
CS772: Deep Learning for

Natural Language Processing

(DL-NLP)

CNN, Application in Sarcasm, Transformer

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week 8 of 27th Feb, 2023

Re-cap

Encode - Decode Paradigm Explained

Use two RNN networks: the encoder and the decoder

मैं किताबने पढी

I read the book

h1 h2 h3h0

h4

s0 s1 s2
s3

(1) Encoder

processes one

input at a time

(4) Decoder

generates one

element at a

time

(2) A representation

of the sentence is

generated

(3) This is used

to initialize the

decoder state

Encoding

Decoding

<EOS>

s4

(5)… continue till

end of sequence

tag is generated

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/

Sequence to Sequence Learning with Neural Networks Ilya Sutskever, Oriol Vinyals, Quoc V. Le. arxiv pre-

print [link]

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/
https://arxiv.org/abs/1409.3215

FF

RNN-LSTM

softmax

This captures y<j

This captures x, c=h4

What is the decoder doing at each

time-step?

Decoding

Ram ate rice with the spoon

राम ने चम्मच से चावल खाये

Searching for the best translations in the space of all

translations

राम ने

चावल

चम्मच

खा ललया

चम्मच से

चावल

खाये

• Incremental construction

• Each hypothesis is scored using the model

• Hypotheses are maintained in a priority
queue

Empty

Hypothesis

Partial

Hypothesis

Final

Hypothesis

Hypothesis

Expansion

मैं किताबने पढी

I read the book

h1 h2 h3

h0

h4

s0 s1 s2
s3

Encoding

Decoding

<EOS>

s4

h4

Feed the encoder state as input at

each decoder timestep

The entire source sentence is

represented by a single vector

Problems

● Insufficient to represent to capture all the syntactic and

semantic complexities

○ Solution: Use a richer representation for the sentences

● Long-term dependencies: Source sentence representation

not useful after few decoder time steps

○ Solution: Make source sentence information when making

the next prediction

○ Even better, make RELEVANT source sentence

information available

Encode - Attend - Decode Paradigm

I read the book

s1 s1 s3s0

s4

Annotation

vectors Represent the source sentence by

the set of output vectors from the

encoder

Each output vector at time t is a

contextual representation of the

input at time t

Let’s call these encoder output

vectors annotation vectors

e1 e2 e3 e4

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR 2015.

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-3/

CNN

Two motivation points

• 1. Reduced number of parameters

• 2. Stepwise extraction of features

• These two are applicable to any AI

situation, and not only vision and

image processing

CNN= feedforward like + recurrent

like!

• Whatever we learnt so far in FF-BP is useful

to understand CNN

• So also is the case with RNN (and LSTM)

• Input divided into regions and fed forward

• Window slides over the input: input changes,

but ‘filter’ parameters remain same

• That is like RNN

Genesis: Neocognitron

(Fukusima, 1980)

Inspiration from biological

processes

• Connectivity pattern

between neurons resembles the organization

of the animal visual cortex

• Individual cortical neurons respond to stimuli

only in a restricted region of the visual

field known as the receptive field

• Receptive fields of different neurons partially

overlap such that they cover the entire visual

field

The classic CNN (Wikipedia)

Convolution

3

2

4

3

2

4

3 4

1 0 1

0 1 0

1 0 1

Filter/kernel/

feature-detector

B/W

4= 1.1+1.0+1.1

+0.0+1.1+1.0

+0.1+0.0+1.1

Convolution basics

Convolution: continuous and

discrete





  dtgftgf)()())(*(

This is the area under the curve

weighted by

)(f
)(tg

)()(])[*(mngmfngf
m

 




Convolution of two vectors

V1: <0, 1, 2, 3, 4, 5, 6, 7, 8, 9>

V2: <1, 1, 1>

V1 V2=

<(0.1+1.1+2.1), (1.1+2.1+3.1),

(2.1+3.1+4.1), (3.1+4.1+5.1),

(4.1+5.1+6.1), (5.1+6.1+7.1),

(6.1+7.1+8.1), (7.1+8.1+9.1)>

=<3, 6, 9, 12, 15, 18, 21, 24>



Receptive field and selective

emphasis/de-emphasis

• The filter <1,1,1> given equal “emphasis”

to constituents of the “receptive field”

which means region of interest

• Sliding of the filter corresponds to taking

different receptive fields

• By designing the filter as <0,1,0>, we

emphasise the center of the receptive

field

“dog” image and “cat” image

• For dog, the face is of conical

shape

• For cat, the shape is round

• So, this distinguishing feature is

important for classification

• The filter should have the ability

of detecting this kind of feature

Interpretation of convolution

• The filter/kernel/feature_extractor

highlights features and obtains those

features

• The sliding achieves the effect of

focussing on “region” after “region”

• This resembles sequence processing

• The filter components are LEARNT

Convolution as feature extractor

CNN architecture

• Several layers of convolution with tanh or ReLU

applied to the results

• In a traditional feedforward neural network we connect

each input neuron to each output neuron in the next

layer. That’s also called a fully connected layer, or

affine layer.

• In CNNs we use convolutions over the input layer to

compute the output.

• This results in local connections, where each region of

the input is connected to a neuron in the output

Key Ideas

Four key ideas that take advantage of

the properties of natural signals:

– local connections,

– shared weights,

– pooling and

– the use of many layers

A typical ConvNet

Lecun, Bengio, Hinton, Nature, 2015

Why CNN became a rage: image

Image

Captioning-1

Image

Captioning-2

Role of ImageNet

• Million images from the web

• 1,000 different classes

• Spectacular results!

