Dense Retrieval
for Language Models

Soumen Chakrabarti

Burning 20 watts between our ears

*\WWe cannot afford to.. BRAIN

¢ = nm read WI kl ped Ia IIIIIIIIIHIIlllllIllIIIIIII!I!I(Illllllllllllllllllllllllllllllllm pIIIT
end-to-end Priir= pREEE Y -

*...INncorporate
WikiData into our

Neurons
... h al I u Ci n ate (m u Ch) 100 TFLOPS Compute Power 83 TFLOPS Compute Power
° mOd el un ive rse as 86 Billion Transistors 80 Billion Transistors

10-100 TB RAM 24GB VRAM
20 W

only token sequences

e...mix Instructions and
data

Retrieval in the age of generative Al

Home = News = Large Language Models pose risk to science with false answers, says Oxford study ARTIFICIAL INTELLIGENCE

Large Language Models pose risk to Why Big Tech’s bet on Al assistantsis so
science with false answers, says Oxford risky

study protommts Allmggemooe

ARTIFICIAL INTELLIGENCE ~ RESEARCH ~ SOCIAL SCIENCES By Melissa Heikkilé

Large Language Models (LLMs) pose a direct threat to science, because of so-called October 3,2023

‘hallucinations’ (untruthful responses), and should be restricted to protect scientific truth, says

TECH- Al

Google CEO Sundar Pichai
says ‘hallucination
problems’ still plague ALl
tech and he doesn’t know
why

Retrieval from trusted sources
remains a cornerstone of
hallucination mitigation
strategies

() BYWILLDANIEL o<g
<

(h/t Rudra Murthy)

Brief history of retrieval

Inverted Distributional LSI, word2vec, ConvNet Transformer,
‘ : indexing vectors SVD GloVE , LSTM dense retrieval ‘ ,
BC AD
~2013

Discrete word-based ‘lexical’ Semantic’ indices built upon
indices based on inverted Word (and audio, image, video,

lists, super optimized for etc.) embeddings, based on
o P P locality sensitive hashing, vector
billions of documents, but

_ o databases, hierarchical search
suffering from “lexical gap S e

What to retrieve

*Passages
Increase confidence in answer
Combine complementary info
Political inclination of Obama’s grandparents

*(Knowledge) graphs
A step toward canonical entities and relations
Single node or edge has very limited info
Number of countries with more rivers than Brazil

*Tables
Textual tables embedded in documents
Relational tables with precise schema
Toward semantic interpretation

*Ilmages, videos, brain impulses, ...

Why dig up the ancient past?

* Historical perspective

Word embeddings were invented as early as 1993 . sightseeing in

First dense retrieval in 1995, then 1999 I-amburg
word2vec is a form of SVD - places to visit around

* Must understand sparse index issues to Hamburg

understand dense retrieval * tourist attractions near

- Back to the future! Hamburg
sightseeing in Hamburg e tours not to miss when
High storage and processing overheads of dense staying in Hamburg
retrieval * historic destinations in
Use dense representation with sparse data Hamburg
structures? * tourist spots in

- Return to sparse indices or hybrid solutions Frankfurt

https://aclanthology.org/P93-1024/
https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Probabilistic_latent_semantic_analysis
https://papers.nips.cc/paper_files/paper/2014/hash/b78666971ceae55a8e87efb7cbfd9ad4-Abstract.html
https://en.wikipedia.org/wiki/Singular_value_decomposition

Sparse / lexical retrieval

+\Workhorse of search engines until ~2013
- Can handle corpus with billions of documents (N)

*Document modeled as bag of words
- Bag = multiset, take multiple occurrences into account
» Corpus vocabulary of size W = 100000
- But each document has fewer than 500 words
- Hence, ‘sparse’

* Each word has some impact on the document
TF: how many times it occurs
* IDF: how rare is the word in the whole corpus

TF, IDF, impact

«Documents numbered n € {1, -, N} = [N]
 Words numbered w € {1, ---, W} = [W]

