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1-slide recap, Lecture 1

• Nature of language- displacement, recursion etc.

• Nature of NLP: NLP stack; 

NLP=linguistics+probability; 3 gens of NLP

• Meaning of Language Modeling

• Main Challenge: Ambiguity

• ChatGPT’s (an LLM) amazing capability- “Buffalo” 

sentence

• Course info- evaluation, references

• A glimpse of CFILT research on rare language 

phenomena and low resource setting



Perspective 2: NLP



Natural Language Processing: NLU

and NLG

• 3 Generations
– Gen1- Rule based NLP is also called Model 

Driven NLP

– Gen2- Statistical ML based NLP (Hidden Markov 

Model, Support Vector Machine)

– Gen3- Neural (Deep Learning) based NLP

– Gen3.5- LLM and GenAI 



Two Pillars of NLP

CODED NLP

SYSTEM

LINGUISTICS        +               PROBABILITY

= NLP

BEFORE the 

model operates:

Annotation

AFTER:Error

Analysis

Central Limit 

Theorem

Law of Large 

Numbers



Main challenge is Ambiguity!: an 

extreme example

“Buffalo buffaloes Buffalo buffaloes buffalo 

buffalo Buffalo buffaloes”

Prompt to chatGPT: what do you 

understand by the above sentence



chatGPT response

• Buffalo (noun): Refers to the city of Buffalo, which is 

in the state of New York in the United States.

• buffaloes (verb): Means to bully, confuse, or baffle.

• Buffalo (noun): Refers to the animal, specifically the 

American bison.

describes a scenario where bison from Buffalo are 

being intimidated or confused by other bison from the 

same place, who, in turn, are intimidating or confusing 

other bison. It's a playful sentence that plays on the 

multiple meanings of the word "Buffalo" as a place

CORRECT!!



NLP Layers

Morphology

POS tagging

Chunking

Parsing

Semantics

Discourse and Coreference

Increased

Complexity 

Of

Processing

Syntax



Tools for Language Computation

Softmax
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The Perceptron



A perceptron is a computing element with  input 

lines having associated weights and the cell 

having a threshold value. The perceptron model 

is motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ

The Perceptron Model
•



θ

1
y

• Step function / Threshold 

function

y= 1 for  Σiwixi >=θ

=0 otherwise

Σwixi



• Input output behavior is discontinuous and 

the derivative does not exist at Σiwixi= θ

• Σiwixi-θ is the net input denoted as net

• Referred to as a linear threshold element -

linearity because of x appearing with power 1

• y= f(net): Relation between y and net is non-

linear

Features of Perceptron



x2 x1 y

0 0 0

0 1 0

1 0 0

1 1 1

The parameter values (weights &thresholds) need to be found.
y

w1 w2

x1 x2

θ

Computation of Boolean 

functions: AND



• w1 * 0 + w2 * 0  < θ➔ θ >  0; since y=0

• w1 * 0 + w2  * 1  < θ➔ w2  < θ; since y=0

• w1 * 1 + w2 * 0  < θ➔ w1  < θ; since y=0

• w1 * 1 + w2  *1 >= θ➔ w1 + w2 >= θ; since 

y=1

• w1=w2= 0.5, θ=0.9 is a possibility

Computing parameter values



Other Boolean functions

w1 * 0 + w2 * 0  < θ➔ θ > 0

w1 * 0 + w2  * 1  >= θ➔ w2 >= θ

w1 * 1 + w2 * 0 >= θ➔ w1 >= θ

w1 * 1 + w2  *1 < θ➔ w1 + w2 < θ

No set of parameter values satisfy these inequalities.

OR can be computed using values of 

w1=w2=1 and θ=0.5

XOR cannot be computed:



• N variables: # Boolean functions (22^n); #Threshold 

Functions (2n^2)

• 1 4 4

• 2 16 14

• 3 256 128

• 4     64K 1008

• Functions computable by perceptrons- threshold 

functions, #TF becomes negligibly small for larger 

values of #BF.