• Almost halving the error rates of the

best competing approaches1.

Learning in CNN

• Automatically learns the

values of its filters

• For example, in Image

Classification learn to
– detect edges from raw pixels in the first layer,

– then use the edges to detect simple shapes in

the second layer,

– and then use these shapes to deter higher-level

features, such as facial shapes in higher layers.

– The last layer is then a classifier that uses

these high-level features.

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Pooling

• Gives invariance in translation,

rotation and scaling

• Important for image recognition

• Role in NLP?

CNN for NLP

Input matrix for CNN: NLP

“image” for NLP  word

vectors in the rows

For a 10 word sentence using a

100-dimensional Embedding,

we would have a 10×100 matrix

as our input

3

2

4

3

2

4

3 4

Credit: Denny Britz

CNN for NLP

Role of multiple filters in CNN

● In the last slide- 2 filters per n-gram (n=2, 3, 4)

● In multitask learning setting, for tasks such as

sentiment analysis and emotion analysis multiple

filters can be used.

● Multiple filters allow multiple views and emphasis

angles for each task. For instance one filter for

sentiment analysis and another for emotion analysis.

● The number of filters should be equal to the number

of tasks.

Role of lower order ngrams

• Lower order ngrams play an important role in

vocabulary matching.

• Lower order ngrams give importance to

lexical properties. For instance:

○ Unigram: I like this movie.

○ Bigram: I do not like this movie.

Role of higher order ngrams
• Higher order ngrams give emphasis to syntactic structure of the

sentence and the dependencies.

• For instance:

○ Trigram: I like this movie (like  movie)

○ Quadrigram and pentagram capture more dependencies and

syntactic structure and play an important role in tasks like

sentiment analysis, emotion detection, machine translation,

etc.

○ Example: John watched a movie with James yesterday in

Melbourne (Who did what to whom when and where type

dependency)

CNN Hyper parameters

• Narrow width vs. wide width

• Stride size

• Pooling layers

• Channels

Detailing out CNN layers

Credit: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-

CNN stages

Image Credit: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-

Another depiction

Image Credit: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-

Channelized Image

Pooling

Complete Architecture

Convolution Layer

• Input is a tensor with a shape
– (number of inputs) x (input height) x (input

width) x (input channels)

• After passing through a convolutional

layer, the image becomes abstracted

to a feature map, also called an

activation map, with shape
– (number of inputs) x (feature map height) x

(feature map width) x (feature

map channels).

Tensors and Vectors

• Tensors: vectors of vectors

• Vector, V: <1, 2, 3, 4, 5>

• Tensor, T1: <<1, 2, 3>, <4, 5, 6>>

• Tensor, T2: <<<1,2>, <3>>, <<4>,

<5,6>>>

• Channels: R, G, B

• Each image consists of Red, Green and

Blue channels- that is, 3 different

matrices of pixel values

Pooling Layer

• “Pooling” involves sliding a two-dimensional filter over

each channel of feature map

• Effect: summarizing the features

• For a feature map having dimensions nh x nw x nc,

the output dimension after pooling is

where, nh= height of feature map, nw=width, nc= number

of channels, fh=height of filter, fw=width of filter, s=stride

length

)(.
1

.
1

c
wwhh n

s

fn

s

fn







 







 

Learning in CNN

First Kernel+RELU+POOLING

I1

I2

I0

I3

I4

I5

I6

C0

C1

C2

C3

C4

I7

C5

D0

D1

D2

C0= RELU(I0.K0+ I1.K1+I2.K2); Ks are kernel “weights”

D0= max(C0,C1)

Fleshing out the details

Input vector I

I0
K0

I1

I2

K1

K2 C0= RELU(I0.K0+ I1.K1+I2.K2)

New K0= old K0+sum of ΔK0s across C0, C1..C5

This addition does not violate gradient descent rule

Normal BP works

• Backpropagate from the final layer of

softmax.

• When it comes to the first convolution

layer, post the changes in the weights,

maintaining the constraint that kernel

values are parameter-shared

• Nothing special needs to be done for

RELU and MAX functions

Another depiction

Image Credit: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-

An application: Sarcasm

Detection

Illustrates use of CNN Channels

Sarcasm Detection: a sub-problem

of Sentiment and Emotion Analysis

Sentiment Analysis: The task of
identifying if a certain piece of text
contains any opinion, emotion or other
forms of affective content.

Machine Learning based approach:

classifiers and features

SVM, KNN and Random Forest classifiers

Sentiment-based features

Number of

positive words

negative words

highly emotional positive words,

highly emotional negative words.

Positive/Negative word is said to be highly

emotional if it’s POS tag is one amongst : ’JJ',

‘JJR', ‘JJS', ‘RB', ‘RBR', ‘RBS', ‘VB', ‘VBD',

‘VBG', ‘VBN', ‘VBP', ‘VBZ'.

Emotion Features

Positive emoticon

Negative emoticon

Boolean features that are 1 if both positive

and negative words are present in the tweet.

Boolean features that are 1 when positive

(negative) word and negative (positive)

emoji are simultaneously present

Punctuation features

number of exclamation marks.

number of dots

number of question mark.

number of capital letter words.

number of single quotations.

Number in the tweet: This feature is simply the number

present in the tweet.

Number unit in the tweet : This feature is a one hot

representation of the type of unit present in the tweet.