* TF represents the number of times #(n, w) a word w
occurs in a document n

- Occurring 20 times not 20 times more significant than
occurring once

-log (1 +1log (1 + #(n, w))) or such squashing functions

* IDF represents the rareness of w in the whole corpus
- ‘leopard’ has large IDF, ‘the’ has small IDF
- Let w occur at least once in #(w) docs out of N

- log (1 + N/#(W)) commonly used
* Multiply TF and IDF to get impact of w on doc n

TF-IDF vector space document representation

W = 100000 axes or dimensions
* One axis for each word

* Role of IDF

- Rare word — magnify axis scale
* Frequent word — shrink

* Query is another (short) doc
» Overload q, d,, Lo mean both texts and
their vectors ¢, d,,, each with W dims

 Similarity s(qg, d,,) = dot product (or
cosine?)

cs(q,dp)=qed, =3 _ qiwlda[w]
* Only shared words contribute

the

Impact
of ‘cat’
on dq

cat

//

dq

neuron

Dot product and cosine similarity
#Norm or length of a vector [|qll = Y, q[w]?

 Cosine of the angle between vectors g, d

qedn
lqll lld

» Alternatively, first normalize the lengths of g, d,, then compute g » d,,
» Cosine similarity cares only about the directions of the vectors and not

their absolute lengths
- Replicating a doc 50 times over has no effect

* Collect these length-normalized TFIDF doc vectors into a N x W matrix
- Losing word position info, can restore with some more storage cost

*cos(q,dn) =

Document-word matrix C and scoring

%(C is very sparse, so is g
- If rows are sparse, so are columns
+ All matrix elements are non-negative
» This will change with neural encoders

* Would never store them this way, this is just
for illustration

 Scoring all d,, together amounts to matrix
vector multiplication
 Look up only those columns w of C where
qlw] >0
* Document are presented in row-major order

» During query, we want to access only the
non-zero elements in a few columns of C

vigtel

W idimensions

2

we[W],q[w]>0

o | 0os

qlwld,[w]

From lexical to dense text representation
*Contextual text encoder (typ. transformer based)

[CLS] He swam near the bank because the current was swift.

Want the

‘ , two output
Encoder vectors for
‘bank’ to be

quite

different
[CLS] His bank offered a low interest on current accounts. because

they mean
‘Encoder’ different
things

Pooled and bagged text representations

*A transformer encoder Aggregate ...or keep
outputs a “[CLS] vector” [oLs] - Mmosingle &l vestors
representing the whole embedding |
passage / All word vectors

*And one vector per /.
token/word e

‘First we will discuss = ()
retrieval using single
vector per passage : ()

-Later we will discuss d J
mU|t|-VeCtOr 1 2 3 4 coe 512
representations

Input sentence

A first-cut setup for dense retrieval

+R P is the Euclidean space with D dimensions
- q € RP is a query vector; x,, € RP is a document vector

* Score is dot or inner product s(q, X,) = g * X,
- [f we want Iength normalization, thjn use
n) — *Xn 2 2

s(q, x , where ||x]| = {x7 + -+ X{p
Iqll X nll

- Equivalently, pre-scale vectors to have unit length
- Cosine of the angle between the vector, written cos (g, x;,)

» Goal: flnd K docs most similar to query:

argmax® s(q, x,)
ne[N]

*|.e., scoring same as before, vectors created differently

Brute force ranking

*Dense N x D corpus matrix

* Matrix-vector multiply with
query vector to get scores

* Then pick top K elements

*Takes O(N D) time

*Challenge: spend time that
scales very slowly (sub- Pick documents
linearly) with N (row indexes) with

Scaling with D, K tolerable top K scores

C H

D dimensions

— O3S

ldea: cluster and bucket

«Divide and conquer
* Initialize C cluster centers X¢, wherec =1, ---, C

* Repeat (C-means clustering algorithm)
- Move each x,, to cluster with largest s(X¢, x,,)
- Recompute cluster centers

* At query time, given query g
* Find cluster ¢ with largest s(X¢, q)

