
CS772: Deep Learning for

Natural Language Processing

(DL-NLP)

Perceptron, Sigmoid, Softmax, POS
tagging assignment

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week 2 of 11th Aug, 2025

1-slide recap, Lecture 1

• Nature of language- displacement, recursion etc.

• Nature of NLP: NLP stack;

NLP=linguistics+probability; 3 gens of NLP

• Meaning of Language Modeling

• Main Challenge: Ambiguity

• ChatGPT’s (an LLM) amazing capability- “Buffalo”

sentence

• Course info- evaluation, references

• A glimpse of CFILT research on rare language

phenomena and low resource setting

Perspective 2: NLP

Natural Language Processing: NLU

and NLG

• 3 Generations
– Gen1- Rule based NLP is also called Model

Driven NLP

– Gen2- Statistical ML based NLP (Hidden Markov

Model, Support Vector Machine)

– Gen3- Neural (Deep Learning) based NLP

– Gen3.5- LLM and GenAI

Two Pillars of NLP

CODED NLP

SYSTEM

LINGUISTICS + PROBABILITY

= NLP

BEFORE the

model operates:

Annotation

AFTER:Error

Analysis

Central Limit

Theorem

Law of Large

Numbers

Main challenge is Ambiguity!: an

extreme example

“Buffalo buffaloes Buffalo buffaloes buffalo

buffalo Buffalo buffaloes”

Prompt to chatGPT: what do you

understand by the above sentence

chatGPT response

• Buffalo (noun): Refers to the city of Buffalo, which is

in the state of New York in the United States.

• buffaloes (verb): Means to bully, confuse, or baffle.

• Buffalo (noun): Refers to the animal, specifically the

American bison.

describes a scenario where bison from Buffalo are

being intimidated or confused by other bison from the

same place, who, in turn, are intimidating or confusing

other bison. It's a playful sentence that plays on the

multiple meanings of the word "Buffalo" as a place

CORRECT!!

NLP Layers

Morphology

POS tagging

Chunking

Parsing

Semantics

Discourse and Coreference

Increased

Complexity

Of

Processing

Syntax

Tools for Language Computation

Softmax


=

−

=
K

j

Z

Z

i

j

i

e

e
Z

1

)(


==

−=
CkNx

kxQkxPQPH
,1

2

,1

),(log),(),(
Cross Entropy

1

1

1

11

)(

)1log()1(log

..

xot
w

L
w

ototL

w

net

net

o

o

L

w

L

−=



=

−−−−=












=







BP

x0x1x2xm-2
xm-1

xm
…

o

w1

net

The Perceptron

A perceptron is a computing element with input

lines having associated weights and the cell

having a threshold value. The perceptron model

is motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ

The Perceptron Model
•

θ

1
y

• Step function / Threshold

function

y= 1 for Σiwixi >=θ

=0 otherwise

Σwixi

• Input output behavior is discontinuous and

the derivative does not exist at Σiwixi= θ

• Σiwixi-θ is the net input denoted as net

• Referred to as a linear threshold element -

linearity because of x appearing with power 1

• y= f(net): Relation between y and net is non-

linear

Features of Perceptron

x2 x1 y

0 0 0

0 1 0

1 0 0

1 1 1

The parameter values (weights &thresholds) need to be found.
y

w1 w2

x1 x2

θ

Computation of Boolean

functions: AND

• w1 * 0 + w2 * 0 < θ➔ θ > 0; since y=0

• w1 * 0 + w2 * 1 < θ➔ w2 < θ; since y=0

• w1 * 1 + w2 * 0 < θ➔ w1 < θ; since y=0

• w1 * 1 + w2 *1 >= θ➔ w1 + w2 >= θ; since

y=1

• w1=w2= 0.5, θ=0.9 is a possibility

Computing parameter values

Other Boolean functions

w1 * 0 + w2 * 0 < θ➔ θ > 0

w1 * 0 + w2 * 1 >= θ➔ w2 >= θ

w1 * 1 + w2 * 0 >= θ➔ w1 >= θ

w1 * 1 + w2 *1 < θ➔ w1 + w2 < θ

No set of parameter values satisfy these inequalities.