Example of number unit can be hour, minute, etc.

Comparison of results (1: sarcastic, 0: non-

sarcastic)

Deep Learning based

Very little feature engg!!

EmbeddingSize of 128

Maximum tweet length 36 words

Padding used

Filters of size 3, 4, 5 used to extarct

features

Deep Learning based approach: CNN-

FF Model

Comparison of results (1: sarcastic, 0: non-

sarcastic)

back

Sentiment Annotation and Eye

Movement
Sarcastic

Longer

Fixations

Multiple

Regressive

Saccades

Datasets
Two publicly available datasets released by us

(Mishra et al, 2016; Mishra et al., 2014)

Dataset 1: (Eye-tracker: Eyelink-1000 Plus)

994 text snippets : 383 positive and 611 negative, 350 are

sarcastic/ironic

Mixture of Movie reviews, Tweets and sarcastic/ironic

quotes

Annotated by 7 human annotators

Annotation accuracy: 70%-90% with Fleiss kappa IAA of

0.62

Dataset 2: (Eye-tracker: Tobi TX300)

843 snippets : 443 positive and 400 negative

Annotated by 5 human subjects

Annotation accuracy: 75%-85% with Fleiss kappa IAA of

0.68

CNN Based Sarcasm Detection

Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya, Learning Cognitive Features

from Gaze Data for Sentiment and Sarcasm Classification Using Convolutional Neural

Network, ACL 2017, Vancouver, Canada, July 30-August 4, 2017.

https://www.cse.iitb.ac.in/~pb/papers/acl17-cogfeatures.pdf

Learning Cognitive Features from Gaze Data

for Sentiment and Sarcasm

Classification

• In complex classification tasks like

sentiment analysis and sarcasm

detection, extraction and choice of

features should be learnt

• CNN channels exploited

• CNN learns features from both gaze and

text and uses them to classify the input

text

Central Idea

• Learn features from Gaze sequences
(fixation duration sequences and gaze-
positions) and Text automatically using Deep
Neural Networks.

• Deep NNs have proven to be good at
learning feature representations for Image
and Text classification tasks (Krizhevsky et
al., 2012;Collobert et al., 2011).

• Use Convolutional Neural Network (already
used for sentiment classification, Kim, 2014)

6

7

Why Convolutional NNs

• Convolutional Layers good at capturing
compositionality (Lawrence et al, 1997).

Gaze

Image

??

Images taken from: mrulafi.blogspot.com

6

8

Neural Network Architecture

Input Embeddings Local Features Global Features

6

9

Why both Static and Non-static

embedding

• Non-static embedding channel for tuning

embeddings for SA/Sarcasm (e.g.,

produce similar embeddings for

adjectives like good and excellent)

• Static embedding channel: to prevent

over-tuning of embeddings due to

collocation (e.g., words such as I and

love are often collocated but should not

share similar vector representation).

7

0

Fixation and Saccade Channels

• Fixation channel: Lexical Complexity

(pertaining to length, frequency and

predictability of words while

annotation)

• Saccade channel: Syntactic

Complexity and Incongruity

7

1

Datasets (1/2)

• Two publicly available datasets released by

us (Mishra et al, 2016; Mishra et al., 2014)

• Dataset 1: (Eye-tracker: Eyelink-1000 Plus)

• 994 text snippets : 383 positive and 611

negative, 350 are sarcastic/ironic

• Mixture of Movie reviews, Tweets and

sarcastic/ironic quotes

• Annotated by 7 human annotators

• Annotation accuracy: 70%-90% with Fleiss

kappa IAA of 0.62

7

2

Datasets (2/2)

• Dataset 2: (Eye-tracker: Tobi TX300)

• 843 snippets : 443 positive and 400

negative

• Annotated by 5 human subjects

• Annotation accuracy: 75%-85%with

Fleiss kappa IAA of 0.68

7

3

Experimental Setup: Configurations

• Text Only: (Only Text Component is Used)
• Text_Static: Word embeddings are kept static and not updated during back

propagation.

• Text_Non-static: Embeddings are updated during back propagation.

• Text_Multi Channel: Two channels (one taking input from static and one from

dynamic embeddings) are used.

• Gaze Only: (Only Gaze Component is Used)
• Gaze_Fixation_Duration: Sequence of fixation durations are used as input

• Gaze_Saccade: Sequence of gaze locations (in terms of word ID used as

input)

• Gaze-Multi Channel: Two channels (one taking input from Fixation and one

from saccade) are used

• Both text and Gaze (9-Configs)
7

4

Experiment Setup (Model Details)

• Word Embeddings: Word2Vec (Mikolov et.al),

trained on Amazon Movie Review Data, Embedding

dimensions: 300

• Convolution: Filter sizes: 3,4 (Best), Number of

filters used for each filter size: 150 (Better than

smaller values)

• Feed-Forward: Number of hidden neurons: 150

(Better than smaller values), Dropout probability:

0.25

• Training: Number of epochs: 200 (change in loss

negligible after 200 epochs), Optimizer: Adadelta,

LR: 0.1

7

5

Results – Sentiment Analysis

7

6

Results – Sarcasm Detection

7

7

Observations (1/2)

• Overfitting for SA dataset 2: Training accuracy

reaches 100 within 25 epochs with validation

accuracy still at around 50%. Better

dropout/regularization configuration required.

• Better classification accuracy for Sarcasm detection:

Clear differences between vocabulary of sarcasm

and non-sarcasm classes in our dataset. Captured

well by non-static embeddings.

