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Re-cap



Encode - Decode Paradigm Explained

Use two RNN networks: the encoder and the decoder

मैं किताबने पढी

I read the book

h1 h2 h3h0

h4

s0 s1 s2
s3

(1) Encoder 

processes one 

input at a time

(4) Decoder 

generates one 

element at a 

time

(2) A representation 

of the sentence is 

generated

(3) This is used 

to initialize the 

decoder state

Encoding

Decoding

<EOS>

s4

(5)… continue till 

end of sequence 

tag is generated

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/

Sequence to Sequence Learning with Neural Networks Ilya Sutskever, Oriol Vinyals, Quoc V. Le. arxiv pre-

print [link]

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-2/
https://arxiv.org/abs/1409.3215


FF

RNN-LSTM

softmax

This captures y<j

This captures x, c=h4

What is the decoder doing at each 

time-step?



Decoding

Ram    ate rice   with the spoon

राम ने चम्मच से चावल खाये

Searching for the best translations in the space of all 

translations



राम ने

चावल

चम्मच

खा ललया

चम्मच से

चावल

खाये

• Incremental construction

• Each hypothesis is scored using the model

• Hypotheses are maintained in a priority 
queue 

Empty 

Hypothesis

Partial 

Hypothesis

Final 

Hypothesis

Hypothesis 

Expansion



मैं किताबने पढी

I read the book

h1 h2 h3

h0

h4

s0 s1 s2
s3

Encoding

Decoding

<EOS>

s4

h4

Feed the encoder state as input at 

each decoder timestep



The entire source sentence is 

represented by a single vector

Problems

● Insufficient to represent to capture all the syntactic and 

semantic complexities

○ Solution: Use a richer representation for the sentences

● Long-term dependencies: Source sentence representation 

not useful after few decoder time steps

○ Solution: Make source sentence information when making 

the next prediction

○ Even better, make RELEVANT source sentence 

information available



Encode - Attend - Decode Paradigm

I read the book

s1 s1 s3s0

s4

Annotation 

vectors Represent the source sentence by 

the set of output vectors from the 

encoder

Each output vector at time t is a 

contextual representation of the 

input at time t

Let’s call these encoder output 

vectors annotation vectors

e1 e2 e3 e4

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR 2015.

https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-3/



CNN



Two motivation points

• 1. Reduced number of parameters

• 2. Stepwise extraction of features

• These two are applicable to any AI 

situation, and not only vision and 

image processing



CNN= feedforward like + recurrent 

like!

• Whatever we learnt so far in FF-BP is useful 

to understand CNN

• So also is the case with RNN (and LSTM)

• Input divided into regions and fed forward

• Window slides over the input: input changes, 

but ‘filter’ parameters remain same

• That is like RNN



Genesis: Neocognitron

(Fukusima, 1980)



Inspiration from biological 

processes

• Connectivity pattern 

between neurons resembles the organization 

of the animal visual cortex

• Individual cortical neurons respond to stimuli 

only in a restricted region of the visual 

field known as the receptive field

• Receptive fields of different neurons partially 

overlap such that they cover the entire visual 

field



The classic CNN (Wikipedia)



Convolution

3

2

4

3

2

4

3 4

1 0 1

0 1 0

1 0 1

Filter/kernel/

feature-detector

B/W

4= 1.1+1.0+1.1

+0.0+1.1+1.0

+0.1+0.0+1.1



Convolution basics



Convolution: continuous and 

discrete
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Convolution of two vectors

V1: <0, 1, 2, 3, 4, 5, 6, 7, 8, 9>

V2: <1, 1, 1>

V1 V2= 

<(0.1+1.1+2.1), (1.1+2.1+3.1), 

(2.1+3.1+4.1), (3.1+4.1+5.1), 

(4.1+5.1+6.1), (5.1+6.1+7.1), 

(6.1+7.1+8.1), (7.1+8.1+9.1)>

=<3, 6, 9, 12, 15, 18, 21, 24>





Receptive field and selective 

emphasis/de-emphasis

• The filter <1,1,1> given equal “emphasis” 

to constituents of the “receptive field” 

which means region of interest

• Sliding of the filter corresponds to taking 

different receptive fields

• By designing the filter as <0,1,0>, we 

emphasise the center of the receptive 

field



“dog” image and “cat” image

• For dog, the face is of conical 

shape

• For cat, the shape is round

• So, this distinguishing feature is 

important for classification

• The filter should have the ability 

of detecting this kind of feature



Interpretation of convolution

• The filter/kernel/feature_extractor

highlights features and obtains those 

features

• The sliding achieves the effect of 

focussing on “region” after “region”

• This resembles sequence processing

• The filter components are LEARNT



Convolution as feature extractor



CNN architecture

• Several layers of convolution with tanh or ReLU

applied to the results

• In a traditional feedforward neural network we connect 

each input neuron to each output neuron in the next 

layer. That’s also called a fully connected layer, or 

affine layer. 

• In CNNs we use convolutions over the input layer to 

compute the output. 

• This results in local connections, where each region of 

the input is connected to a neuron in the output



Key Ideas

Four key ideas that take advantage of 

the properties of natural signals: 

– local connections, 

– shared weights, 

– pooling and 

– the use of many layers 



A typical ConvNet

Lecun, Bengio, Hinton, Nature, 2015



Why CNN became a rage: image

Image

Captioning-1

Image

Captioning-2



Role of ImageNet

• Million images from the web

• 1,000 different classes

• Spectacular results! 

• Almost halving the error rates of the 

best competing approaches1. 