OR can be computed using values of

w1=w2=1 and θ=0.5

XOR cannot be computed:

• N variables: # Boolean functions (22^n); #Threshold

Functions (2n^2)

• 1 4 4

• 2 16 14

• 3 256 128

• 4 64K 1008

• Functions computable by perceptrons- threshold

functions, #TF becomes negligibly small for larger

values of #BF.

• For n=2, all functions except XOR and XNOR are

computable.

Threshold functions

Perceptron Training Algorithm

(PTA)

Preprocessing:

1. The computation law is modified to

y=1 if ∑wixi > θ

y=0 if ∑wixi < θ

→

. . .

θ, <, =, >

w1 w2 wn

x1 x2 x3 xn

. . .

θ, <, >

w1 w2 w3
wn

x1 x2 x3 xn

w3

PTA – preprocessing cont…

2. Absorb θ as a weight

→

3. Negate all the zero-class examples

. . .

θ

w1 w2 w3 wn

x2 x3 xn
x1

w0=θ

x0= -1

. . .

θ

w1 w2 w3 wn

x2 x3 xn
x1

Example to demonstrate preprocessing

• OR perceptron

1-class <1,1> , <1,0> , <0,1>

0-class <0,0>

Augmented x vectors:-

1-class <-1,1,1> , <-1,1,0> , <-1,0,1>

0-class <-1,0,0>

Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing

cont..