• Effect of dimension variation: Reducing embedding

dimension improves by a little margin.

7

8

Observations (2/2)

• Increasing filters beyond 180 decreases accuracy

(possibly over-fits). Decreasing beyond 30

decreases accuracy.

• Effect of static / non static text channels: Better for

non static (word embeddings with similar sentiment

come closer in non static channels, e.g., good ~ nice

• Effect of fixation / saccade channels: Saccade

channel alone handles nuances like incongruity

better.

• Fixation channel does not help much, may be

because of higher variance in fixation duration.

7

9

Analysis of Features Learned (1/2)

Visualization of representations learned for Sarcasm Detection. Output of the

Merge layer (of dimension 150) plotted in the form of color-bars (Li et al. , 2016)

8

0

Capturing intensity variation in sarcasm VS no-sarcasm better

Analysis of Features Learned (2/2)

• Addition of gaze information helps to generate

features with more subtle differences.

• Features for the sarcastic texts exhibit more

intensity than the non-sarcastic ones- perhaps

capturing the notion that sarcasm typically conveys

an intensified negative opinion.

• Example 4 is incorrectly classified by both the

systems– lack of context?

• Addition of gaze information does not help here, as

it becomes difficult for even humans to classify

such texts 8

1

Project Idea

● CNN for multitask learning.

● For example, sentiment analysis

and emotion detection.

● Dataset: IEmoCaps

● 2 filters to be used, one for each

task.

Attention and Transformer

Arguably, the most important application-

MACHINE TRANSLATION

A classic diagram and a classic paper

http://nlp.seas.harvard.edu/2018/04/03/attention.html

http://jalammar.github.io/illustrated-transformer/

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. "Attention is all you need." NeurIPS

(2017).

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/

Chronology

• IBM Models of Alignment- Brown et

al. 1990, 1993

• Phrase Based MT- Koehn 2003

• Encoder Decoder- Sutskever et al.

2014, Cho et al. 2014

• Attention- Bahadanu et al. 2015

• Transformer- Vaswani et al. 2017

Attention

Compare every elements with all other

elements

Represent the input

context as a weighted

average of input word

embeddings

𝒉𝒊
𝒍

Feedforward

Layer

𝒉𝒊
𝒍 =෍

𝑖=1

𝑁

𝒘𝒊𝑥𝑖

𝑥𝑖
(𝑙+1)

𝒉𝒊+𝟏
𝒍

Feedforward
Layer

𝑥𝑖+1
(𝑙+1)

Non-recurrent  this

operation can be

applied in parallel to all

elements in the

sequence

𝒙𝒊
𝒍+𝟏 = 𝑭𝑭(ℎ𝑖

𝑙)

How do we compute weights  Attention!

Self-Attention

Every word is compared

with every other word in

the same sentence

𝑋  query

𝑥1, 𝑥2 𝑥3…𝑥𝑛 values

Direct comparison between

arbitrary words 

long-range dependencies

can be better modelled

More computations than Recurrent models: O(n2)

Important observations on self

attention

In the input sequence, pairs of words differ in their strength

of association

For example for an adjective-noun combination, adjective’s

attention should be stronger for the noun than for other

words in the sentence

So the key questions are:

What to attend to

With how much attention to attend to

● The strength of attention is not related to

probability of co-occurrence.

● Co-occurrence count is used to identify words

that frequently appear together, while

attention strength is used to determine which

words or phrases are most important in a

given context.

● Attention strength is based on semantics of a

sentence whereas co-occurrence is based on

maximum likelihood.

Attention strength vs. Co-occurrence count

Example: Peter slept early.

Attention between pair of words

Peter slept high attention

slept early high attention

Peter early low attention

Attention that is non-self

When the decoder generates the output

sequence, attention is a 2-part attention

Each output token should attend to whatever

token has been output before

Additionally, it should attend to the tokens in the

input sequence

Fundamental concepts- “Attention”,

“query”, “key”, “value”

Transformer Architecture

Stack self-

attention blocks to

create deep

networks

𝒉𝒊
𝒍

Feedforward Layer

𝒙𝒊
(𝒍+𝟏)

Self-attention Layer

𝒉𝒊
𝒍+𝟏

Feedforward Layer

𝒙𝒊
(𝒍+𝟐)

Self-attention Layer

Positional Embeddings

The ICICI bank branch is on the bank of the river

The self-attention model has no notion of position,

 same words will have same representations irrespective

of their position/syntactic role in the sentence

https://kazemnejad.com/blog/transformer_architecture_positio

nal_encoding/

Create positional embeddings that uniquely and

deterministically identify a position

Add it to the word embedding at the bottom layer

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Example: Raam ne Shyam ko dekha.

● Using positional encoding in machine

translation makes it easy for the model to learn

the distinction between "ne" and "ko".

● In contrast, using SRL tags instead of

positional encoding requires a large amount of

data to train the model. Therefore, utilizing

positional encoding has simplified the task.

Advantage of using Positional Embedding

Multiple self-attention heads

Multiple self-attention networks at

each layer

Each head learns different kinds of

dependencies

𝒉𝒊,𝟐
𝒍+𝟏

Feedforward Layer

𝒙𝒊
(𝒍+𝟐)

Self-attention Layer 2

𝒉𝒊,𝟏
𝒍+𝟏

Self-attention Layer 1

Putting it all together
Decoder layer also has a cross-

attention layer

Decoder  masking for future

time-steps while computing self-

attention

There are residual connections &

layer-normalization between

layers

http://nlp.seas.harvard.edu/2018/04/03/attention.html

http://jalammar.github.io/illustrated-transformer/

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. "Attention is all you need." NeurIPS

(2017).

