statement

Proof by induction on iteration no. j

Basis : j = 0, S is on the OL, S satisfies

the statement

Hypothesis : Let the statement be true

for j = p (pth iteration)

Let ni be the node satisfying the

statement

Proof (continued)

Induction : Iteration no. j = p+1

Case 1 : ni is expanded and moved to the

closed list

Then, ni+1 from the optimal path comes to the

OL

Node ni+1 satisfies the statement

(note: if ni+1 is in CL, then ni+2 satisfies the

property)

Case 2 : Node x ≠ ni is expanded

Here, ni satisfies the statement

• Admissibility: An algorithm is called
admissible if it always terminates and
terminates in optimal path

• Theorem: A* is admissible.
• Lemma: Any time before A* terminates there

exists on OL a node n such that f(n) <= f*(s)
• Observation: For optimal path s → n1 → n2

→ … → g,
1. h*(g) = 0, g*(s)=0 and
2. f*(s) = f*(n1) = f*(n2) = f*(n3)… = f*(g)

A* Algorithm- Properties

f*(ni) = f*(s), ni ≠ s and ni ≠ g

Following set of equations show the above equality:

f*(ni) = g*(ni) + h*(ni)

f*(ni+1) = g*(ni+1) + h*(ni+1)

g*(ni+1) = g*(ni) + c(ni , ni+1)

h*(ni+1) = h*(ni) - c(ni , ni+1)

Above equations hold since the path is optimal.

A* Properties (contd.)

A* always terminates finding an optimal path to the

goal if such a path exists.

Intuition

S

g(n)

n

h(n)

G

(1) In the open list there always exists a

node n such that f(n) <= f*(S) .

(2) If A* does not terminate, the f value of

the nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

Admissibility of A*

Lemma

Any time before A* terminates there exists in the open list a node n'

such that f(n') <= f*(S)

S

n
1

n
2

G

Optimal path
For any node n

i
on optimal path,

f(n
i
) = g(n

i
) + h(n

i
)

<= g*(n
i
) + h*(n

i
)

Also f*(ni) = f*(S)

Let n' be the first node in the optimal path that

is in OL. Since all parents of n' in the optimal

have gone to CL,

g(n') = g*(n') and h(n') <= h*(n')

=> f(n') <= f*(S)

If A* does not terminate

Let e be the least cost of all arcs in the search graph.

Then g(n) >= e.l(n) where l(n) = # of arcs in the path from S to

n found so far. If A* does not terminate, g(n) and hence

f(n) = g(n) + h(n) [h(n) >= 0] will become unbounded.

This is not consistent with the lemma. So A* has to terminate.

2nd part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof

Suppose the path formed is not optimal

Let G be expanded in a non-optimal path.

At the point of expansion of G,

f(G) = g(G) + h(G)

= g(G) + 0

> g*(G) = g*(S) + h*(S)

= f*(S) [f*(S) = cost of optimal path]

This is a contradiction

So path should be optimal

Key Points on Admissibility

• 1. A* algorithm halts

• 2. A* algorithm finds optimal path

• 3. If f(n) < f*(S) then node n has to be expanded before

termination

• 4. If A* does not expand a node n before termination then

f(n) >= f*(S)

Exercise-1

Prove that if the distance of every node from the goal

node is “known”, then no “search:” is necessary

Ans:

• For every node n, h(n)=h*(n). The algo is A*.

• Lemma proved: any time before A* terminates, there is a node

m in the OL that has f(m) <= f*(S), S= start node (m is the node

on the optimal path all whose ancestors in the optimal path are

in the closed list).

• For m, g(m)=g*(m) and hence f(m)=f*(S).

• Thus at every step, the node with f=f* will be picked up, and the

journey to the goal will be completely directed and definite, with

no “search” at all.

• Note: when h=h*, f value of any node on the OL can never be

less than f*(S).

Exercise-2
If the h value for every node over-estimates the h* value of the

corresponding node by a constant, then the path found need

not be costlier than the optimal path by that constant. Prove

this.

Ans:

• Under the condition of the problem, h(n) <= h*(n) + c.