Now the vectors

are

x2 x1 x0

X0 0 0 -1

X1 0 1 -1

X2 1 0 -1

X3 1 1 -1

After negating the 0-

class

x2 x1 x0

X0 0 0 1

X1 0 1 -1

X2 1 0 -1

X3 1 1 -1

Perceptron Training Algorithm

1. Start with a random value of w

ex: <0,0,0…>

2. Test for WXi > 0

If the test succeeds for i=1,2,…n

then return W

3. Modify W, Wnext=Wprev+Xfail

PTA on NAND

NAND: Y

X2 X1 Y

0 0 1

0 1 1 w2 w1

1 0 1

1 1 0 x2 x1

Converted To

w2 w1 w0= Θ

x2 x1 x0=-1

Θ

0

Preprocessing

NAND Augmented: NAND-0 class Negated

x2 x1 x0 Y x2 x1 x0

0 0 -1 1 X0: 0 0 -1

0 1 -1 1 X1: 0 1 -1

1 0 -1 1 X2: 1 0 -1

1 1 -1 0 X3: -1 -1 1

Vectors for which W=<w2 w1 w0> has to be found such that

W. Xi > 0

PTA Algo steps

Step-0: W0 = <0, 0, 0>

W1 = <0, 0, 0> + <0, 0, -1> {X0 Fails}

= <0, 0, -1>

W2 = <0, 0, -1> + <-1, -1, 1> {X3 Fails}

= <-1, -1, 0>

W3 = <-1, -1, 0> + <0, 0, -1> {X0 Fails}

= <-1, -1, -1>

W4 = <-1, -1, -1> + <0, 1, -1> {X1 Fails}

= <-1, 0, -2>

X0: 0 0 -1

X1: 0 1 -1

X2: 1 0 -1

X3: -1 -1 1

Trying convergence
W5 = <-1, 0, -2> + <-1, -1, 1> {X3 Fails}

= <-2, -1, -1>

W6 = <-2, -1, -1> + <0, 1, -1> {X1 Fails}

= <-2, 0, -2>

W7 = <-2, 0, -2> + <1, 0, -1> {X0 Fails}

= <-1, 0, -3>

W8 = <-1, 0, -3> + <-1, -1, 1> {X3 Fails}

= <-2, -1, -2>

W9 = <-2, -1, -2> + <1, 0, -1> {X2 Fails}

= <-1, -1, -3>
X0: 0 0 -1

X1: 0 1 -1

X2: 1 0 -1

X3: -1 -1 1

Trying convergence
W10 = <-1, -1, -3> + <-1, -1, 1> {X3 Fails}

= <-2, -2, -2>

W11 = <-2, -2, -2> + <0, 1, -1> {X1 Fails}

= <-2, -1, -3>

W12 = <-2, -1, -3> + <-1, -1, 1> {X3 Fails}

= <-3, -2, -2>

W13 = <-3, -2, -2> + <0, 1, -1> {X1 Fails}

= <-3, -1, -3>

W14 = <-3, -1, -3> + <0, 1, -1> {X2 Fails}

= <-2, -1, -4>

X0: 0 0 -1

X1: 0 1 -1

X2: 1 0 -1

X3: -1 -1 1

W15 = <-2, -1, -4> + <-1, -1, 1> {X3 Fails}

= <-3, -2, -3>

W16 = <-3, -2, -3> + <1, 0, -1> {X2 Fails}

= <-2, -2, -4>

W17 = <-2, -2, -4> + <-1, -1, 1> {X3 Fails}

= <-3, -3, -3>

W18 = <-3, -3, -3> + <0, 1, -1> {X1 Fails}

= <-3, -2, -4>

W2 = -3, W1 = -2, W0 = Θ = -4

Succeeds for all vectors

X0: 0 0 -1

X1: 0 1 -1

X2: 1 0 -1

X3: -1 -1 1

PTA convergence

Statement of Convergence of

PTA

• Statement:

Whatever be the initial choice of weights and

whatever be the vector chosen for testing, PTA

converges if the vectors are from a linearly

separable function.

Proof of Convergence of PTA

• Suppose wn is the weight vector at the nth

step of the algorithm.

• At the beginning, the weight vector is w0

• Go from wi to wi+1 when a vector Xj fails

the test wiXj > 0 and update wi as

wi+1 = wi + Xj

• Since Xjs form a linearly separable

function,

• there exits w* s.t. w*Xj > 0 for all j

Proof of Convergence of PTA
(cntd.)

• Consider the expression
G(wn) = wn . w*

| wn|

where wn = weight at nth iteration

• G(wn) = |wn| . |w*| . cosɵ
|wn|

where = angle between wn and w*

• G(wn) = |w*| . cosɵ

• G(wn) ≤ |w*| (as -1 ≤ cosɵ≤ 1)

Behavior of Numerator of G

wn . w* = (wn-1 + Xn-1
fail) . w*

= wn-1 . w* + Xn-1
fail . w*

= (wn-2 + Xn-2
fail) . w* + Xn-1

fail . w* …..

= w0 . w* + (X0
fail + X1

fail +.... + Xn-1
fail). w*

w*.Xi
fail is always positive: note carefully

• Suppose w*.Xi
fail ≥δmin , where δmin is a

positive quantity

• Num of G ≥ |w0 . w*| + n δmin

• So, numerator of G grows with n.

Behavior of Denominator of G

• |wn| = (wn . wn)
1/2

= [(wn-1 + Xn-1
fail)

2]1/2

= [(wn-1)
2 + 2. wn-1. X

n-1
fail + (Xn-1

fail)
2]1/2

≤ [(wn-1)
2 + (Xn-1

fail)
2]1/2 (as wn-1. X

n-1
fail ≤ 0)

≤ [(w0)
2 + (X0

fail)
2 + (X1

fail)
2 +…. + (Xn-1

fail)
2]1/2

• |Xj| ≤ δmax (max magnitude)

• So, Denom ≤ [(w0)
2 + n δmax

2)]1/2

• Denom grows as n1/2

Some Observations

• Numerator of G grows as n

• Denominator of G grows as n1/2

=> Numerator grows faster than

denominator

• If PTA does not terminate, G(wn)

values will become unbounded.

Some Observations contd.

• But, as |G(wn)| ≤ |w*| which is finite,

this is impossible!

• Hence, PTA has to converge.

• Proof is due to Marvin Minsky.

Convergence of PTA proved

• Whatever be the initial choice of weights and

whatever be the vector chosen for testing, PTA

converges if the vectors are from a linearly

separable function.

Sigmoid

Sigmoid neuron

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m …

oi

w1

W

Xi

neti


=

−

==

+
=

m

j

i

jj

i

i

net

i

xwXWnet

e
o

i

0

.

1

1

Sigmoid function: can saturate

• Brain saving itself from itself, in case of

extreme agitation, emotion etc.

Definition: Sigmoid or Logit function

)1(

1

1

yy
dx

dy

e
y

x

−=

+
=

−

)1(

1

1

yky
dx

dy

e
y

kx

−=

+
=

−

If k tends to infinity, sigmoid tends

to the step function

Sigmoid function

Decision making under sigmoid

• Output of sigmod is between 0-1

• Look upon this value as probability of

Class-1 (C1)

• 1-sigmoid(x) is the probability of Class-2

(C2)

• Decide C1, if P(C1) > P(C2), else C2

Sigmoid function and multiclass

classification

• Why can’t we use sigmoid for n-class

classification? Have segments on the curve

devoted to different classes, just like –infinity

to 0.5 is for class 2 and 0.5 to plus infinity is

class 2.