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/

Transformer has led to tremendous advances in MT

Encoder architectures like BERT based on Transformer

have yielded large improvements in NLU tasks

Transformer models are the de-facto standard models for

many NLP tasks

Back to attention

What is “Attention”

• Attention enhances the important

parts of the input data and fades out

the rest

• The network should devote more

computing power on that small part

of the data that matters

Sentence-1

• Ram who is a good student and lives

in London which is a large metro, will

go to the University for higher

studies.

• राम जो एि अच्छा छात्र है और लंदन में
रहता है जो एि बड़ी मेट्रो है, उच्च अध्ययन
िे ललए ववश्वववद्यालय जाएगा।

Sentence-2

• Sita who is a good student and lives

in London which is a large metro, will

go to the University for higher

studies.

• स़ीता जो एि अच्छी छात्रा है और लंदन में
रहत़ी है जो एि बड़ी मेट्रो है, उच्च अध्ययन
िे ललए ववश्वववद्यालय जाएग़ी।

Learning “Attention”

• Which part of the data is more

important than others depends on

the context

• Learned through training data

by gradient descent

Two kinds of Attention

• Dot Product Attention

• Multihead Attention

Dependency Parse- Attention by

Parsing
• root(ROOT-0, go-18)

• nsubj(go-18, Ram-1)

• nsubj(student-6, who-2)

• cop(student-6, is-3)

• det(student-6, a-4)

• amod(student-6, good-5)

• acl:relcl(Ram-1, student-6)

• cc(lives-8, and-7)

• conj(student-6, lives-8)

• case(London-10, in-9)

• nmod(lives-8, London-10)

• nsubj(metro-15, which-11)

• cop(metro-15, is-12)

• det(metro-15, a-13)

• amod(metro-15, large-14)

• acl:relcl(student-6, metro-

15)

• aux(go-18, will-17)

• case(University-21, to-19)

• det(University-21, the-20)

• obl(go-18, University-21)

• case(studies-24, for-22)

• amod(studies-24, higher-23)

• nmod(University-21,

studies-24)

Attention and Alignment

Hindi (col) -->

English (row) |

\/

PIITA

R

(पीटर)

JALDII

(जल्दी)
SOYA

A

(सोया)

PETER 1 0 0

SLEPT 0 0 1

EARLY 0 1 0

● Word alignment in statistical machine

translation is analogous to cross attention in

neural machine translation

● Phrase alignment uses both self attention

and cross attention.

Attention and Alignment

● Attention was known to linguists

but its measurement is the

contribution of NLP

● Attention is measured in terms of

probability.

Attention: Linguistics and NLP view

FFNN for alignment:

Peter slept early  piitar jaldii

soyaa

piitar

earlyslept

Peter

jaldii soyaa

Introduce Attention Layer between Encoder

and Decoder

piitar

earlyslept

Peter

jaldii soyaa

Piitar jaldii soyaa

Attention

Decoder

Peter slept early Encoder

How to learn the weights- attention

weights?

• Weight (piitar, peter)

• Weight (piitar, slept)

• Weight (piitar, early)

piitar

early
sleptPeter

Positional Encoding

Limitation of RNN

• Encoder-decoder RNN generates a

sequence of hidden states ht, t varying from

0 to L, where L is the sentence length.

• Each ht is a function of previous hidden state

ht-1 and the input at position t.

• So, to process the input at tth step, the

encoder or decoder has to wait for t-1 steps.

• This sequential nature of RNN makes the

training time very large.

Inspiration from Shakespeare

• “All the world's a stage,/ And all the men

and women merely players”- As You Like

It- Shakespeare

• All the sentence’s a stage./And all the

words and punctuations are merely

players

“children saw a big lion in the zoo

in the morning”

• main verb: saw;

• who (agent): children

• what (object): lion

• where (locative): zoo

• when (temporal): evening

Position Sensitivity: “Jack saw Jill”

vs. “Jill saw Jack”

IF

the main verb (MV) is transitive and in past

tense

THEN

the NP to the left of MV should get the ‘ ne’

postposition mark

and

The NP to the right of MV should get the ‘ko’

postposition mark

Transformer’s major contribution-

Positional Encoding (1/2)

• Word positions as additional disambiguation

signals.

• Words influence one another by virtue of their

properties and positions

• Such influences manifest in translations as

morphological transformations, lexical choices,

pragmatic markers and so on.

• Tenet of ML-NLP: with sufficient data all these

mutual influences can be learnt.

Transformer’s major contribution-

Positional Encoding (2/2)

• Positions are encoded as embeddings and

positional embeddings are supplied along

with input word embeddings.

• The training phase teaches the transformer to

condition the output by paying attention to not

only input words, but also their positions.

Position Vector components

• Let the ith component of the tth

position vector be denoted as

pos(t,i), i varying from 0 to (d/2)-1.

Then

Why Sine and Cosine? (1/2)

Foundational Observation-1:

Let S be a set of symbols. Let P be

the set of patterns the symbols

create. If |P|>|S|, then there must

exist patterns in P, that have repeated

symbols.