• Now, any time before the algo terminates, there exists on the

OL a node m such that f(m) <= f*(S)+c.

• The reason is as follows: let m be the node on the optimal path

all whose ancestors are in the CL (there has to be such a

node).

• Now, f(m)= g(m)+h(m)=g*(m)+h(m) <= g*(m)+h*(m)+c = f*(S)+c

• When the goal G is picked up for expansion, it must be the

case that

• f(G)<= f*(S)+c=f*(G)+c

• i.e., g(G)<= g*(G)+c, since h(G)=h*(G)=0.

A list of AI Search Algorithms

• A*
– AO*
– IDA* (Iterative Deepening)

• Minimax Search on Game Trees
• Viterbi Search on Probabilistic FSA
• Hill Climbing
• Simulated Annealing
• Gradient Descent
• Stack Based Search
• Genetic Algorithms
• Memetic Algorithms

Viterbi Decoding

Illustration with POS tagging

Sentence: “People Dance”

• ‘people’ and ‘dance’ can both be both

nouns and verbs, as in
– “old_JJ people_NNS” (‘people’ as noun)

– “township_NN peopled_VBN with soldiers_NNS”

(‘people’ as verb)

• as well as
– “rules_NNS of_IN classical_JJ dance_NN” (‘dance’

as noun)

– “will_VAUX dance_VB well_RB”

(‘dance’ as verb)

Possible Tags: “^ people dance .”

• for simplicity we take single letter tags-

N: noun, V: verb:
– ^ N N .

– ^ N V .

– ^ V N .

– ^ V V .

• We know that out of these, the second

option ^ N V. is the correct one. How do

we get this sequence?

Step-1: Trellis

Columns of tags on each input word with transition

arcs going from tags (states) to tags in consecutive

columns and output arcs going from tags to words

(observations)

Aim: select the highest probability path

From 4 possibilities; As and Bs are accumulated

probabilities

RNN vs. HMM

● RNN is an infinite memory machine (ideally) and is more general than a

k-order HMM

● HMM combines lexical and transition probabilities through the product

operation (Markov independence assumption) while the Softmax

operation in the RNN encompasses both these probabilities

Some numerical values: hypothetical

but not unrealistic

• Calculations:

• When it comes to the start of the

sentence, most sentences start with a

noun. So lets have

P(N|^)=0.8, P(V|^)=0.2 and of course

P(‘^’|^)=1.0

• Then

A1=0.8, A2=0.2

Encounter “people”: more probabilities (1/2)

• Transition from N to N is less common than to

V.

• Transition from V to V- as in auxiliary verb to

main verb- is quite common (e.g., is going).

• V to N too is common- as in case of a nominal

object following the verb (going home).

• Following plausible transition probabilities:
– P(N|N)=0.2, P(V|N)=0.8, P(V|V)=0.4, P(N|V)=0.6

• We also need lexical probabilities. ‘people’

appearing as verb is much less common than

its appearing as noun. So let us have

Encounter “people”: more probabilities (2/2)

• We also need lexical probabilities. ‘people’

appearing as verb is much less common than

its appearing as noun. So let us have

– P(‘people’|N)=0.01, P(‘people’|V)=0.001

• Note: N N: golf club, cricket bat, town people-

ambiguity “The town people visited was

deserted”/”town people will not be able to live here”

• V V combination: Hindi- has padaa (laughed

suddenly), Bengali- chole gelo (went away)

Calculate Bs

• B1=0.8.0.2.0.01=0.0016 (approx.)

• B2=0.8.0.8.0.01=0.064 (approx.)

• B3=0.2.0.6.0.001=0.00012

• B4=0.2.0.4.0.001=0.00008

Reduced Viterbi Configuration

• Heart of Decoding linear time

Next word: ‘dance’

More probabilities needed

• We can give equal probabilities to

sentences ending in noun and verb.

Also, ‘dance’ as verb is more common

than noun.

P(.|N)=0.5=P(.|V)

P(‘dance’|N)=0.001

P(‘dance’|V)=0.01

Best Path: ^ N V .