• Think about it!!

multiclass: SOFTMAX

• 2-class → multi-class (C classes)

• Sigmoid → softmax

• ith input, cth class (small c), c varies over

classes

• In softmax, decide for that class which

has the highest probability

What is softmax

• Turns a vector of K real values into a

vector of K real values that sum to 1

• Input values can be positive,

negative, zero, or greater than one

• But softmax transforms them into

values between 0 and 1

• so that they can be interpreted

as probabilities.

Mathematical form

• σ is the softmax function

• Z is the input vector of size K

• The RHS gives the ith component of the output

vector

• Input to softmax and output of softmax are of

the same dimension


=

−

=
K

j

Z

Z

i

j

i

e

e
Z

1

)(

Example

=


++++++

=

===

===

=

−

−

67.0,24.0,09.

09.2039.772.2

09.20
,

09.2039.772.2

39.7
,

09.2039.772.2

72.2
)(

09.20,39.7,72.2

3,2,1

3,2,1

321

321

Z

eee

ZZZ

Z



Softmax and Cross Entropy

• Intimate connection between softmax

and cross entropy

• Softmax gives a vector of

probabilities

• Winner-take-all strategy will give a

classification decision

Winner-take-all with softmax

• Consider the softmax vector obtained

from the example where the softmax

vector is <0.09, 0.24, 0.65>

• These values correspond to 3 classes
– For example, - positive (+), negative (-) and

neutral (0) sentiments, given an input sentence

like

– (a) I like the story line of the movie (+). (b)

However the acting is weak (-). (c) The

protagonist is a sports coach (0)

Sentence vs. Sentiment
Sentence vs.

Sentiment

Positive Negative Neutral

Sent (a) 1
(Pmax from

softmax)

0 0

Sentence (b) 0 1

(Pmax from

softmax)

0

Sentence (C) 0 0` 1
(Pmax from

softmax)

(a) I like the story line of the movie (+).

(b) However the acting is weak (-).

(c) The protagonist is a sports coach (0)

Training data

• (a) I like the story line of the movie (+).

• (b) However the acting is weak (-).

• (c) The protagonist is a sports coach (0)

Input Output

(a) <1,0,0>

(b) <0,1,0>

(c) <0,0,1>

Finding the error

• Difference between target (T) and

obtained (Y)

• Difference is called LOSS

• Options:
– Total Sum Square Loss (TSS)

– Cross Entropy (measures difference

between two probability distributions)

• Softmax goes with cross entropy

Cross Entropy Function


==

−=
CkNx

kxQkxPQPH
,1

2

,1

),(log),(),(

x varies over N data instances, c varies over C classes

P is target distribution; Q is observed distribution

Cross Entropy Loss

• Can we sum up cross entropies over the instances?

Is it allowed?

• Yes, summing up cross entropies (i.e. the total cross

entropy loss) is equivalent to multiplying

probabilities.

• Minimizing the total cross entropy loss is equivalent

to maximizing the likelihood of observed data.

How to minimize loss

• Gradient descent approach

• Backpropagation Algorithm

• Involves derivative of the input-output

function for each neuron

• FFNN with BP is the most important

TECHNIQUE for us in the course

Sigmoid and Softmax neurons

Sigmoid neuron

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m …

oi

w1

W

Xi

neti


=

−

==

+
=

m

j

i

jj

i

i

net

i

xwXWnet

e
o

i

0

.

1

1

Softmax Neuron

neti1

oi
1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…
wC1

oi
C

netiC

oi
C-1

netiC-1

oi
2

neti2

…


=

=

=

C

k

net

net

c

ii

c

i

k

i
c

e

e

NETSo

1

)(

Output for class c (small c), c:1 to C

Notation

• i=1..N

• N i-o pairs, i runs over the training data

• j=0…m, m components in the input

vector, j runs over the input dimension

(also weight vector dimension)

• k=1…C, C classes (C components in the

output vector)

• Capital letter for vectors

• Small letter for scalars

(therefore for vector

components)

• Xi: ith input vector

• oi: output (scalar)