Learning in CNN

• Automatically learns the 

values of its filters

• For example, in Image 

Classification learn to 
– detect edges from raw pixels in the first layer, 

– then use the edges to detect simple shapes in 

the second layer, 

– and then use these shapes to deter higher-level 

features, such as facial shapes in higher layers. 

– The last layer is then a classifier that uses 

these high-level features.



http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/



Pooling

• Gives invariance in translation, 

rotation and scaling

• Important for image recognition

• Role in NLP?



CNN for NLP



Input matrix for CNN: NLP

“image” for NLP  word 

vectors in the rows

For a 10 word sentence using a 

100-dimensional Embedding, 

we would have a 10×100 matrix 

as our input

3
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4

3

2

4

3 4



Credit:  Denny Britz

CNN for NLP



Role of multiple filters in CNN

● In the last slide- 2 filters per n-gram (n=2, 3, 4)

● In multitask learning setting, for tasks such as 

sentiment analysis and emotion analysis multiple 

filters can be used.

● Multiple filters allow multiple views and emphasis 

angles for each task. For instance one filter for 

sentiment analysis and another for emotion analysis.

● The number of filters should be equal to the number 

of tasks.



Role of lower order ngrams

• Lower order ngrams play an important role in 

vocabulary matching. 

• Lower order ngrams give importance to 

lexical properties. For instance:

○ Unigram: I like this movie.

○ Bigram: I do not like this movie.



Role of higher order ngrams
• Higher order ngrams give emphasis to syntactic structure of the 

sentence and the dependencies. 

• For instance:

○ Trigram: I like this movie (like  movie)

○ Quadrigram and pentagram capture more dependencies and 

syntactic structure and play an important role in tasks like 

sentiment analysis, emotion detection, machine translation, 

etc.

○ Example: John watched a movie with James yesterday in 

Melbourne (Who did what to whom when and where type 

dependency)



CNN Hyper parameters

• Narrow width vs. wide width

• Stride size

• Pooling layers

• Channels



Detailing out CNN layers

Credit: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-


CNN stages

Image Credit: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-


Another depiction

Image Credit: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-


Channelized Image



Pooling



Complete Architecture



Convolution Layer

• Input is a tensor with a shape 
– (number of inputs) x (input height) x (input 

width) x (input channels)

• After passing through a convolutional 

layer, the image becomes abstracted 

to a feature map, also called an 

activation map, with shape
– (number of inputs) x (feature map height) x 

(feature map width) x (feature 

map channels).



Tensors and Vectors

• Tensors: vectors of vectors

• Vector, V: <1, 2, 3, 4, 5>

• Tensor, T1: <<1, 2, 3>, <4, 5, 6>>

• Tensor, T2: <<<1,2>, <3>>, <<4>, 

<5,6>>>

• Channels: R, G, B

• Each image consists of Red, Green and 

Blue channels- that is, 3 different 

matrices of pixel values



Pooling Layer

• “Pooling” involves sliding a two-dimensional filter over 

each channel of feature map 

• Effect: summarizing the features

• For a feature map having dimensions nh x nw x nc, 

the output dimension after pooling is

where, nh= height of feature map, nw=width, nc= number 

of channels, fh=height of filter, fw=width of filter, s=stride 

length
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Learning in CNN



First Kernel+RELU+POOLING

I1

I2

I0

I3

I4

I5

I6

C0

C1

C2

C3

C4

I7

C5

D0

D1

D2

C0= RELU(I0.K0+ I1.K1+I2.K2); Ks are kernel “weights”

D0= max(C0,C1)



Fleshing out the details

Input vector I

I0
K0

I1

I2

K1

K2 C0= RELU(I0.K0+ I1.K1+I2.K2)

New K0= old K0+sum of ΔK0s across C0, C1..C5

This addition does not violate gradient descent rule



Normal BP works

• Backpropagate from the final layer of 

softmax.

• When it comes to the first convolution 

layer, post the changes in the weights, 

maintaining the constraint that kernel 

values are parameter-shared

• Nothing special needs to be done for 

RELU and MAX functions



Another depiction

Image Credit: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-


An application: Sarcasm 

Detection

Illustrates use of CNN Channels



Sarcasm Detection: a sub-problem 

of Sentiment and Emotion Analysis

Sentiment Analysis: The task of 
identifying if a certain piece of text 
contains any opinion, emotion or other 
forms of affective content. 



Machine Learning based approach: 

classifiers and features

SVM, KNN and Random Forest classifiers

Sentiment-based features

Number of 

positive words

negative words 

highly emotional positive words, 

highly emotional negative words. 

Positive/Negative word is said to be highly 

emotional if it’s POS tag is one amongst : ’JJ',  

‘JJR',  ‘JJS',  ‘RB',  ‘RBR',  ‘RBS',  ‘VB', ‘VBD',  

‘VBG',  ‘VBN',  ‘VBP',  ‘VBZ'.



Emotion Features

Positive emoticon

Negative emoticon

Boolean features that are 1 if both positive 

and negative words are present in the tweet.

Boolean features that are 1 when positive 

(negative) word and negative (positive) 

emoji are simultaneously present



Punctuation features

number of exclamation marks. 

number of dots 

number of question mark. 

number of capital letter words. 

number of single quotations.

Number in the tweet: This feature is simply the number 

present in the tweet.

Number unit in the tweet : This feature is a one hot 

representation of the type of unit present in the tweet. 

Example of number unit can be hour, minute, etc. 



Comparison of results (1: sarcastic, 0: non-

sarcastic)



Deep Learning based

Very little feature engg!!