C1=0.0016.0.5.0.001=0.0000008

C2=0.064.0.5.0.01=0.00032

Beam Search Based Decoding

Motivation

• HMM based POS tagging cannot handle

“free word order” and “agglutination” well

• If adjective after noun is equally likely as

adjective before noun, the transition

probability is no better than uniform

probability which has high entropy and is

uninformative.

• When the words are long strings of many

morphemes, POS tagging w/o morph

features is highly inaccuarte.

Modelling in Discriminative POS Tagging

• T* is the best possible tag sequence

• Summation dropped, because given W and feature

engineering, F is unique; also P(F|T)=1

• The final independence assumption is that the tag at

any position i depends only on the feature vector at

that position

])|([)|(

)|()|(.1

),|().|(

)|,()|,()|(

)|(maxarg*

1

0

n

i

ii

F

T

FtPFTP

FTPFTP

WFTPWFP

WFTPWFTPWTP

WTPT

Feature Engineering

• Running example: ^ brown foxes

jumped over the fence .

• A. Word-based features

f21 – dictionary index of the current word (‘foxes’):

integer

f22 – -do- of the previous word (‘brown’): integer

f23 – -do- of the next word (‘jumped’): integer

B. Part of Speech (POS) tag-based feature

f24 – index of POS of previous word (here JJ):

integer

Feature engineering cntd.

• ^ brown foxes jumped over the fence .

• C. Morphology-based features
– f25– does the current word (‘foxes’) have a noun

suffix, like ‘s’, ‘es’, ‘ies’, etc.: 1/0- here the value is

– f26– does the current word (‘foxes’) have a verbal

suffix, like ‘d’, ‘ed’, ‘t’, etc.: 1/0- 0

– f27 and f28 for ‘brown’ like for ‘foxes

– f29 and f2,10 for ‘jumped’ like for ‘foxes; here f2,10 is 1

(jumped has ‘ed’ as suffix)

An Aside: word vectors

• These features are opaquely

represented in word vectors created

from huge corpora

• Word vectors are vectors of numbers

representing words

• It is not possible to tell which component

in the word vector does what

Modelling Equations

W: ^ w0 w1 w2…wn-2 wn-1 wn . T: ^ t0 t1 t2…tn-2 tn-1 tn .

Maximum Entropy Markov Model (MEMM)

S: set of tags.

The sequence probability of a tag sequence T is the

product of P(ti|Fi), i varying over the positions.

St

tf

f

ii

kj

ijj

kj

ijj

e

e
FttP

'

)'(

.1

.1

)|(

])|([)(
1

0

n

i

ii FtPTP

Beam Search Based Decoding

• ^ The brown foxes jumped .

• Let us assume the following tags for the

purpose of the discussion:

– D- determiner like ‘the’

– A- adjective like ‘brown’

– N- noun like ‘foxes’, ‘fence’

– V- verb like ‘jumped’

• Let the decoder start at the state ‘^’ which

denotes start of the sentence.

Step-1

• ^ The brown foxes jumped .

• The word ‘the’ is encountered. First

there are 4 next states possible

corresponding to 4 tags, giving rise

to 4 possible paths:

• ^ D -P1

• ^ A -P2

• ^ N -P3

• ^ V -P4

Commit to Beam Width

• Beam width is an integer which denotes how

many of the possibilities should be kept open.

• Let the beam width be 2.
– This means that out of all the paths obtained so far we

retain only the top 2 in terms of their probability

scores.

• We will assume that the actual linguistically

viable sub-sequence appears amongst the top

two choices.
– ‘The’ is a determiner and we get the two highest probability

paths for “^ The” as P1 and P3.

Step-2
• ^ The brown foxes jumped .

• ‘brown’ is the next word. P1 and P3 are extended as

• ^ D D -P11

• ^ D A -P12

• ^ D N -P13

• ^ D V -P14

• ^ N D -P31

• ^ N A -P32

• ^ N N -P33

• ^ N V -P34

Retain two paths

• Keep two possibilities corresponding to

correct/almost-correct sub-sequences.

‘brown’ is an adjective, but can be noun

too (e.g., “the brown of his eyes”).

^ D A -P12

^ D N -P13

Step-3
• ^ The brown foxes jumped .