• W: weight vector

• neti: W.Xi

• There are n input-output

observations

Fix Notations: Single Neuron (1/2)

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m

…

oi

w1

W

Xi

neti

W and each Xi has m components

W:<wm, wm-1, …, w2, w0>

Xi:<xi
m, xi

m-1, …, xi
2, x

i
0>

Upper suffix i indicates ith input

Fix Notations: Single Neuron (2/2)

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m

…

oi

W

Xi

neti

Fixing Notations: Multiple neurons in

o/p layer
oi

1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…

wCm

oi
C

netiC neti1

oi
C-1

netiC-1

oi
2

neti2

…

Now, Oi and NETi are vectors for ith input

Wk is the weight vector for cth output neuron, c=1..C

Fixing Notations

oi
1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…
wC1

oi
C

netiC neti1

oi
C-1

netiC-1

oi
2

neti2

…

Target Vector, Ti: <tiC tiC-1…ti2 ti1>, i→ for ith input. Only

one of these C componets is 1, rest are 0

Derivatives

Derivative of sigmoid

)1(

)1(
1

.
1

11

)1ln(ln

,
1

1

ii

i

i

i

net

net
net

neti

i

i

neti

th

net

i

oo
net

o

o
e

e
e

enet

o

o

eo

inputifor
e

o

i

i

i

i

i

i

−=





−=
+

=−
+

−=




+−=

+
=

−

−
−

−

−

−

Derivative of Softmax

patterninputi

e

e
o th

C

k

net

net
i

c
i
k

i
c

,

1


=

=

Derivative of Softmax: Case-1,

class c for O and NET same

)1(

1.
1

1
1

)ln(ln

1

1

i

c

i

ci

c

i

c

i

c

net

C

k

net
i

c

i

c

i

c

C

k

neti

c

i

c

oo
net

o

oe

e
net

o

o

eneto

i
c

i
k

i
k

−=





−=−=




−=





=

=

Derivative of Softmax: Case-2,

class c’ in netic’ different from class

c of O

i

c

i

ci

c

i

c

i

c

net

C

k

net
i

c

i

c

i

c

C

k

neti

c

i

c

oo
net

O

oe

e
net

o

o

eneto

i

c

i
k

i
k

'

'

'

'

'

.
1

0
1

)ln(ln

1

1

−=





−=−=




−=





=

=

Your first assignment

Compare and contrast HMM based, EnCo-

DeCo based and LLM based POS tagging

POS hierarchy

Part of Speech

Noun

Verbal

Qualifier

Content Word Function Word

Adposition

Conjunction

Exclamation

Preposition

Postposition

Adjective Adverb

Problem Statement

• Input: a sequence of words

• Output: a sequence of labels of these

words

POS ambiguity instances

week-of-17aug20cs626-pos:pushpak73

best ADJ ADV NP V

better ADJ ADV V DET

close ADV ADJ V N (running close to the

competitor, close escape, close the door,

towards the close of the play)

cut V N VN VD

even ADV DET ADJ V

grant NP N V –

hit V VD VN N

lay ADJ V NP VD

left VD ADJ N VN

like CNJ V ADJ P –

near P ADV ADJ DET

open ADJ V N ADV

past N ADJ DET P

present ADJ ADV V N

read V VN VD NP

right ADJ N DET ADV

second NUM ADV DET N

set VN V VD N –

that CNJ V WH DET

NLP Layers

Morphology

POS tagging

Chunking

Parsing

Semantics

Discourse and Coreference

Increased

Complexity

Of

Processing

Syntax

POS Tags- "To bank, I bank on the bank on

the river bank"

•To (IN - Preposition)

•bank (VB - Verb, base form)

•, (PUNCT - Punctuation)

•I (PRP - Pronoun)

•bank (VBP - Verb, non-3rd person singular present)

•on (IN - Preposition)

•the (DT - Determiner)

•bank (NN - Noun, singular)

•on (IN - Preposition)

•the (DT - Determiner)

•river (NN - Noun, singular)

•bank (NN - Noun, singular)

Constituency Parse- "To bank, I bank on

the bank on the river bank"

ML Based POS Tagging

Noisy Channel Model

W T

(wn, wn-1, … , w1) (tm, tm-1, … , t1)

Noisy Channel

Sequence W is transformed into

sequence T

T*=argmax(P(T|W))

T

W*=argmax(P(W|T))

W78

Bayes Theorem

• P(B|A)=[P(B).P(A|B)]/P(A)

• P(B|A): Posterior Probability

• P(B): Prior

• P(A|B): Likelihood

• Should we work with the LHS or the

RHS?