EmbeddingSize of 128 

Maximum tweet length 36 words

Padding used

Filters of size 3, 4, 5 used to extarct 

features



Deep Learning based approach: CNN-

FF Model



Comparison of results (1: sarcastic, 0: non-

sarcastic)

back



Sentiment Annotation and Eye 

Movement
Sarcastic

Longer

Fixations

Multiple 

Regressive 

Saccades



Datasets
Two publicly available datasets released by us 

(Mishra et al, 2016; Mishra et al., 2014)

Dataset 1: ( Eye-tracker: Eyelink-1000 Plus)

994 text snippets : 383 positive and 611 negative, 350 are 

sarcastic/ironic

Mixture of Movie reviews, Tweets and sarcastic/ironic 

quotes 

Annotated by 7 human annotators

Annotation accuracy: 70%-90% with Fleiss kappa IAA of 

0.62

Dataset 2: ( Eye-tracker: Tobi TX300)

843 snippets : 443 positive and 400 negative

Annotated by 5 human subjects

Annotation accuracy: 75%-85% with Fleiss kappa IAA of 

0.68



CNN Based Sarcasm Detection



Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya, Learning Cognitive Features 

from Gaze Data for Sentiment and Sarcasm Classification Using Convolutional Neural 

Network, ACL 2017, Vancouver, Canada, July 30-August 4, 2017.

https://www.cse.iitb.ac.in/~pb/papers/acl17-cogfeatures.pdf


Learning Cognitive Features from Gaze Data 

for Sentiment and Sarcasm

Classification

• In complex classification tasks like 

sentiment analysis and sarcasm 

detection, extraction and choice of 

features should be learnt

• CNN channels exploited

• CNN learns  features  from both gaze and 

text and uses them to classify the input 

text



Central Idea

• Learn features from Gaze sequences 
(fixation duration sequences and gaze-
positions) and Text automatically using Deep 
Neural Networks.

• Deep NNs have proven to be good at 
learning feature representations for Image 
and Text classification tasks (Krizhevsky et 
al., 2012;Collobert et al., 2011). 

• Use Convolutional Neural Network (already 
used for sentiment classification, Kim, 2014)

6

7



Why Convolutional NNs

• Convolutional Layers good at capturing 
compositionality (Lawrence et al, 1997).

Gaze

Image

??

Images taken from: mrulafi.blogspot.com

6

8



Neural Network Architecture

Input Embeddings Local Features Global Features

6

9



Why both Static and Non-static 

embedding

• Non-static embedding channel for tuning 

embeddings for SA/Sarcasm (e.g., 

produce similar embeddings for 

adjectives like good and excellent)

• Static embedding channel: to prevent 

over-tuning of embeddings due to 

collocation  (e.g., words such as I and 

love are often collocated  but should not 

share similar vector representation). 

7

0



Fixation and Saccade Channels

• Fixation channel: Lexical Complexity 

(pertaining to length, frequency and 

predictability of words while 

annotation)

• Saccade channel: Syntactic 

Complexity and Incongruity 

7

1



Datasets (1/2)

• Two publicly available datasets released by 

us (Mishra et al, 2016; Mishra et al., 2014)

• Dataset 1: ( Eye-tracker: Eyelink-1000 Plus)

• 994 text snippets : 383 positive and 611 

negative, 350 are sarcastic/ironic

• Mixture of Movie reviews, Tweets and 

sarcastic/ironic quotes 

• Annotated by 7 human annotators

• Annotation accuracy: 70%-90% with Fleiss 

kappa IAA of 0.62

7

2



Datasets (2/2)

• Dataset 2: ( Eye-tracker: Tobi TX300)

• 843 snippets : 443 positive and 400 

negative

• Annotated by 5 human subjects

• Annotation accuracy: 75%-85%with 

Fleiss kappa IAA of 0.68

7

3



Experimental Setup: Configurations

• Text Only: (Only Text Component is Used)
• Text_Static: Word embeddings are kept static and not updated during back 

propagation.

• Text_Non-static: Embeddings are updated during back propagation.

• Text_Multi Channel: Two channels (one taking input from static and one from 

dynamic embeddings) are used.

• Gaze Only: (Only Gaze Component is Used)
• Gaze_Fixation_Duration: Sequence of fixation durations are used as input

• Gaze_Saccade: Sequence of gaze locations (in terms of word ID used as 

input)

• Gaze-Multi Channel: Two channels (one taking input from Fixation and one 

from saccade) are used

• Both text and Gaze (9-Configs)
7

4



Experiment Setup (Model Details)

• Word Embeddings: Word2Vec (Mikolov et.al), 

trained on Amazon Movie Review Data, Embedding 

dimensions: 300 

• Convolution: Filter sizes: 3,4 (Best), Number of 

filters used for each filter size: 150 (Better than 

smaller values)

• Feed-Forward: Number of hidden neurons: 150 

(Better than smaller values), Dropout probability: 

0.25

• Training: Number of epochs: 200 (change in loss 

negligible after 200 epochs), Optimizer: Adadelta, 

LR: 0.1

7

5



Results – Sentiment Analysis

7

6



Results – Sarcasm Detection

7

7



Observations (1/2)

• Overfitting for SA dataset 2: Training accuracy 

reaches 100 within 25 epochs with validation 

accuracy still at around 50%. Better 

dropout/regularization  configuration required. 

• Better classification accuracy for Sarcasm detection: 

Clear differences between vocabulary of sarcasm 

and non-sarcasm classes in our dataset. Captured 

well by non-static embeddings.

• Effect of dimension variation: Reducing embedding 

dimension improves by a little margin.