- Compute “true scores” s(q, x,) only for x,s that belong to cluster ¢ (“the bucket
of ¢”)

- If we pick C = VN

- Find closest cluster in v N time, then score all docs in itin VN time

Query time reduction

sAssuming buckets are balanced, each bucket has N /C
docs

* When query is assigned its bucket, those N /C docs
need to be fully scored

» Usually, let C N9, so that typical query time is like N/
N6 =N1-6

* Should also pay attention to distribution of query
workload over buckets

- Unpopular buckets can afford to be bigger

* Unbalanced bucket occupancy can reduce average query
atency

Neural ‘clustering’

+(C clusters means I' =log C bits
to address a cluster

* Design a feed forward network

» Input can be x,, or query g
- OQutput is intended to be D bits —

» Approximate bits with tanh (F (x,))
- F:RP - R! is some simple network
-tanh(s) € [-1,1]1
- F will adjust to corpus (and query) distributions
- Once F is trained, discretize output as sign (F (x,))
* (Note, F is not meant as a classification device)

Three loss objectives to train F

<Bit balance: each output element should be +1 for
approximately half of the N instances and —1 for
the other half

» For each bit position y, |, tanh (F (x,)[y])]

» Uncorrelated: two output bits should not be +1 for o
the same instances and —1 for their complement \

> F(xn)[VIF (x,)[y']| = 0fory # v’ .

* No sitting on the fence: push
outputs toward 1

* 2y (L—Itanh (F (xp) [y

Further informed by query workload

sDocs never touched by query workload can go anywhere

> As long as they do not overpopulate frequently touched
buckets

» For each ¢, get N /2Y docs {x:} with best scores

- Use scoring function (dot, cos, L2, etc.) on whole corpus
- Or use relevant docs if known

* Want these best-true-score docs in query bucket,
i.e. sign(F (q)) = sign(F (x+))
- Suggests loss surrogate sz zy (1-=F(@ly] F(x)[y])
- (Other forms possible, may behave better)
» F is trained with these four loss components

Recap

«In ‘raw’ TFIDF space, corpus matrix C is N x W
W = 100000
» C is very sparse; each row has max ~500 nonzeros
- Each row represents one document

* A neural encoder transforms C into N x D
- BERT: D = 768; Llama17B: D = 7680
- These D dimensions are all non-zeros, can be negative
» Hashing network F further reducesto N x I’
- C = 2! is the desired number of clusters
» Should scale up gradually with corpus size N

Navigating in a social network (Milgram)

* Source cities Omaha, Nebraska, and
Wichita, Kansas

 Destination city Boston,
Massachusetts

» Letters with instructions sent to
random people in source cities

* |_etters to be sent to some person in
destination city

» Source person can send to someone
In their social network if they don’t
know target directly

* “Six degrees of separation”

New Hampshire

e

Vermont \
\-
Massachusells \ Maine
North Dakota \
Minnesota \
Wisconsin
h Dak
South Dakota B New York
Michigan \
Rhode Islank
Nobraska lowa Pennsylvania % Conecich
A Ohio e Now Jorse)
- iRhosy ncans = "\\ .
P N Delawar:
Kansas Missouri Virginia\'\\ Marylan
Kentucky
T~ West Virginie
North Carolina
Oklehars Tennessee
gkl Arkansas South
Carolina
Alabama :
Mississippi Georgia
Texas
Lowsiana
Florida
Name, age, gender, profession, ...

https://en.wikipedia.org/wiki/Small-world_experiment

Navigating a “graph of vectors”

<Each node 1 has associated vector x;

- Start at node designated ‘enter’
» Can use multiple entry nodes

* [n each step, move from current
node 1 to a friend’ (neighbor) j if
d(q, xj) <d(q, x;)

* Move to best neighbor
» Stop when no neighbor is better than

current node 7

* How is the graph built from corpus {x;}? Query g

Corpus vector Xx;