• For n=2, all functions except XOR and XNOR are 

computable.

Threshold functions



Perceptron Training Algorithm 

(PTA)

Preprocessing:

1. The computation law is modified to

y=1  if  ∑wixi > θ

y=0  if  ∑wixi < θ

→

.   .   . 

θ, <, =, >

w1 w2 wn

x1 x2 x3 xn

.   .   . 

θ, <, >

w1 w2 w3
wn

x1 x2 x3 xn

w3



PTA – preprocessing cont…

2. Absorb θ as a weight

→

3. Negate all the zero-class examples

.   .   . 

θ

w1 w2 w3 wn

x2 x3 xn
x1

w0=θ

x0= -1

.   .   . 

θ

w1 w2 w3 wn

x2 x3 xn
x1



Example to demonstrate preprocessing

• OR perceptron

1-class <1,1> , <1,0> , <0,1>

0-class <0,0>

Augmented x vectors:-

1-class <-1,1,1> , <-1,1,0> , <-1,0,1>

0-class <-1,0,0>

Negate 0-class:- <1,0,0>



Example to demonstrate preprocessing 

cont..

Now the vectors 

are

x2 x1 x0

X0 0   0   -1

X1 0   1   -1

X2 1   0   -1

X3 1   1    -1

After negating the 0-

class

x2 x1 x0

X0 0   0   1

X1 0   1   -1

X2 1   0   -1

X3 1   1    -1



Perceptron Training Algorithm

1. Start with a random value of w

ex: <0,0,0…>

2. Test for WXi > 0

If the test succeeds for i=1,2,…n

then return W

3. Modify W, Wnext=Wprev+Xfail



PTA on NAND

NAND: Y

X2    X1    Y

0     0      1                      

0     1     1 w2 w1

1     0      1               

1     1      0                               x2 x1

Converted To   

w2 w1 w0= Θ

x2 x1 x0=-1

Θ

0



Preprocessing

NAND Augmented:         NAND-0 class Negated

x2 x1 x0 Y                  x2 x1 x0

0     0     -1     1          X0:    0       0     -1

0     1     -1     1 X1:    0       1     -1 

1     0     -1     1           X2:   1       0     -1 

1     1     -1     0           X3:   -1       -1     1 

Vectors for which W=<w2 w1 w0> has to be found such that 

W. Xi > 0



PTA Algo steps

Step-0: W0 =  <0, 0, 0>

W1 =  <0, 0, 0> + <0, 0, -1>     {X0 Fails}

=  <0, 0, -1>

W2 =  <0, 0, -1> + <-1, -1, 1>  {X3 Fails}

=  <-1, -1, 0> 

W3 =  <-1, -1, 0> + <0, 0, -1>    {X0 Fails}

=  <-1, -1, -1>

W4 =  <-1, -1, -1> + <0, 1, -1>  {X1 Fails}

=  <-1, 0, -2>

X0:    0       0     -1

X1:    0       1     -1  

X2:    1       0     -1 

X3:   -1       -1     1 



Trying convergence
W5 =  <-1, 0, -2> + <-1, -1, 1>     {X3 Fails}

=  <-2, -1, -1>

W6 =  <-2, -1, -1> + <0, 1, -1>       {X1 Fails}

=  <-2, 0, -2> 

W7 =  <-2, 0, -2> + <1, 0, -1>       {X0 Fails}

=  <-1, 0, -3>

W8 =  <-1, 0, -3> + <-1, -1, 1>     {X3 Fails}

=  <-2, -1, -2>

W9 =  <-2, -1, -2> + <1, 0, -1>      {X2 Fails}

=  <-1, -1, -3>
X0:    0       0     -1

X1:    0       1     -1  

X2:    1       0     -1 

X3:   -1       -1     1 



Trying convergence
W10  =  <-1, -1, -3> + <-1, -1, 1>     {X3 Fails}

=  <-2, -2, -2>

W11  =  <-2, -2, -2> + <0, 1, -1>       {X1 Fails}