7

8



Observations (2/2)

• Increasing filters beyond 180 decreases accuracy 

(possibly over-fits). Decreasing beyond 30 

decreases accuracy. 

• Effect of static / non static text channels: Better for 

non static (word embeddings with similar sentiment 

come closer in non static channels, e.g., good ~ nice

• Effect of fixation / saccade channels: Saccade 

channel alone handles nuances like incongruity 

better. 

• Fixation channel does not help much, may be 

because of higher variance in fixation duration. 

7

9



Analysis of Features Learned (1/2)

Visualization of representations learned for Sarcasm Detection. Output of the 

Merge layer (of dimension 150) plotted in the form of color-bars (Li et al. , 2016)

8

0

Capturing intensity variation in sarcasm VS no-sarcasm better



Analysis of Features Learned (2/2) 

• Addition of gaze information helps to generate 

features with more subtle differences.

• Features for the sarcastic texts exhibit more 

intensity than the non-sarcastic ones- perhaps 

capturing the notion that sarcasm typically conveys 

an intensified negative opinion.

• Example 4 is incorrectly classified by both the 

systems– lack of context?

• Addition of gaze information does not help here, as 

it becomes difficult for even humans to classify 

such texts 8

1



Project Idea

● CNN for multitask learning.

● For example, sentiment analysis 

and emotion detection.

● Dataset: IEmoCaps

● 2 filters to be used, one for each 

task.



Attention and Transformer

Arguably, the most important application-

MACHINE TRANSLATION



A classic diagram and a classic paper

http://nlp.seas.harvard.edu/2018/04/03/attention.html

http://jalammar.github.io/illustrated-transformer/

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. 

Gomez, Lukasz Kaiser, and Illia Polosukhin. "Attention is all you need." NeurIPS

(2017).

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/


Chronology

• IBM Models of Alignment- Brown et 

al. 1990, 1993

• Phrase Based MT- Koehn 2003

• Encoder Decoder- Sutskever et al. 

2014, Cho et al. 2014

• Attention- Bahadanu et al. 2015

• Transformer- Vaswani et al. 2017 



Attention



Compare every elements with all other

elements

Represent the input

context as a weighted

average of input word

embeddings

𝒉𝒊
𝒍

Feedforward 

Layer

𝒉𝒊
𝒍 =෍

𝑖=1

𝑁

𝒘𝒊𝑥𝑖

𝑥𝑖
(𝑙+1)

𝒉𝒊+𝟏
𝒍

Feedforward
Layer

𝑥𝑖+1
(𝑙+1)

Non-recurrent  this 

operation can be 

applied in parallel to all 

elements in the 

sequence

𝒙𝒊
𝒍+𝟏 = 𝑭𝑭(ℎ𝑖

𝑙)

How do we compute weights  Attention!



Self-Attention

Every word is compared 

with  every other word in 

the same sentence

𝑋  query 

𝑥1, 𝑥2 𝑥3…𝑥𝑛 values

Direct comparison between 

arbitrary words 

long-range dependencies 

can be better modelled

More computations than Recurrent models: O(n2)



Important observations on self 

attention

In the input sequence, pairs of words differ in their strength 

of association

For example for an adjective-noun combination, adjective’s 

attention should be stronger for the noun than for other 

words in the sentence

So the key questions are:

What to attend to

With how much attention to attend to



● The strength of attention is not related to 

probability of co-occurrence.

● Co-occurrence count is used to identify words 

that frequently appear together, while 

attention strength is used to determine which 

words or phrases are most important in a 

given context.

● Attention strength is based on semantics of a 

sentence whereas co-occurrence is based on 

maximum likelihood.

Attention strength vs. Co-occurrence count



Example: Peter slept early.

Attention between pair of words

Peter slept high attention

slept early high attention

Peter early low attention



Attention that is non-self

When the decoder generates the output 

sequence, attention is a 2-part attention

Each output token should attend to whatever 

token has been output before

Additionally, it should attend to the tokens in the 

input sequence



Fundamental concepts- “Attention”, 

“query”, “key”, “value”



Transformer Architecture

Stack self-

attention blocks to 

create deep 

networks

𝒉𝒊
𝒍

Feedforward Layer

𝒙𝒊
(𝒍+𝟏)

Self-attention Layer

𝒉𝒊
𝒍+𝟏

Feedforward Layer

𝒙𝒊
(𝒍+𝟐)

Self-attention Layer



Positional Embeddings

The ICICI bank branch is on the bank of the river

The self-attention model has no notion of position, 

 same words will have same representations irrespective 

of their position/syntactic role in the sentence

https://kazemnejad.com/blog/transformer_architecture_positio

nal_encoding/

Create positional embeddings that uniquely and 

deterministically identify a position 

Add it to the word embedding at the bottom layer

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Example: Raam ne Shyam ko dekha.

● Using positional encoding in machine 

translation makes it easy for the model to learn 

the distinction between "ne" and "ko". 

● In contrast, using SRL tags instead of 

positional encoding requires a large amount of 

data to train the model. Therefore, utilizing 

positional encoding has simplified the task.

Advantage of using Positional Embedding



Multiple self-attention heads

Multiple self-attention networks at 

each layer 

Each head learns different kinds of 

dependencies

𝒉𝒊,𝟐
𝒍+𝟏

Feedforward Layer

𝒙𝒊
(𝒍+𝟐)

Self-attention Layer 2

𝒉𝒊,𝟏
𝒍+𝟏

Self-attention Layer 1



Putting it all together
Decoder layer also has a cross-

attention layer

Decoder  masking for future 

time-steps while computing self-

attention

There are residual connections & 

layer-normalization between 

layers

http://nlp.seas.harvard.edu/2018/04/03/attention.html

http://jalammar.github.io/illustrated-transformer/

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. 