Graph construction

»Start with empty graph

*For each vector x; to be inserted
- Consider x; as a query
- Navigate to some number of near neighbors {x ;}
- May include neighbors of neighbors
- Sort them in increasing d (x;, x ;) order

- Insert a node corresponding to x;
*Link to nearest K nodes X ;

What we have achieved thus far

*Sparse index
Query, docs are vectors

As many dimensions as discrete, interpretable words in
corpus vocabulary

Very sparse vectors
Relevance score = dot product
L ucene, Elastic Search, SOLR

*Dense index with single vector per query and doc
Fewer dimensions, but dense (all non-zeros)
Dimensions not interpretable

Relevance score still dot product (“late interaction”)
DiskANN, ScANN, FAISS, Milvus

https://lucene.apache.org/
https://www.elastic.co/elasticsearch
https://solr.apache.org/
https://github.com/microsoft/DiskANN
https://github.com/google-research/google-research/tree/master/scann
https://github.com/facebookresearch/faiss
https://milvus.io/

Discontent with single vectors

“You can’t cram the meaning of a whole %&!$# sentence into a
single $&!#* vector!” — Ray Mooney (2014)

“The pooling operation used in
convolutional neural networks is a big
mistake and the fact that it works so well
IS a disaster.” —Geoffrey Hinton (2014)

Google DeepMind

On the Theoretical Limitations of
Embedding-Based Retrieval

Orion Weller 12, Michael Boratko!, Iftekhar Naim! and Jinhyuk Lee!
1Google DeepMind, 2Johns Hopkins University

https://www.cs.utexas.edu/~mooney/cramming.html
https://www.brainyquote.com/quotes/geoffrey_hinton_875291

Single vector limitation

sAlready seen RNN encoder-decoders

*In principle, ht is a complete digest of input

*|n practice, narrow information bottleneck

* Decoder attention on all encoder states helps a lot
* Motivates bag of vectors for retrieval as well

Di ka’Eze sa au de matte
e R f r I

CT T T T T

All-to-all cross (early) interaction

Feed-for — h All-to-all attention
ward
netV\iork
Score of x; wrt g \. J 1 Y,

[CLS] q [SEP] X;

sFor each candidate document X;
» Concat query g with x;, encode using transformer
* Allows all-to-all attention between g and X;
- Use [CLS] embedding hg to regress to a score for x;

*Every candidate must be scored, takes (2(IN) time
*However, generally gives best retrieval quality

Early vs late interaction: high level sketch

_ These are stored

~""in an index Score of doc
—— h; 1 wrt query g
s m
_ VRN Y,
Simple, fast comparison for [CLS] .
q X
which indexing is feasible [SEP]

«*Compromise to get part of the benefit of

h
| i early interaction?
Score of doc .
i wrt query g m * Need embedding of g, x; to be

(CLS] independent of x;, g

 But allow granular interaction

Compromise between early and late (ColBERT)

+Query word vectors g1, g, -+, gp (M words)
*Document has 1" word vectors X; 1, Xj 2, ", Xj T

* For query word ¢g,,,, best ‘partner’ in the doc gives

‘coverage’ max S X
g FE[T] Am z,t)

* Here s(qm, Xi +) can be dot, or cosine similarity
* Want all query words to be ‘covered’ by document

‘S(C[,Xi) — sz[M] {IEIP-T}%S(QmJXi,t)

- Called "max-sum” or “chamfer” score

» Can top documents under s(g, x;) score be quickly
retrieved via suitable index?

An indexing hurdle

ape

bat

bee

cat

cow

dog

elk

O|N|[OJOA || W[IN]| -~

| 1 J2]s[4]s[e[7]s]
Y [0 N (N (N N N
Posting lists — - - -
1]

fox

“Docs dq,d,,d, a

Word dictionary

| contain exact word w = 6 (dog)

* Now consider these two docs
| swam along the river bank staying close to the boat.
» The fisherman sat at the water's bank, patiently waiting for a bite.