Why Sine and Cosine? (2/2)

Foundational Observation-2:

IF

the patterns can be arranged

in a series with equal difference

of values between every

consecutive pair,

THEN

at any given position, the

symbols at different positions of

the pattern strings must REPEAT,

and

Periodicity and Decimal Integers

• 10 symbols called digits: 0, 1, 2, 3, 4, 5, 6,

7, 8, 9.

• In the sorted list of integers in ascending

order, the string length of the integer goes

on increasing

• The digits repeat after every 10 numbers

in the lowest significant position, after

every 100 numbers in the next lowest

position, after every 1000 numbers in the

next to next lowest and so on.

Binary Numbers

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Challenges in designing PEs

• Cannot append decimal integers as position

values; words later in the sentence will

dominate, by the force of their positions being

large integers

• Cannot normalize too: Word relations changing

with the length of sentences- linguistically

untenable

• “Oh, what a beautiful day!!”- which expresses (i)

delight, (ii) the nature of the ‘day’ being

‘beautiful’, (iii) ‘Oh’, being an exclamatory prefix

to the rest of the phrase and so on, should be

invariant with respect to the sentence length

Binary values also will not do!

• 0s will contribute nothing, and 1s will

influence completely.

• Such black-and-white (0-1) hard decisions go

against the grain of NLP whose other name

is ambiguity.

• A language object represented by a vector

must allow soft choices in its components,

preferably represented by values in the

closed range [0,1].

Criteria PEs should satisfy

• Should be added component by

component to the word vector.

• Components should range from 0 to 1,

both included.

• Components should be periodic, since

they represent consecutive integers.

• Ingenious on the part of the creators of

transformers to spot that sine and cosine

functions meet the above requirements.

Example: “Jack saw Jill”

• Three positions indexed as 0, 1 and

2. Assume word vector dimension d

to be 4 and the frequency to be

1/(102i/d), i=0,1. Then

Statistical Alignment Learning

Non-neural

EM for word alignment from sentence

alignment: example

English

(1) three rabbits

a b

(2) rabbits of Grenoble

b c d

French

(1) trois lapins

w x

(2) lapins de Grenoble

x y z

6 Jan, 2014isi: ml for mt:pushpak130

Initial Probabilities:

each cell denotes t(a w), t(a x) etc.

a b c d

w 1/4 1/4 1/4 1/4

x 1/4 1/4 1/4 1/4

y 1/4 1/4 1/4 1/4

z 1/4 1/4 1/4 1/4

Example of expected count

C[wa; (a b)(w x)]

t(wa)

= ------------------------- X #(a in ‘a b’) X #(w in ‘w x’)

t(wa)+t(wb)

1/4

= ----------------- X 1 X 1= 1/2

1/4+1/4

6 Jan, 2014isi: ml for mt:pushpak132

“counts”

b c d



x y z

a b c d

w 0 0 0 0

x 0 1/3 1/3 1/3

y 0 1/3 1/3 1/3

z 0 1/3 1/3 1/3

a b



w x

a b c d

w 1/2 1/2 0 0

x 1/2 1/2 0 0

y 0 0 0 0

z 0 0 0 0

6 Jan, 2014isi: ml for mt:pushpak133

Revised probability: example

trevised(a w)

1/2

= ---

(1/2+1/2 +0+0)(a b)(w x) +(0+0+0+0)(b c d) (x y z)

6 Jan, 2014isi: ml for mt:pushpak134

Revised probabilities table

a b c d

w 1/2 1/2 0 0

x 1/4 5/12 1/6 1/6

y 0 1/3 1/3 1/3

z 0 1/3 1/3 1/3

“revised counts”

b c d



x y z

a b c d

w 0 0 0 0

x 0 5/9 1/3 1/3

y 0 2/9 1/3 1/3

z 0 2/9 1/3 1/3

a b



w x

a b c d

w 1/2 3/8 0 0

x 1/2 5/8 0 0

y 0 0 0 0

z 0 0 0 0

6 Jan, 2014isi: ml for mt:pushpak136

Re-Revised probabilities table

a b c d

w 1/2 1/2 0 0

x 3/16 85/144 1/9 1/9

y 0 1/3 1/3 1/3

z 0 1/3 1/3 1/3

Continue until convergence; notice that (b,x) binding gets progressively stronger;

b=rabbits, x=lapins

Derivation of EM based Alignment

Expressions

Hindi)(Say language ofy vocabular

English)(Say language ofry vocalbula

2

1

LV

LV

F

E





what is in a name ?

नाम में क्या है ?

naam meM kya hai ?

name in what is ?

That which we call rose, by any other name will smell as sweet.

जजसे हम गुलाब िहते हैं, किस़ी और नाम से पुिारने पर भ़ी उसिी खुशबू समान म़ीठा होग़ी
Jise hum gulab kahte hai, aur bhi kisi naam se uski khushbu samaan mitha hogii

That which we rose say , any other name by its smell as sweet

That which we call rose, by any other name will smell as sweet.

E1

F1

E2

F2

6 Jan, 2014isi: ml for mt:pushpak138

Vocabulary mapping

Vocabulary

VE VF

what , is , in, a , name , that, which,

we , call ,rose, by, any, other, will,

smell, as, sweet

naam, meM, kya, hai, jise, ham,

gulab, kahte, aur, bhi, kisi, bhi, uski,

khushbu, saman, mitha, hogii

6 Jan, 2014isi: ml for mt:pushpak139

Key Notations

English vocabulary : 𝑉𝐸
French vocabulary : 𝑉𝐹
No. of observations / sentence pairs : 𝑆
Data 𝐷 which consists of 𝑆 observations looks like,

𝑒11, 𝑒
1
2, … , 𝑒1𝑙1֞𝑓11, 𝑓

1
2, … , 𝑓1𝑚1

𝑒21, 𝑒
2
2, … , 𝑒2𝑙2֞𝑓21, 𝑓

2
2, … , 𝑓2𝑚2

.....