=  <-2, -1, -3> 

W12  =  <-2, -1, -3> + <-1, -1, 1>    {X3 Fails}

=  <-3, -2, -2>

W13  =  <-3, -2, -2> + <0, 1, -1>       {X1 Fails}

=  <-3, -1, -3>

W14  =  <-3, -1, -3> + <0, 1, -1>      {X2 Fails}

=  <-2, -1, -4>

X0:    0       0     -1

X1:    0       1     -1  

X2:    1       0     -1 

X3:   -1       -1     1 



W15  =  <-2, -1, -4> + <-1, -1, 1>     {X3 Fails}

=  <-3, -2, -3>

W16  =  <-3, -2, -3> + <1, 0, -1>       {X2 Fails}

=  <-2, -2, -4> 

W17  =  <-2, -2, -4> + <-1, -1, 1>    {X3 Fails}

=  <-3, -3, -3>

W18  =  <-3, -3, -3> + <0, 1, -1>       {X1 Fails}

=  <-3, -2, -4>

W2 =  -3,   W1 = -2,   W0 = Θ = -4

Succeeds for all vectors

X0:    0       0     -1

X1:    0       1     -1  

X2:    1       0     -1 

X3:   -1       -1     1 



PTA convergence



Statement of Convergence of 

PTA

• Statement:

Whatever be the initial choice of weights and 

whatever be the vector chosen for testing, PTA 

converges if the vectors are from a linearly 

separable function.



Proof of Convergence of PTA

• Suppose wn is the weight vector at the nth

step of the algorithm. 

• At the beginning, the weight vector is w0

• Go from wi to wi+1 when a vector Xj fails 

the test wiXj > 0 and update wi as 

wi+1 = wi + Xj

• Since Xjs form a linearly separable 

function, 

• there exits w* s.t. w*Xj > 0 for all j



Proof of Convergence of PTA 
(cntd.)

• Consider the expression
G(wn) =  wn . w*

| wn|

where wn = weight at nth iteration

• G(wn)  = |wn| . |w*| . cosɵ
|wn|

where = angle between wn and w*

• G(wn)  = |w*| . cosɵ

• G(wn) ≤ |w*|  ( as -1 ≤ cosɵ≤ 1)



Behavior of Numerator of G

wn . w*  =  (wn-1 + Xn-1
fail ) . w*

= wn-1 . w* + Xn-1
fail . w* 

= (wn-2 + Xn-2
fail ) . w* + Xn-1

fail . w* …..

= w0 . w* + ( X0
fail + X1

fail +.... + Xn-1
fail ). w* 

w*.Xi
fail is always positive: note carefully

• Suppose w*.Xi
fail ≥δmin , where δmin is a 

positive quantity 

• Num of G ≥ |w0 . w*| + n δmin

• So, numerator of G grows with n.



Behavior of Denominator of G

• |wn| =  (wn . wn)
1/2

= [(wn-1 + Xn-1
fail )

2]1/2

= [(wn-1)
2 + 2. wn-1. X

n-1
fail + (Xn-1

fail )
2]1/2

≤ [(wn-1)
2 + (Xn-1

fail )
2]1/2  (as wn-1. X

n-1
fail ≤ 0 )

≤ [(w0)
2 + (X0

fail )
2 + (X1

fail )
2 +…. + (Xn-1

fail )
2]1/2 

• |Xj| ≤ δmax (max magnitude)

• So, Denom ≤ [(w0)
2 + n δmax 

2)]1/2

• Denom grows as n1/2



Some Observations 

• Numerator of G grows as n

• Denominator of G grows as n1/2

=> Numerator grows faster than 

denominator

• If PTA does not terminate, G(wn) 

values will become unbounded.



Some Observations contd. 

• But, as |G(wn)| ≤ |w*|  which is finite, 

this is impossible!

• Hence, PTA has to converge. 

• Proof is due to Marvin Minsky.