Mathematics of POS tagging

week-of-17aug20cs626-pos:pushpak80

Argmax computation (1/2)

Best tag sequence

= T*

= argmax P(T|W)

= argmax P(T)P(W|T) (by Baye’s Theorem)

P(T) = P(t0=^ t1t2 … tn+1=.)

= P(t0)P(t1|t0)P(t2|t1t0)P(t3|t2t1t0) …

P(tn|tn-1tn-2…t0)P(tn+1|tntn-1…t0)

= P(t0)P(t1|t0)P(t2|t1) … P(tn|tn-1)P(tn+1|tn)

= P(ti|ti-1) Bigram Assumption

∏

N+1

i = 0

week-of-17aug20cs626-pos:pushpak81

Argmax computation (2/2)

P(W|T) = P(w0|t0-tn+1)P(w1|w0t0-tn+1)P(w2|w1w0t0-tn+1) …

P(wn|w0-wn-1t0-tn+1)P(wn+1|w0-wnt0-tn+1)

Assumption: A word is determined completely by its tag. This is inspired by
speech recognition

= P(wo|to)P(w1|t1) … P(wn+1|tn+1)

= P(wi|ti)

= P(wi|ti) (Lexical Probability Assumption)

∏

n+1

i = 0

∏

n+1

i = 1

week-of-17aug20cs626-pos:pushpak82

Generative Model

^_^ People_N Jump_V High_R ._.

^ N

V

V

N

A

R

.

Lexical

Probabilities

Bigram

Probabilities

This model is called Generative model.

Here words are observed from tags as states.

This is similar to HMM.

week-of-17aug20cs626-pos:pushpak83

Computation of POS tags

DECODING

week-of-17aug20cs626-pos:pushpak84

W: ^ Brown foxes jumped over the fence .

T: ^ JJ NNS VBD NN DT NN .

NN VBS JJ IN VB

JJ

RB

NN

JJ

Brown

^

^

NNS

VBS

NNS

VBS

foxes

VBD

JJ

jumped

DT

DT

DT

DT

the

NN

VB

fence

.

.

.

NN

IN

JJ

RB

over

NN

JJ

Brown

^

^

NNS

VBS

NNS

VBS

foxes

VBD

JJ

jumped

DT

DT

DT

DT

the

NN

VB

fence

.

.

.

NN

IN

JJ

RB

over

Probability of a path (e.g. Top most path) = P(T) * P(W|T)

P(^) . P(NN|^) . P(NNS|NN) . P(VBD|NNS) . P(NN|VBD) .

P(DT|NN) . P(NN|DT) . P(.|NN) . P(.)

*

P(^|^) . P(brown|NN) . P(foxes|NNS) . P(jumped|VBD) .

P(over|NN) . P(the|DT) . P(fence|NN) . P(.|.)

Questions?

• Where do tags come from?
– Tag set

• How to get probability values i.e.

P(.)?
– Annotated corpora

After modeling of the problem,

emphasis should be on the corpus

Computing P(.) values

Let us suppose annotated corpus has the following

sentence
I have a brown bag .

PRN VB DT JJ NN .

appearedJJtimesofNumber

NNbyfollowedJJtimesofNumber
JJNNP

)|(=

appearedJJtimesofNumber

JJastaggedBrowntimesofNumber
JJBrownP

)|(=

HMM: Generative Model: Decode

by Viterbi

^_^ People_N Jump_V High_R ._.

^ N

V

V

N

A

N

.

Lexical

Probabilities

Bigram

Probabilities

This model is called Generative model.

Here words are observed from tags as states.

This is similar to HMM.

week-of-24aug20cs626-hmm:pushpak89

Your Assignment- due 30aug25

• Take POS tag data from NLTK

https://www.nltk.org/

• Use HMM, EnCo-DeCo and any LLM of your

choice to compare performance

• You can use pre-written/available/LLM-

geneated code, but you will have to explain

what the code is doing

• Later you will be asked to implement

something innovative on/based-on POS

tagging which will require you to code

https://www.nltk.org/