* “bank” has the exact same meaning in both docs
 But they have different contextual embeddings output by transformer

Contents of clustered buckets

+In a sparse index, a posting list
* Was accessed using a discrete word
» Contained (doc ID, word impact) pairs

*In a dense clustered vector index
» Query key will be one vector g,
* Closest to one or few cluster centers X¢

» Each cluster bucket holds (doc ID 1, contextual word
vector X; ;

* X ¢+ may be close to X“ but not identical
- Store (doc ID, low resolution x; ; — X¢) in bucket

where

can

get

cash

near

Yamuna

Query execution at a high level

«Candidate docs =

* For each query word vector
* Probe ANN index
* Augment candidates

* Initialize score accumulators

* For each candidate
» Decompress word vectors
» Compute true score
* Accumulate scores

* Report top docs

Query Latency (ms)

T T T T I
10° H 00¢ Bag-of-Words (BoW) Model [- n
u#%x BoW Model with NLU Augmentation +
. mEm Neural Matching Model BERT-large
10° Hawe Deep Language Model |7 BI;F-{Tb """"""""
999 CoIBERT (ours)
OB beimmnonn 53 5 & 5 corrmnenrec 3 5 5 £ 5 DEUIEEIEEE 5 55 ¢ 6§ EREIGR B 55 65 TN B A £ F 6 SRR B8 : a
FT+ConvKNRM ColBERT (full retrieval)
W07 g gk B B e]
BM25 KNRMAOCZauery . C¢
10t by R P S P [
0:15 0.20 0.25 0.30 0.35 0.40
MRR@10
B Query Encoding B Decompression

W Candidate Generation B Scoring
B Index Lookup

_ N

0 100 200 300
Latency (ms)

(a) Vanilla ColBERTv2 (nprobe=4, ncandidates=21°).

Back to the future (dense — sparse)

+CoIBERT: implementation is nontrivial, considerable
execution overhead
» Contrast with super-optimized sparse inverted lists

«7ldea: Use dense representation to expand doc in
discrete word space
- Doc already had ‘panther’ = add ‘wildlife’
> Don’t assign word impact blindly as in classic indices
> Learn word impact using relevance judgments

*For each training query g, collect some relevant
'good’ docs D ;e and irrelevant ‘bad’ docs D e

Base embedding matrix B

~Word strings not directly ho— e
Input to encoder the ca sa o the ma
- Each word indexes a row in B tt t

* This vector injected into
encoder as h?

- Output vector h; .
compared with each row
of B to sample next word

*\We will use B to expand docs the cat sat on the mat
with padded words

Encoder

SPLADE setup

Text x = (xy:t € [T]) can be query or passage
*Pass x through encoder to get output contextual
embeddings (h;:t € [T])

*Compare h; with every row of base embeddings B

If hy is similar to row B[w, :], consider expanding doc
with word indexed w

- E.g. text: the jaguar snarled before pouncing
'Possible ws correspond to wildlife, predator

*Next we will design the impact of expanded words

Word impacts in SPLADE

vSet z; ,, = transform(h;) « B[w, :]+ 0y,
 transform = linear layer, GELU activation, layer norm

* 0, IS a bias term specific to word w
+ Vote of text at position t on vocabulary word w
- Aggregate z; ,, over all text tokens (indexed t) to get overall vote of text on
vocabulary word w (impact)

2y = Ztem log (1 + ReLU(2¢,w))

* In v2, modified to
2z, =max log (1 + ReLU(24,,)) =0

te
- Bias 0 ; chosen/trained so most z,, = 0 (encourage sparsity)
» Text x represented as vector (z,,: w € [W]) — back in vector space

* Recall W is the interpretable word vocabulary

* Query and doc texts compared via dot product

Training retrievers (ranking loss)

eFne-tune encoder for each retrieval task

» ‘Potential’ in general corpus similar to ‘promise’ of a person’s
capability; ‘charge’ = ‘accusation’