• Can be both noun and verb (verb: “he was foxed by

their guile”).

• From P12 and P13, we will get 8 paths, but retain only

two, as per the beam width.

• We assume only the paths coming from P12 survive

with ‘A’ and ‘N’ extending the paths:

^ D A A -P122 (this is a wrong path!)

^ D A N -P123

Step-4
• ^ The brown foxes jumped .

• Can be both a past participial adjective (“the

halted train”) and a verb.

• Retaining only two top probability paths we get

^ D A N A -P1232

^ D A N V -P1234

Step-5
• ^ The brown foxes jumped .

• Can be both a past participial adjective (“the

halted train”) and a verb.

• Retaining only two top probability paths we get

^ D A N A -P1232

^ D A N V -P1234

Step-6: Final Step

• ^ The brown foxes jumped .

• On encountering dot, the beam search

stops.

• We assume we get the correct path

probabilistically in the beam (width 2)

^ D A N V.

How to fix the beam width (1/2)

• English POS tagging with Penn POS tag

set: approximately 40 tags

• Fine categories like NNS for plural NNP

for proper noun, VAUX for auxiliary verb,

VBD for past tense verb and so on.

• A word can have on an average at most 3

POSs recorded in the dictionary.

How to fix the beam width (2/2)

• Allow for 4 finer category POSs under

each category and with support from a

lexicon that records the broad category

POSs,

• A practical beam width for POS tagging

for English using Penn tagset could be 12

(=3 X 4). (think and justify)

Neural Decoding

Encode - Decode Paradigm Explained

Use two RNN networks: the encoder and the decoder

मैं किताबने पढी

I read the book

h1 h2 h3h0

h4

s0 s1 s2
s3

(1) Encoder

processes one

input at a time

(4) Decoder

generates one

element at a

time

(2) A representation

of the sentence is

generated

(3) This is used

to initialize the

decoder state

Encoding

Decoding

<EOS>

s4

(5)… continue till

end of sequence

tag is generated

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/

Sequence to Sequence Learning with Neural Networks Ilya Sutskever, Oriol Vinyals, Quoc V. Le. arxiv pre-

print [link]

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/
https://arxiv.org/abs/1409.3215

Decoding in seq2seq

• There are 4 influencing factors for conditioning random

variables -

– Input encoding

– Autoregression

– Cross attention

– Self attention

All searching is table lookup!

• Table look-up is equivalent to mapping

• Any form of search, is computing a

mapping continuously, including the

neural networks

Structural AI vs Functional AI

• 80s and 90s, AI used to get ints inspiration and

way forward from biology, neuro-physiology

• Today’s AI finds the way forward from DATA

Structural AI Functional AI

● Concerned with understanding the

anatomy of a system

● Concerned with understanding the

behaviour of a system

● Analogy to medicine: Doctors use

graphs like EEG to understand

anatomy of system

● Analogy to medicine: Attributes like

facial expression, body language and

pain are used to understand behaviour

FF

RNN-LSTM

softmax

This captures y<j

This captures x, c=h4

What is the decoder doing at each

time-step?

Decoding

Ram ate rice with the spoon

राम ने चम्मच से चावल खाये

Searching for the best translations in the space of all

translations

राम ने

चावल

चम्मच

खा ललया

चम्मच से

चावल

खाये

• Incremental construction

• Each hypothesis is scored using the model

• Hypotheses are maintained in a priority
queue

Empty

Hypothesis

Partial

Hypothesis

Final

Hypothesis

Hypothesis

Expansion

मैं किताबने पढी

I read the book

h1 h2 h3

h0

h4

s0 s1 s2
s3

Encoding

Decoding

<EOS>

s4

h4

Feed the encoder state as input at

each decoder timestep

The entire source sentence is

represented by a single vector

Problems

● Insufficient to represent to capture all the syntactic and

semantic complexities

○ Solution: Use a richer representation for the sentences

● Long-term dependencies: Source sentence representation

not useful after few decoder time steps

○ Solution: Make source sentence information when making

the next prediction

○ Even better, make RELEVANT source sentence

information available

Encode - Attend - Decode Paradigm

I read the book

s1 s1 s3s0

s4

Annotation

vectors Represent the source sentence by

the set of output vectors from the

encoder

Each output vector at time t is a

contextual representation of the

input at time t

Let’s call these encoder output

vectors annotation vectors

e1 e2 e3 e4

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR 2015.