Convergence of PTA proved

• Whatever be the initial choice of weights and 

whatever be the vector chosen for testing, PTA 

converges if the vectors are from a linearly 

separable function.



Sigmoid



Sigmoid neuron
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Sigmoid function: can saturate

• Brain saving itself from itself, in case of 

extreme agitation, emotion etc. 



Definition: Sigmoid or Logit function
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If k tends to infinity, sigmoid tends 

to the step function



Sigmoid function



Decision making under sigmoid

• Output of sigmod is between 0-1

• Look upon this value as probability of 

Class-1 (C1)

• 1-sigmoid(x) is the probability of Class-2 

(C2)

• Decide C1, if P(C1) > P(C2), else C2



Sigmoid function and multiclass 

classification

• Why can’t we use sigmoid for n-class 

classification? Have segments on the curve 

devoted to different classes, just like –infinity 

to 0.5 is for class 2 and 0.5 to plus infinity is 

class 2.

• Think about it!!



multiclass: SOFTMAX

• 2-class → multi-class (C classes)

• Sigmoid → softmax

• ith input, cth class (small c), c varies over 

classes 

• In softmax, decide for that class which 

has the highest probability



What is softmax

• Turns a vector of K real values into a 

vector of K real values that sum to 1

• Input values can be positive, 

negative, zero, or greater than one

• But softmax transforms them into 

values between 0 and 1

• so that they can be interpreted 

as probabilities.



Mathematical form

• σ is the softmax function

• Z is the input vector of size K

• The RHS gives the ith component of the output 

vector

• Input to softmax and output of softmax are of 

the same dimension 
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Softmax and Cross Entropy 

• Intimate connection between softmax

and cross entropy

• Softmax gives a vector of 

probabilities

• Winner-take-all strategy will give a 

classification decision



Winner-take-all with softmax

• Consider the softmax vector obtained 

from the example where the softmax

vector is <0.09, 0.24, 0.65>

• These values correspond to 3 classes
– For example, - positive (+), negative (-) and 

neutral (0) sentiments, given an input sentence 

like

– (a) I like the story line of the movie (+). (b) 

However the acting is weak (-). (c) The 

protagonist is a sports coach (0)



Sentence vs. Sentiment
Sentence vs. 

Sentiment

Positive Negative Neutral

Sent (a) 1 
(Pmax from 

softmax)

0 0

Sentence (b) 0 1

(Pmax from 

softmax)

0

Sentence (C) 0 0` 1
(Pmax from 

softmax)

(a) I like the story line of the movie (+). 

(b) However the acting is weak (-). 

(c) The protagonist is a sports coach (0)



Training data

• (a) I like the story line of the movie (+). 

• (b) However the acting is weak (-). 

• (c) The protagonist is a sports coach (0)

Input Output

(a) <1,0,0>

(b) <0,1,0>

(c) <0,0,1>



Finding the error

• Difference between target (T) and 

obtained (Y)

• Difference is called LOSS

• Options:
– Total Sum Square Loss (TSS)

– Cross Entropy (measures difference 

between two probability distributions)

• Softmax goes with cross entropy



Cross Entropy Function
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x varies over N data instances, c varies over C classes

P is target distribution; Q is observed distribution



Cross Entropy Loss

• Can we sum up cross entropies over the instances? 

Is it allowed?

• Yes, summing up cross entropies (i.e. the total cross 

entropy loss) is equivalent to multiplying 

probabilities.

• Minimizing the total cross entropy loss is equivalent 

to maximizing the likelihood of observed data. 