- How about https://physics.stackexchange.com/

* Collect relevance judgments
- Each query q comes with one/few good doc/s d ;¢

- Sample in-batch ‘silver’ / ‘easy’ negatives D ;g
* Mine ‘hard’ negative/s d ;¢

exp (s(q, dq@))

e =
rank = (s(q.dqe))+exp (s(q, dqe))"'quaqua exp (s(q. dqm))

Training retrievers (non-sparsity loss)

*Recall doc x,, encoded to z,, = (2, w: W € W)

- Corpus has N documents
- Non-negative real matrix of size N x W

*We want 2z, ,, = 0 for most words w

1
'CFLOPS — EWE[W] (N EHE[N] Zn,w)

Overall loss is a combination Crank + *Cr10PS

* Ranking quality somewhere between sparse and
ColBERT, but way faster

2

Summary and learning outcomes

*Passage retrieval is a core capability needed by LLMs
*For decades, sparse inverted indices were the solution

‘Now passages and queries are represented by dense
vectors, or bags of vectors

Generally superior to sparse representation
*Can benefit from both dense representation and sparse
indices
*\We have studied the latest techniques of indexing and
searching dense corpora

*Such indices are used by LLMs to access passages in
RAG setups

“Closed-book” LMs and their discontent

*Early LM paradigm
Collect a large corpus, prepare training data
Train LM with MLM, next-sentence, instruction, etc. loss
“Throw away” the corpus
Input = token sequence, output = continuation

Parameter size of large LMs comparable to size of
Wikipedia (LLMs, much larger)

*Should be able to rote-learn the corpus
No idea how corpus is stored in LM parameters
Interference and hallucination
Cannot trace generated output to corpus sources
Cannot keep up as corpus changes

"Open-book” LMs

*Keep corpus around even after training LM
Say, flat set of passages/sentences = ‘item’

*Input = question = query = ‘prompt’ arrives
Encode it using the LM

*In decoder mode

Consult the corpus one or more times
How often? at what granularity?

Incorporate info from top-responding corpus items
Make generation sensitive to this info

* Potential benefits
Reduce hallucination by biasing output distribution
Provide ‘sources’ to ‘explain’ generation
Offload rote learning to corpus/index and make LM smaller

Historical perspective wrt search

%»(Dense) passage retrieval
 Preprocessing input: corpus of passages
* Query-time input: query
+ Output: ranked list of passages
 “Reading comprehension” (SQuAD)
- System inputs: passage(s) and question; output = answer span in passage(s)
- “Which scientists played musical instruments?” — Edison, Einstein, Feynman
« Combine the above with a generator:
- Which scientists played musical instruments?

» There are many scientists who are also talented musicians or have played musical
iInstruments. Einstein was a skilled violinist. Feynman played the bongo. Brian May,

guitarist for the band Queen, is an astrophysicist. Oliver Sacks, a neurologist,
played the piano.

* (Usually collected and paraphrased from diverse documents)

2024

Inference

Pre-training

Fine-tuning
GenRead
CREA-ICL

InstructRetro FABULA ITRG

Self-RAG

Selfmem

TOC
IRCOT RECITE

COK
Filter-Reranker [l
SANTA PKG

UPRISE
Retro++ ITER-RETGEN

KnowledGPT

PGRA
PRCA

KNN-LLM Augmentation Stage

Fine-tuning

Inference

. /.

Retrieval—Augmented Generation

2312.10997 .pdf

https://arxiv.org/pdf/2312.10997.pdf
https://arxiv.org/pdf/2312.10997.pdf

Entity search paper from 2010

«Entity e, document d, query g, relevance label r
* Equation (6):

n
Pr(r =1le, q) = 2 Pr(d;)Pr(r; =1lq,d;)Pr(r, = 1lle,d;)
t=1
* Training instance (q, B4, Eg) e

 Not documents mehflonlngE E. b |
* |.e., distant s,fjperwsmn)ablll

ien
~doct eyl

erty € I L gucumen

https://dl.acm.org/doi/10.1145/1835449.1835563

REALM (2020)