𝑒𝑠1, 𝑒
𝑠
2, … , 𝑒𝑠𝑙𝑠֞𝑓𝑠1, 𝑓

𝑠
2, … , 𝑓𝑠𝑚𝑠

.....

𝑒𝑆1, 𝑒
𝑆
2, … , 𝑒𝑆𝑙𝑆֞𝑓𝑆1, 𝑓

𝑆
2, … , 𝑓𝑆𝑚𝑆

No. words on English side in 𝑠𝑡ℎ sentence : 𝑙𝑠

No. words on French side in 𝑠𝑡ℎ sentence : 𝑚𝑠

𝑖𝑛𝑑𝑒𝑥𝐸 𝑒𝑠𝑝 =Index of English word 𝑒𝑠𝑝in English vocabulary/dictionary

𝑖𝑛𝑑𝑒𝑥𝐹 𝑓𝑠𝑞 =Index of French word 𝑓𝑠𝑞in French vocabulary/dictionary

(Thanks to Sachin Pawar for helping with the maths formulae processing)

6 Jan, 2014isi: ml for mt:pushpak140

Hidden variables and parameters

Hidden Variables (Z) :

Total no. of hidden variables = σ𝑠=1
𝑆 𝑙𝑠 𝑚𝑠 where each hidden variable is as follows:

𝑧𝑝𝑞
𝑠 = 1 , if in 𝑠𝑡ℎ sentence, 𝑝𝑡ℎ English word is mapped to 𝑞𝑡ℎ French word.

𝑧𝑝𝑞
𝑠 = 0 , otherwise

Parameters (Θ) :

Total no. of parameters = 𝑉𝐸 × 𝑉𝐹 , where each parameter is as follows:

𝑃𝑖,𝑗 = Probability that 𝑖𝑡ℎ word in English vocabulary is mapped to 𝑗𝑡ℎ word in Hindi vocabulary

6 Jan, 2014isi: ml for mt:pushpak141

Likelihoods
Data Likelihood L(D; Θ) :

Data Log-Likelihood LL(D; Θ) :

Expected value of Data Log-Likelihood E(LL(D; Θ)) :

6 Jan, 2014isi: ml for mt:pushpak142

Constraint and Lagrangian

෍

𝑗=1

𝑉𝐹

𝑃𝑖,𝑗 = 1 , ∀𝑖

6 Jan, 2014isi: ml for mt:pushpak143

Pij is “asymmetric” in the sense that the dictionary mapping is obtained

by “looking” from the English side, ith English word mapping to

SOME HIndi word; we can “look” from the Hindi side too;

Then we take the average of Pij and Pji

Aligners like GIZA++, Moses, Berkley etc. do this

Differentiating wrt Pij

6 Jan, 2014isi: ml for mt:pushpak144

Final E and M steps

M-step

E-step

6 Jan, 2014isi: ml for mt:pushpak145

Back to RNN

Recurrent Neural Networks: two

key Ideas

𝑥𝑖−1𝑥2𝑥1 𝑐(𝑥𝑖)

1. Summarize context information into a single vector

𝑐(𝑥𝑖) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑖−1)

Nature of 𝑷(.)

n-gram LM: look-up table

FF LM: 𝑐 𝑥𝑖 = 𝐺 𝑥𝑖−1, 𝑥𝑖−2 (trigram LM)

RNN LM: 𝑐 𝑥𝑖 = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑖−1) (unbounded

context)

𝑃(𝑥𝑖|𝑐 𝑥𝑖)

Function G requires

all context inputs at

once

How does RNN

address this

problem?

Two Key Ideas (cntd)

𝑥3𝑥2𝑥1

𝑐(𝑥2)

2. Recursively construct the

context

𝑐(𝑥3)𝑐(𝑥1)𝑐(𝑥0)

𝑐(𝑥𝑖) = 𝐹(𝑐 𝑥𝑖−1 , 𝑥𝑖)

We just need two inputs to construct the context

vector:

- Context vector of previous timestep

- Current input

The context vector  state/hidden state/contextual

representation

𝐹 . can be implemented as

𝑐(𝑥𝑖) = 𝜎 𝑊𝑐𝑐(𝑥𝑖−1 +𝑊𝑥 𝑥𝑖 + 𝑏1)

Like a feed-forward network

𝑊𝑥 𝑊𝑥 𝑊𝑥

𝑊𝑐 𝑊𝑐 𝑊𝑐

𝑥3𝑥2𝑥1

𝑜1 𝑜2 𝑜3

𝑜(𝑥𝑖) = 𝑊𝑜𝑐(𝑥𝑖) + 𝑏2
We are generally interested in categorical outputs

Ƹ𝑧𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜(𝑥𝑖))
= 𝑃(𝑦𝑖|𝑐𝑡𝑥(𝑥𝑖))

𝑐(𝑥2) 𝑐(𝑥3)𝑐(𝑥1)
𝑐(𝑥0)