Gomez, Lukasz Kaiser, and Illia Polosukhin. "Attention is all you need." NeurIPS

(2017).

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/


Transformer has led to tremendous advances in MT

Encoder architectures like BERT based on Transformer 

have yielded large improvements in NLU tasks

Transformer models are the de-facto standard models for 

many NLP tasks



Back to attention



What is “Attention”

• Attention enhances the important 

parts of the input data and fades out 

the rest

• The network should devote more 

computing power on that small part 

of the data that matters



Sentence-1

• Ram who is a good student and lives 

in London which is a large metro, will

go to the University for higher 

studies. 

• राम जो एि अच्छा छात्र है और लंदन में
रहता है जो एि बड़ी मेट्रो है, उच्च अध्ययन
िे ललए ववश्वववद्यालय जाएगा।



Sentence-2

• Sita who is a good student and lives 

in London which is a large metro, will

go to the University for higher 

studies. 

• स़ीता जो एि अच्छी छात्रा है और लंदन में
रहत़ी है जो एि बड़ी मेट्रो है, उच्च अध्ययन
िे ललए ववश्वववद्यालय जाएग़ी।



Learning “Attention”

• Which part of the data is more 

important than others depends on 

the context

• Learned through training data 

by gradient descent



Two kinds of Attention

• Dot Product Attention

• Multihead Attention



Dependency Parse- Attention by 

Parsing
• root(ROOT-0, go-18)

• nsubj(go-18, Ram-1)

• nsubj(student-6, who-2)

• cop(student-6, is-3)

• det(student-6, a-4)

• amod(student-6, good-5)

• acl:relcl(Ram-1, student-6)

• cc(lives-8, and-7)

• conj(student-6, lives-8)

• case(London-10, in-9)

• nmod(lives-8, London-10)

• nsubj(metro-15, which-11)

• cop(metro-15, is-12)

• det(metro-15, a-13)

• amod(metro-15, large-14)

• acl:relcl(student-6, metro-

15)

• aux(go-18, will-17)

• case(University-21, to-19)

• det(University-21, the-20)

• obl(go-18, University-21)

• case(studies-24, for-22)

• amod(studies-24, higher-23)

• nmod(University-21, 

studies-24)



Attention and Alignment

Hindi (col) -->

English (row)  |

\/

PIITA

R 

(पीटर)

JALDII 

(जल्दी)
SOYA

A 

(सोया)

PETER 1 0 0

SLEPT 0 0 1

EARLY 0 1 0



● Word alignment in statistical machine 

translation is analogous to cross attention in 

neural machine translation

● Phrase alignment uses both self attention 

and cross attention.

Attention and Alignment



● Attention was known to linguists 

but its measurement is the 

contribution of NLP

● Attention is measured in terms of 

probability.

Attention: Linguistics and NLP view



FFNN for alignment: 

Peter slept early  piitar jaldii

soyaa

piitar

earlyslept

Peter

jaldii soyaa



Introduce Attention Layer between Encoder 

and Decoder

piitar

earlyslept

Peter

jaldii soyaa

Piitar jaldii soyaa

Attention

Decoder

Peter slept early Encoder



How to learn the weights- attention 

weights?

• Weight (piitar, peter)

• Weight (piitar, slept)

• Weight (piitar, early)

piitar

early
sleptPeter



Positional Encoding



Limitation of RNN

• Encoder-decoder RNN generates a 

sequence of hidden states ht, t varying from 

0 to L, where L is the sentence length. 

• Each ht is a function of previous hidden state 

ht-1 and the input at position t. 

• So, to process the input at tth step, the 

encoder or decoder has to wait for t-1 steps. 

• This sequential nature of RNN makes the 

training time very large.



Inspiration from Shakespeare

• “All the world's a stage,/ And all the men 

and women merely players”- As You Like 

It- Shakespeare 

• All the sentence’s a stage./And all the 

words and punctuations are merely 

players



“children saw a big lion in the zoo 

in the morning”

• main verb: saw; 

• who (agent): children

• what (object): lion

• where (locative): zoo

• when (temporal): evening



Position Sensitivity: “Jack saw Jill” 

vs. “Jill saw Jack”

IF

the main verb (MV) is transitive and in past 

tense

THEN

the NP to the left of MV should get the ‘ ne’ 

postposition mark 

and 

The NP to the right of MV should get the ‘ko’ 

postposition mark



Transformer’s major contribution-

Positional Encoding (1/2)

• Word positions as additional disambiguation 

signals. 

• Words influence one another by virtue of their 

properties and positions

• Such influences manifest in translations as 

morphological transformations, lexical choices, 

pragmatic markers and so on. 

• Tenet of ML-NLP: with sufficient data all these 

mutual influences can be learnt.



Transformer’s major contribution-

Positional Encoding (2/2)

• Positions are encoded as embeddings and 

positional embeddings are supplied along 

with input word embeddings. 

• The training phase teaches the transformer to 

condition the output by paying attention to not 

only input words, but also their positions. 



Position Vector components

• Let the ith component of the tth

position vector be denoted as 

pos(t,i), i varying from 0 to (d/2)-1. 

Then 



Why Sine and Cosine? (1/2)

Foundational Observation-1: 

Let S be a set of symbols. Let P be 

the set of patterns the symbols 

create. If |P|>|S|, then there must 

exist patterns in P, that have repeated 

symbols.