How to minimize loss

• Gradient descent approach

• Backpropagation Algorithm

• Involves derivative of the input-output 

function for each neuron

• FFNN with BP is the most important 

TECHNIQUE for us in the course



Sigmoid and Softmax neurons



Sigmoid neuron
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Softmax Neuron
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Notation

• i=1..N 

• N i-o pairs, i runs over the training data

• j=0…m, m components in the input 

vector, j runs over the input dimension 

(also weight vector dimension)

• k=1…C, C classes (C components in the 

output vector)



• Capital letter for vectors

• Small letter for scalars 

(therefore for vector 

components) 

• Xi: ith input vector

• oi: output (scalar)

• W: weight vector

• neti: W.Xi

• There are n input-output 

observations

Fix Notations: Single Neuron (1/2)

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m

…

oi

w1

W

Xi

neti



W and each Xi has m components

W:<wm, wm-1, …, w2, w0>

Xi:<xi
m, xi

m-1, …, xi
2, x

i
0>

Upper suffix i indicates ith input

Fix Notations: Single Neuron (2/2)

xi
0xi

1xi
2xi

m-2
xi

m-1

xi
m

…

oi

W

Xi

neti



Fixing Notations: Multiple neurons in 

o/p layer
oi

1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…

wCm

oi
C

netiC neti1

oi
C-1

netiC-1

oi
2

neti2

…

Now, Oi and NETi are vectors for ith input 

Wk is the weight vector for cth output neuron, c=1..C



Fixing Notations

oi
1

xi
0

xi
1xi

2
xi

m-2xi
m-1

xi
m

…
wC1

oi
C

netiC neti1

oi
C-1

netiC-1

oi
2

neti2

…

Target Vector, Ti: <tiC tiC-1…ti2 ti1>, i→ for ith input. Only 

one of these C componets is 1, rest are 0



Derivatives



Derivative of sigmoid
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Derivative of Softmax
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Derivative of Softmax: Case-1, 

class c for O and NET same
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Derivative of Softmax: Case-2, 

class c’ in netic’ different from class 
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Your first assignment

Compare and contrast HMM based, EnCo-

DeCo based and LLM based POS tagging



POS hierarchy

Part of Speech

Noun

Verbal

Qualifier

Content Word Function Word

Adposition

Conjunction

Exclamation

Preposition

Postposition

Adjective Adverb



Problem Statement

• Input: a sequence of words

• Output: a sequence of labels of these 

words 



POS ambiguity instances

week-of-17aug20cs626-pos:pushpak73

best ADJ ADV NP V 

better ADJ ADV V DET 

close ADV ADJ V N (running close to the 

competitor, close escape, close the door, 

towards the close of the play)

cut V N VN VD 

even ADV DET ADJ V 

grant NP N V –

hit V VD VN N 

lay ADJ V NP VD 

left VD ADJ N VN 

like CNJ V ADJ P –

near P ADV ADJ DET 

open ADJ V N ADV 

past N ADJ DET P 

present ADJ ADV V N 

read V VN VD NP 

right ADJ N DET ADV 

second NUM ADV DET N 

set VN V VD N –

that CNJ V WH DET



NLP Layers

Morphology

POS tagging

Chunking

Parsing

Semantics

Discourse and Coreference

Increased

Complexity 

Of

Processing

Syntax



POS Tags- "To bank, I bank on the bank on 

the river bank"

•To (IN - Preposition)

•bank (VB - Verb, base form)

•, (PUNCT - Punctuation)

•I (PRP - Pronoun)

•bank (VBP - Verb, non-3rd person singular present)

•on (IN - Preposition)

•the (DT - Determiner)

•bank (NN - Noun, singular)

•on (IN - Preposition)

•the (DT - Determiner)

•river (NN - Noun, singular)

•bank (NN - Noun, singular) 



Constituency Parse- "To bank, I bank on 

the bank on the river bank"



ML Based POS Tagging



Noisy Channel Model

W T

(wn, wn-1, … , w1) (tm, tm-1, … , t1)

Noisy Channel

Sequence W is transformed into 

sequence T

T*=argmax(P(T|W))

T

W*=argmax(P(W|T))

W78



Bayes Theorem

• P(B|A)=[P(B).P(A|B)]/P(A)

• P(B|A): Posterior Probability

• P(B): Prior

• P(A|B): Likelihood

• Should we work with the LHS or the 

RHS?