Ƹ𝑧1 Ƹ𝑧2 Ƹ𝑧3

𝑊𝑐 𝑊𝑐 𝑊𝑐

𝑊𝑥 𝑊𝑥 𝑊𝑥

𝑊𝑜𝑊𝑜𝑊𝑜

The same parameters are used at each time-step

Model size does not depend on sequence length

Long range context is modeled

𝑦1 𝑦2 𝑦3

෢𝑧𝑖
𝑤 = 𝑃(𝑦𝑖 = 𝑤|𝑐𝑡𝑥(𝑥𝑖))

Generate output give the current input and

state/context

Wo=wt. for output layer;

Wc= wt. for generating next state

(context);

Wx= wt. for the input layer

Input Sequence: (𝑥1 𝑥2 𝑥3 𝑥4… . . 𝑥𝑖 …… . 𝑥𝑁)

Output Sequence: (𝑦1 𝑦2 𝑦3 𝑦4… . . 𝑦𝑖 …… . 𝑦𝑁)

Sequence Labelling Task

Input and output sequences have the same length

Variable length input

Output contains categorical labels

Output at any time-step typically depends on neighbouring output labels and input

elements

Part-of-speech

tagging

Recurrent Neural Network is a powerful model to learn sequence labelling

tasks

How do we model language modeling

as a sequence labeling task?

The capital of Maharashtra is Mumbai

capital of Maharashtra is MumbaiThe

<BOS>

<EOS>

The output sequence is one-time step ahead of the input sequence

Training Language Models
Input: large monolingual corpus

- Each example is a tokenized sentence (sequence of words)

- At each time step, predict the distribution of the next word given all previous words

- Loss Function:

- Minimize cross-entropy between actual distribution and predicted distribution

- Equivalently, maximize the likelihood

At a single time-step:

𝐽𝑖 𝜃 = 𝐶𝐸 𝑧𝑖 , Ƹ𝑧𝑖 = −σ𝑤∈𝑉 𝑧𝑖
𝑤 log ෢𝑧𝑖

𝑤 = − log෢𝑧𝑖
𝐿

Average over time steps for example n:

𝐽𝑛 𝜃 =
1

𝑇
σ𝑖=1
𝑇 𝐽𝑖 𝜃

Average over entire corpus:

𝐽(𝜃) =
1

𝑁
σ𝑘=1
𝑁 𝐽𝑛 𝜃

How do we learn model

parameters?

More on that later!

where 𝑦𝑖 =
𝐿

How do we evaluate quality of language models?

Evaluate the ability to predict the next word given a

context

Evaluate the probability of a testset of

sentences

Standard test sets exist for evaluating language models: Penn Treebank, Billion Word Corpus,

WikiText

Evaluating Language Models

Evaluating LM (cntd.)

• Ram likes to play -----
– Cricket: high probability, low entropy, low perplexity

(relatively very high frequency for ‘like to play

cricket’)

– violin: -do- (relatively high frequency possibility for

‘like to play violin’

– Politics: moderate probability, moderate entropy,

moderate perplexity (relatively moderate frequency

‘like to play politics’

– milk: almost 0 probability, very high entropy, very

high perplexity (relatively very low possibility for ‘like

to play milk’

So an LM that predicts ‘milk’ is bad!

Language Model Perplexity

Perplexity: exp 𝐽 𝜃

𝐽(𝜃) is cross-entropy on the test set

Cross-entropy is measure of difference between actual and

predicted distribution

Lower perplexity and cross-entropy is better

Training objective matches evaluation metric

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-

words/

n-gram

RNN variants

RNN models outperform n-gram models

A special kind of RNN network – LSTM- does even later  we will

see that soon

Appendix

Digression

Phrase Based SMT (PBSMT) and distortion

Governing equation

)]()|([maxarg)|(maxarg ePefPfePe LMeebest 

where e and f have their usual meaning of

output and input respectively; the

translation with the highest score is ebest.

P(f|e) and PLM(e) are the translation model

and language model, respectively.

Modelling P(f|e)

LHS is the probability of sequence of I

phrases in the sentence f, given I

phrases in sentence e. Φ is called the

phrase translation probability and d(.)

is the distortion probability.

)1()|(

),...,,|,...,,()|(

1

1

212111









 ii

I

i

ii

II

II

endstartdef

eeefffPefP

Distortion Probability
• d(starti-endi-1-1)

• starti: starting position of the translation of the ith

phrase of e in f

• endi-1: end position of the translation of the (i-1)th

phrase of e in f

• The quantity starti-endi-1-1 is a measure of the

distance between the translation of ith phrase and

the translation of the (i-1)th phrase of e as they

appear as the endth and startth phrase in f.

• It is, thus, also a measure of the reordering of

phrases induced by the translation.

Need for phrases (linguistic phrases

and non-linguistic “phrases”)

• “The play is on”  “khel chal rahaa hai”

• “is on”  “chal rahaa hai”

• IMP: treat ‘is’ and ‘on’ together and NOT separately

• Otherwise, ‘on’ might map to ‘rahaa’ which will take

away some probability mass of ‘on’ onto Hindi word

mappings like ‘on’  {‘par’, ‘upar’, …}

• May produce non-fluent translations like

“the book is on the table”  “kitaab mej rahaa

hai” instead of “kitaab mej par hai”

Back to distortion

• “The play is on even now”  “khel abhii bhii chal

rahaa hai”

• Mappings:

‘The play’

Position: (1)
‘is on’

(2)

‘even’

(3)
‘now’

(4)

khel

(1)
chal rahaa hai

(4)

abhi

(2)
bhi

(3)