Why Sine and Cosine? (2/2)

Foundational Observation-2:

IF 

the patterns can be arranged 

in a series with equal difference 

of values between every 

consecutive pair, 

THEN 

at any given position, the 

symbols at different positions of 

the pattern strings must REPEAT, 

and 



Periodicity and Decimal Integers

• 10 symbols called digits: 0, 1, 2, 3, 4, 5, 6, 

7, 8, 9. 

• In the sorted list of integers in ascending 

order, the string length of the integer goes 

on increasing

• The digits repeat after every 10 numbers 

in the lowest significant position, after 

every 100 numbers in the next lowest 

position, after every 1000 numbers in the 

next to next lowest and so on.



Binary Numbers

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



Challenges in designing PEs

• Cannot append decimal integers as position 

values; words later in the sentence will 

dominate, by the force of their positions being 

large integers

• Cannot normalize too: Word relations changing 

with the length of sentences- linguistically 

untenable

• “Oh, what a beautiful day!!”- which expresses (i) 

delight, (ii) the nature of the ‘day’ being 

‘beautiful’, (iii) ‘Oh’, being an exclamatory prefix 

to the rest of the phrase and so on, should be 

invariant with respect to the sentence length



Binary values also will not do!

• 0s will contribute nothing, and 1s will 

influence completely. 

• Such black-and-white (0-1) hard decisions go 

against the grain of NLP whose other name 

is ambiguity. 

• A language object represented by a vector 

must allow soft choices in its components, 

preferably represented by values in the 

closed range [0,1]. 



Criteria PEs should satisfy

• Should be added component by 

component to the word vector.

• Components should range from 0 to 1, 

both included.

• Components should be periodic, since 

they represent consecutive integers.

• Ingenious on the part of the creators of 

transformers to spot that sine and cosine

functions meet the above requirements. 



Example: “Jack saw Jill”

• Three positions indexed as 0, 1 and 

2. Assume word vector dimension d 

to be 4 and the frequency to be 

1/(102i/d), i=0,1. Then  



Statistical Alignment Learning

Non-neural



EM for word alignment from sentence 

alignment: example

English

(1) three rabbits

a b

(2) rabbits of Grenoble

b c d

French

(1) trois lapins

w x

(2) lapins de Grenoble

x y z

6 Jan, 2014isi: ml for mt:pushpak130



Initial Probabilities: 

each cell denotes t(a w), t(a x) etc.

a b c d

w 1/4 1/4 1/4 1/4

x 1/4 1/4 1/4 1/4

y 1/4 1/4 1/4 1/4

z 1/4 1/4 1/4 1/4



Example of expected count

C[wa; (a b)(w x)]

t(wa)

= ------------------------- X  #(a in ‘a b’) X #(w in ‘w x’) 

t(wa)+t(wb)

1/4

= ----------------- X  1 X 1= 1/2 

1/4+1/4

6 Jan, 2014isi: ml for mt:pushpak132



“counts”

b c d



x y z

a b c d

w 0 0 0 0

x 0 1/3 1/3 1/3

y 0 1/3 1/3 1/3

z 0 1/3 1/3 1/3

a b



w x

a b c d

w 1/2 1/2 0 0

x 1/2 1/2 0 0

y 0 0 0 0

z 0 0 0 0

6 Jan, 2014isi: ml for mt:pushpak133



Revised probability: example

trevised(a w)

1/2

= -------------------------------------------------------------------

(1/2+1/2 +0+0 )(a b)( w x) +(0+0+0+0 )(b c d) (x y z)

6 Jan, 2014isi: ml for mt:pushpak134



Revised probabilities table

a b c d

w 1/2 1/2 0 0

x 1/4 5/12 1/6 1/6

y 0 1/3 1/3 1/3

z 0 1/3 1/3 1/3



“revised counts”

b c d



x y z

a b c d

w 0 0 0 0

x 0 5/9 1/3 1/3

y 0 2/9 1/3 1/3

z 0 2/9 1/3 1/3

a b



w x

a b c d

w 1/2 3/8 0 0

x 1/2 5/8 0 0

y 0 0 0 0

z 0 0 0 0

6 Jan, 2014isi: ml for mt:pushpak136



Re-Revised probabilities table

a b c d

w 1/2 1/2 0 0

x 3/16 85/144 1/9 1/9

y 0 1/3 1/3 1/3

z 0 1/3 1/3 1/3

Continue until convergence; notice that (b,x) binding gets progressively stronger;

b=rabbits, x=lapins



Derivation of EM based Alignment 

Expressions

Hindi)(Say   language ofy  vocabular

English)(Say   language ofry  vocalbula

2

1

LV

LV

F

E





what    is    in   a    name ?

नाम में क्या है ?

naam meM kya hai ?

name    in     what   is ?

That  which  we call rose, by any other name will smell as sweet.

जजसे हम गुलाब िहते हैं, किस़ी और नाम से पुिारने पर भ़ी उसिी खुशबू समान म़ीठा होग़ी
Jise hum gulab kahte hai, aur bhi kisi naam se uski khushbu samaan mitha hogii

That which  we  rose   say        , any      other name by its  smell     as         sweet 

That  which  we call rose, by any other name will smell as sweet.