'« One document is enough
X = query, y =answer, z =doc
 join(x) = [CLS]x[SEP]
 Embed;,(x) = W;, BERT¢1g(join(x))
« Embedgy,:(2) =

W 4oc BERTcrs(join(z))
* f(x,z) = Embed;,(x) - Embedg,:(2)

* (Asymmetric late interaction)

. _ __exp(f(x,2))
p(2Ix) = S, exp(f(x,z))

« Conceptually, documents compete; they don'’t
“team up” to answer the question

* p(ylx) = > plylz, x) p(z|x)

(softmax)

- Unlabeled text, from pre-training corpus (X') -,
E The [MASK] at the top of the pyramid () E

Lt retrieve l }
knowledge | ----- Neural Knowledge Retriever ~ pg(z\x)j
corpus (Z) l

- Retrieved document®---------------------
. The pyramidion on top allows for less
material higher up the pyramid. (z)

__

- Query and document —~~--------oooooooooo- - -

| [CLS] The [MASK] at the top of the pyramid E

E [SEP] The pyramidion on top allows for less ,
material higher up the pyramid. (z,2)

[Knowledge—Augmented Encoder ~ py(y|z, z)]

-~ Answer —--"------------ :
. [MASK] = pyramidion (y)

End-to-end backpropagation
.._._._._._._._._._._._._._._._._._._)

https://arxiv.org/abs/2002.08909

Pre-training and fine-tuning

-

i —sér—nl)ie-— Pre-training ,"'-sé;n;)fe“ Supervised
=+-Unlabeled text —--nr-cconccocfooooooo---c" | cOMPUS () gr Input query secccsasaarcascasaanaastasnanaaacas . data

. The [MASK] at the top of the pyramid (:I’) E , what’s the angle of an equilateral triangle? (:13):

[Neural Knowledge Retriever (¢)]<_re:tfn_e\ﬁe_ knowledge [Neural Knowledge Retriever (¢)j<-r€tfl€\fe- knowledge
| corpus (Z) | l corpus (Z)
(z,2) \ (z,2)
\»[Knowledge—Augmented Encoder (qb)j \»[Knowledge—Augmented Encoder (¢)]
@ Answer seasscasasansanss -- Answer -l
i [MASK] = pyramidion (y) | 60 degrees (y) !

Figure 2. The overall framework of REALM. Left: Unsupervised pre-training. The knowledge retriever and knowledge-augmented
encoder are jointly pre-trained on the unsupervised language modeling task. Right: Supervised fine-tuning. After the parameters of the
retriever (6) and encoder (¢) have been pre-trained, they are then fine-tuned on a task of primary interest, using supervised examples.

Joint decoding of y

sIndependent mask-filling in query p(yl|z, x) =]_[J Py jlz, X)
- |, is the number of masked positions in the query
* During training...

: p(yj‘z X) exp(w - BERTMmask(j) (join(x, 2)))
Concat question x and document /passage z

- Keep position j of question masked
- Pass through BERT and read off embedding of masked position
* W is a trained (base?) embedding of masked question word

* Implementation details
- How do they prune the space of docs z?
* As encoders change, dense index is lazily updated

Design choices

‘REALM retrieves exactly once

In general, want to retrieve multiple times or multiple pieces
of evidence

*How early do evidence items interact with each other
(and possibly with input)
*Retrieval granularity

While decoding every sentence, word, ...?7

*What is practical to train and fine-tune
Retriever vs. planner / generator

Fusion-in-Decoder (FID)

* Multiple passages retrieved

All in response to question? May not have enough info about later hops
* Passages do not interact with each other until encoding is completed

All inter-passage interaction (‘fusion’) is limited to decoder

» Simple, yet effective for some tasks (NQ, TriviaQA, SQUAD)
Better than GPT3, T5, DPR, not surprising
Also better than REALM and RAG (coming up next)

Question + Passage 1 | | encoder >
Question + Passage 2 encoder > concat > decoder > [Answer]
, Question + Passage N encoder >

https://arxiv.org/pdf/2007.01282.pdf