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-3/

CNN

Two motivation points

• 1. Reduced number of parameters

• 2. Stepwise extraction of features

• These two are applicable to any AI

situation, and not only vision and

image processing

CNN= feedforward like + recurrent

like!

• Whatever we learnt so far in FF-BP is useful

to understand CNN

• So also is the case with RNN (and LSTM)

• Input divided into regions and fed forward

• Window slides over the input: input changes,

but ‘filter’ parameters remain same

• That is like RNN

Genesis: Neocognitron

(Fukusima, 1980)

Inspiration from biological

processes

• Connectivity pattern

between neurons resembles the organization

of the animal visual cortex

• Individual cortical neurons respond to stimuli

only in a restricted region of the visual

field known as the receptive field

• Receptive fields of different neurons partially

overlap such that they cover the entire visual

field

The classic CNN (Wikipedia)

Convolution

3

2

4

3

2

4

3 4

1 0 1

0 1 0

1 0 1

Filter/kernel/

feature-detector

B/W

4= 1.1+1.0+1.1

+0.0+1.1+1.0

+0.1+0.0+1.1

Convolution basics

Convolution: continuous and

discrete

 dtgftgf)()())(*(

This is the area under the curve

weighted by

)(f
)(tg

)()(])[*(mngmfngf
m

Convolution of two vectors

V1: <0, 1, 2, 3, 4, 5, 6, 7, 8, 9>

V2: <1, 1, 1>

V1 V2=

<(0.1+1.1+2.1), (1.1+2.1+3.1),

(2.1+3.1+4.1), (3.1+4.1+5.1),

(4.1+5.1+6.1), (5.1+6.1+7.1),

(6.1+7.1+8.1), (7.1+8.1+9.1)>

=<3, 6, 9, 12, 15, 18, 21, 24>

Receptive field and selective

emphasis/de-emphasis

• The filter <1,1,1> given equal “emphasis”

to constituents of the “receptive field”

which means region of interest

• Sliding of the filter corresponds to taking

different receptive fields

• By designing the filter as <0,1,0>, we

emphasise the center of the receptive

field

“dog” image and “cat” image

• For dog, the face is of conical

shape

• For cat, the shape is round

• So, this distinguishing feature is

important for classification

• The filter should have the ability

of detecting this kind of feature

Interpretation of convolution

• The filter/kernel/feature_extractor

highlights features and obtains those

features

• The sliding achieves the effect of

focussing on “region” after “region”

• This resembles sequence processing

• The filter components are LEARNT

Convolution as feature extractor

CNN architecture

• Several layers of convolution with tanh or ReLU

applied to the results

• In a traditional feedforward neural network we connect

each input neuron to each output neuron in the next

layer. That’s also called a fully connected layer, or

affine layer.

• In CNNs we use convolutions over the input layer to

compute the output.

• This results in local connections, where each region of

the input is connected to a neuron in the output

Key Ideas

Four key ideas that take advantage of

the properties of natural signals:

– local connections,

– shared weights,

– pooling and

– the use of many layers

A typical ConvNet

Lecun, Bengio, Hinton, Nature, 2015

Why CNN became a rage: image

Image

Captioning-1

Image

Captioning-2

Role of ImageNet

• Million images from the web

• 1,000 different classes

• Spectacular results!

• Almost halving the error rates of the

best competing approaches1.

Learning in CNN

• Automatically learns the

values of its filters

• For example, in Image

Classification learn to
– detect edges from raw pixels in the first layer,

– then use the edges to detect simple shapes in

the second layer,

– and then use these shapes to deter higher-level

features, such as facial shapes in higher layers.

– The last layer is then a classifier that uses

these high-level features.

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Pooling

• Gives invariance in translation,

rotation and scaling

• Important for image recognition

• Role in NLP?