E1

F1

E2

F2

6 Jan, 2014isi: ml for mt:pushpak138



Vocabulary mapping

Vocabulary

VE VF

what , is , in, a , name , that, which, 

we , call ,rose, by, any, other, will, 

smell, as, sweet

naam, meM, kya, hai, jise, ham, 

gulab, kahte, aur, bhi, kisi, bhi, uski, 

khushbu, saman, mitha, hogii

6 Jan, 2014isi: ml for mt:pushpak139



Key Notations

English vocabulary : 𝑉𝐸
French vocabulary : 𝑉𝐹
No. of observations / sentence pairs : 𝑆
Data 𝐷 which consists of 𝑆 observations looks like,

𝑒11, 𝑒
1
2, … , 𝑒1𝑙1֞𝑓11, 𝑓

1
2, … , 𝑓1𝑚1

𝑒21, 𝑒
2
2, … , 𝑒2𝑙2֞𝑓21, 𝑓

2
2, … , 𝑓2𝑚2

.....

𝑒𝑠1, 𝑒
𝑠
2, … , 𝑒𝑠𝑙𝑠֞𝑓𝑠1, 𝑓

𝑠
2, … , 𝑓𝑠𝑚𝑠

.....

𝑒𝑆1, 𝑒
𝑆
2, … , 𝑒𝑆𝑙𝑆֞𝑓𝑆1, 𝑓

𝑆
2, … , 𝑓𝑆𝑚𝑆

No. words on English side in 𝑠𝑡ℎ sentence : 𝑙𝑠

No. words on French side in 𝑠𝑡ℎ sentence : 𝑚𝑠

𝑖𝑛𝑑𝑒𝑥𝐸 𝑒𝑠𝑝 =Index of English word 𝑒𝑠𝑝in English vocabulary/dictionary

𝑖𝑛𝑑𝑒𝑥𝐹 𝑓𝑠𝑞 =Index of French word 𝑓𝑠𝑞in French vocabulary/dictionary

(Thanks to Sachin Pawar for helping with the  maths formulae processing)

6 Jan, 2014isi: ml for mt:pushpak140



Hidden variables and parameters

Hidden Variables (Z) : 

Total no. of hidden variables = σ𝑠=1
𝑆 𝑙𝑠 𝑚𝑠 where each hidden variable is as follows:

𝑧𝑝𝑞
𝑠 = 1 , if in 𝑠𝑡ℎ sentence, 𝑝𝑡ℎ English word is mapped to 𝑞𝑡ℎ French word.

𝑧𝑝𝑞
𝑠 = 0 , otherwise

Parameters (Θ) :

Total no. of parameters = 𝑉𝐸 × 𝑉𝐹 , where each parameter is as follows:

𝑃𝑖,𝑗 = Probability that 𝑖𝑡ℎ word in English vocabulary is mapped to 𝑗𝑡ℎ word in Hindi vocabulary

6 Jan, 2014isi: ml for mt:pushpak141



Likelihoods
Data Likelihood L(D; Θ) :

Data Log-Likelihood LL(D; Θ) :

Expected value of Data Log-Likelihood E(LL(D; Θ)) :

6 Jan, 2014isi: ml for mt:pushpak142



Constraint and Lagrangian

෍

𝑗=1

𝑉𝐹

𝑃𝑖,𝑗 = 1 , ∀𝑖

6 Jan, 2014isi: ml for mt:pushpak143

Pij is “asymmetric” in the sense that the dictionary mapping is obtained

by “looking” from the English side, ith English word mapping to 

SOME HIndi word; we can “look” from the Hindi side too; 

Then we take the average of Pij and Pji

Aligners like GIZA++, Moses, Berkley etc. do this



Differentiating wrt Pij

6 Jan, 2014isi: ml for mt:pushpak144



Final E and M steps

M-step

E-step

6 Jan, 2014isi: ml for mt:pushpak145



Back to RNN



Recurrent Neural Networks: two 

key Ideas

𝑥𝑖−1𝑥2𝑥1 𝑐(𝑥𝑖)

1. Summarize context information into a single vector

𝑐(𝑥𝑖) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑖−1)

Nature of 𝑷(. )

n-gram LM: look-up table

FF LM: 𝑐 𝑥𝑖 = 𝐺 𝑥𝑖−1, 𝑥𝑖−2 (trigram LM)

RNN LM: 𝑐 𝑥𝑖 = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑖−1) (unbounded 

context)

𝑃(𝑥𝑖|𝑐 𝑥𝑖 )

Function G requires 

all context inputs at 

once

How does RNN 

address this 

problem?



Two Key Ideas (cntd)

𝑥3𝑥2𝑥1

𝑐(𝑥2)

2. Recursively construct the 

context

𝑐(𝑥3)𝑐(𝑥1)𝑐(𝑥0)

𝑐(𝑥𝑖) = 𝐹(𝑐 𝑥𝑖−1 , 𝑥𝑖)

We just need two inputs to construct the context 

vector:

- Context vector of previous timestep

- Current input

The context vector  state/hidden state/contextual 

representation

𝐹 . can be implemented as

𝑐(𝑥𝑖) = 𝜎 𝑊𝑐𝑐(𝑥𝑖−1 +𝑊𝑥 𝑥𝑖 + 𝑏1)

Like a feed-forward network

𝑊𝑥 𝑊𝑥 𝑊𝑥

𝑊𝑐 𝑊𝑐 𝑊𝑐



𝑥3𝑥2𝑥1

𝑜1 𝑜2 𝑜3

𝑜(𝑥𝑖) = 𝑊𝑜𝑐(𝑥𝑖) + 𝑏2
We are generally interested in categorical outputs

Ƹ𝑧𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜(𝑥𝑖))
= 𝑃(𝑦𝑖|𝑐𝑡𝑥(𝑥𝑖))

𝑐(𝑥2) 𝑐(𝑥3)𝑐(𝑥1)
𝑐(𝑥0)