Mathematics of POS tagging

week-of-17aug20cs626-pos:pushpak80



Argmax computation (1/2)

Best tag sequence

= T*

= argmax P(T|W)

= argmax P(T)P(W|T) (by Baye’s Theorem)

P(T) = P(t0=^ t1t2 … tn+1=.)

= P(t0)P(t1|t0)P(t2|t1t0)P(t3|t2t1t0) …

P(tn|tn-1tn-2…t0)P(tn+1|tntn-1…t0)

= P(t0)P(t1|t0)P(t2|t1) … P(tn|tn-1)P(tn+1|tn)

=    P(ti|ti-1) Bigram Assumption

∏

N+1

i = 0

week-of-17aug20cs626-pos:pushpak81



Argmax computation (2/2)

P(W|T) = P(w0|t0-tn+1)P(w1|w0t0-tn+1)P(w2|w1w0t0-tn+1) …

P(wn|w0-wn-1t0-tn+1)P(wn+1|w0-wnt0-tn+1)

Assumption: A word is determined completely by its tag. This is inspired by 
speech recognition

= P(wo|to)P(w1|t1) … P(wn+1|tn+1)

=    P(wi|ti)

=    P(wi|ti) (Lexical Probability Assumption)

∏

n+1

i = 0

∏

n+1

i = 1

week-of-17aug20cs626-pos:pushpak82



Generative Model

^_^ People_N Jump_V High_R ._.

^ N

V

V

N

A

R

.

Lexical 

Probabilities

Bigram

Probabilities

This model is called Generative model. 

Here words are observed from tags as states.

This is similar to HMM.

week-of-17aug20cs626-pos:pushpak83



Computation of POS tags

DECODING

week-of-17aug20cs626-pos:pushpak84



W: ^ Brown foxes jumped over the fence .

T: ^ JJ NNS VBD NN DT NN .

NN VBS JJ IN VB

JJ

RB

NN

JJ

Brown

^

^

NNS

VBS

NNS

VBS

foxes

VBD

JJ

jumped

DT

DT

DT

DT

the

NN

VB

fence

.

.

.

NN

IN

JJ

RB

over



NN

JJ

Brown

^

^

NNS

VBS

NNS

VBS

foxes

VBD

JJ

jumped

DT

DT

DT

DT

the

NN

VB

fence

.

.

.

NN

IN

JJ

RB

over

Probability of a path (e.g. Top most path) = P(T) * P(W|T)

P(^) . P(NN|^) . P(NNS|NN) . P(VBD|NNS) . P(NN|VBD) . 

P(DT|NN) . P(NN|DT) . P(.|NN) . P(.) 

*

P(^|^) . P(brown|NN) . P(foxes|NNS) . P(jumped|VBD) . 

P(over|NN) . P(the|DT) . P(fence|NN) . P(.|.)



Questions?

• Where do tags come from?
– Tag set

• How to get probability values i.e. 

P(.)?
– Annotated corpora

After modeling of the problem, 

emphasis should be on the corpus



Computing P(.) values

Let us suppose annotated corpus has the following 

sentence
I have a brown bag .

PRN VB DT JJ NN .

appearedJJtimesofNumber

NNbyfollowedJJtimesofNumber
JJNNP

____

______
)|( =

appearedJJtimesofNumber

JJastaggedBrowntimesofNumber
JJBrownP

____

______
)|( =



HMM: Generative Model: Decode 

by Viterbi

^_^ People_N Jump_V High_R ._.

^ N

V

V

N

A

N

.

Lexical 

Probabilities

Bigram

Probabilities

This model is called Generative model. 

Here words are observed from tags as states.

This is similar to HMM.

week-of-24aug20cs626-hmm:pushpak89



Your Assignment- due 30aug25

• Take POS tag data from NLTK 

https://www.nltk.org/

• Use HMM, EnCo-DeCo and any LLM of your 

choice to compare performance

• You can use pre-written/available/LLM-

geneated code, but you will have to explain 

what the code is doing

• Later you will be asked to implement 

something innovative on/based-on POS 

tagging which will require you to code

https://www.nltk.org/