Ƹ𝑧1 Ƹ𝑧2 Ƹ𝑧3

𝑊𝑐 𝑊𝑐 𝑊𝑐

𝑊𝑥 𝑊𝑥 𝑊𝑥

𝑊𝑜𝑊𝑜𝑊𝑜

The same parameters are used at each time-step

Model size does not depend on sequence length

Long range context is modeled

𝑦1 𝑦2 𝑦3

෢𝑧𝑖
𝑤 = 𝑃(𝑦𝑖 = 𝑤|𝑐𝑡𝑥(𝑥𝑖))

Generate output give the current input and 

state/context

Wo=wt. for output layer; 

Wc= wt. for generating next state 

(context); 

Wx= wt. for the input layer 



Input Sequence: (𝑥1 𝑥2 𝑥3 𝑥4… . . 𝑥𝑖 …… . 𝑥𝑁)

Output Sequence: (𝑦1 𝑦2 𝑦3 𝑦4… . . 𝑦𝑖 …… . 𝑦𝑁)

Sequence  Labelling Task

Input and output sequences have the same length 

Variable length input

Output contains categorical labels

Output at any time-step typically depends on neighbouring output labels and input 

elements 

Part-of-speech 

tagging

Recurrent Neural Network is a powerful model to learn sequence labelling 

tasks



How do we model language modeling 

as a sequence labeling task?

The capital of Maharashtra is Mumbai

capital of Maharashtra is MumbaiThe

<BOS>

<EOS>

The output sequence is one-time step ahead of the input sequence



Training Language Models
Input: large monolingual corpus

- Each example is a tokenized sentence (sequence of words)

- At each time step, predict the distribution of the next word given all previous words 

- Loss Function: 

- Minimize cross-entropy between actual distribution  and predicted distribution 

- Equivalently, maximize the likelihood

At a single time-step:

𝐽𝑖 𝜃 = 𝐶𝐸 𝑧𝑖 , Ƹ𝑧𝑖 = −σ𝑤∈𝑉 𝑧𝑖
𝑤 log ෢𝑧𝑖

𝑤 = − log෢𝑧𝑖
𝐿

Average over time steps for example n:

𝐽𝑛 𝜃 =
1

𝑇
σ𝑖=1
𝑇 𝐽𝑖 𝜃

Average over entire corpus:

𝐽(𝜃) =
1

𝑁
σ𝑘=1
𝑁 𝐽𝑛 𝜃

How do we learn model 

parameters? 

More on that later!

where 𝑦𝑖 =
𝐿



How do we evaluate quality of language models?

Evaluate the ability to predict the next word given a 

context

Evaluate the probability of a testset of 

sentences

Standard test sets exist for evaluating language models: Penn Treebank, Billion Word Corpus, 

WikiText

Evaluating Language Models



Evaluating LM (cntd.)

• Ram likes to play -----
– Cricket: high probability, low entropy, low perplexity 

(relatively very high frequency for ‘like to play 

cricket’)

– violin: -do- (relatively high frequency possibility for 

‘like to play violin’

– Politics: moderate probability, moderate entropy, 

moderate perplexity (relatively moderate frequency 

‘like to play politics’

– milk: almost 0 probability, very high entropy, very 

high perplexity (relatively very low possibility for ‘like 

to play milk’

So an LM that predicts ‘milk’ is bad!



Language Model Perplexity

Perplexity: exp 𝐽 𝜃

𝐽(𝜃) is cross-entropy on the test set

Cross-entropy is measure of difference between actual and 

predicted distribution 

Lower perplexity and cross-entropy is better

Training objective matches evaluation metric



https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-

words/

n-gram

RNN variants 

RNN models outperform n-gram models

A special kind of RNN network – LSTM- does even later  we will 

see that soon



Appendix



Digression

Phrase Based SMT (PBSMT) and distortion



Governing equation

)]()|([maxarg)|(maxarg ePefPfePe LMeebest 

where  e and f have their usual meaning of 

output and input respectively; the 

translation with the highest score is ebest. 

P(f|e) and PLM(e) are the translation model 

and language model, respectively. 



Modelling P(f|e)

LHS is the probability of sequence of I

phrases in the sentence f, given I

phrases in sentence e. Φ is called the 

phrase translation probability and d(.)

is the distortion probability.
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Distortion Probability
• d(starti-endi-1-1)

• starti: starting position of the translation of the ith

phrase of e in f

• endi-1: end position of the translation of the (i-1)th

phrase of e in f 

• The quantity starti-endi-1-1 is a measure of the 

distance between the translation of ith phrase and 

the translation of the (i-1)th phrase of e as they 

appear as the endth and startth phrase in f. 

• It is, thus, also a measure of the reordering of 

phrases induced by the translation.



Need for phrases (linguistic phrases 

and non-linguistic “phrases”)

• “The play is on”  “khel chal rahaa hai”

• “is on”  “chal rahaa hai”

• IMP: treat ‘is’ and ‘on’ together and NOT separately

• Otherwise, ‘on’ might map to ‘rahaa’ which will take 

away some probability mass of ‘on’ onto Hindi word 

mappings like ‘on’  {‘par’, ‘upar’, …}

• May produce non-fluent translations like 

“the book is on the table”  “kitaab mej rahaa

hai” instead of “kitaab mej par hai”



Back to distortion

• “The play is on even now”  “khel abhii bhii chal

rahaa hai”

• Mappings:

‘The play’

Position: (1)
‘is on’

(2)

‘even’

(3)
‘now’

(4)

khel

(1)
chal rahaa hai

(4)

abhi

(2) 
bhi

(3)


