Diffusion Models

By Tejomay Kishor Padole
(PhD Student, IIT Bombay)

Generative Modeling

e |earning to generate new samples given a set of data points.

Estimate: p(xz) \VICBZ cD

Generate: Tnew ™ p(-??q,)

Autoregressive LLMs,
Variational Autoencoders,
Normalizing flows

Generative Adversarial
Networks

Explicitly model the data distribution Modeling the generation process

GAN: Adversarial
training

VAE: maximize
variational lower bound

Generative Models

Generator

G(z)

Good quality samples, but cannot
estimate the distribution

Can estimate the distribution, but
lacked quality

. Flow Inverse '
Flow-based models: .! —f o X
Invertible transform of f(x) I 3 (2)
distributions
Diffusion models: = . . .
s emm———TTRR S — Diffusion models did both!

Gradually add Gaussian
noise and then reverse

Density estimation, high quality samples and better diversity!

Lilian Weng’s blog on Diffusion Models

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Why Diffusion Models are Trending?

e Diffusion models enabled high resolution image generation!

SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis (2023)

https://arxiv.org/abs/2307.01952

Diffusion Models

e Inspired from non-equilibrium statistical physics.

e Forward process: slowly and iteratively destroys the structure of the input until it gets completely transformed to
random noise.

e Reverse process: learns to iteratively construct the data from random noise using a Neural Network.

e The noising process can be seen as similar to a drop of ink diffusing into clear water.

A

-k
= &=

Image from https://chemistryclinic.co.uk/1-3-diffusion/

Generative Process as a form of Iterative Denoising
Noising Process

q(xilzi_1) = Ny /1 — Bixy_1, B I) (Markovian Gaussian transitions)

Pdata (33)

Scaling factor for variance preservation

Variance of the forward process,

q(@i|zi—1) = Ny /1 = Bvy oy, Bl)— monotonic increasing function of ¢

xy=+/1— 05 xt_1+\/ﬁ_te where € ~ N(0,])
H_/ \/_/

Downscaled Noise
previous timestep component
image

Picture taken from Stanford CS236 Lecture series.

https://www.youtube.com/watch?v=VsllsC2JMGY&list=PLoROMvodv4rPOWA-omMM6STXaWW4FvJT8&index=16&t=833s

Generative Process as a form of Iterative Denoising

Noising Process

q(xt|xo) = N(xe; vVawzo, (1 — ap)l Direct Transition

Pdata (33)

t
We define oy =1— 3 and a; = H o
i=1

q(xi|zo) = N(we; Varzo, (1 — a)l)

Part of the original Part of random
image gaussian noise

Picture taken from Stanford CS236 Lecture series.

https://www.youtube.com/watch?v=VsllsC2JMGY&list=PLoROMvodv4rPOWA-omMM6STXaWW4FvJT8&index=16&t=833s

Generative Process as a form of Iterative Denoising

Noising Process

Q(xtlivt—l) = N((L‘t; \/ 1 — .Btfvt—l; dt-[) (Markovian Gaussian transitions)

p(zr) = N(xp;0,1I) and
po(xi_1|we) = N(@i_1; po(s, t), Solas, t))

~_

Parameterized with a Neural Network

How to learn this?

Picture taken from Stanford CS236 Lecture series.

https://www.youtube.com/watch?v=VsllsC2JMGY&list=PLoROMvodv4rPOWA-omMM6STXaWW4FvJT8&index=16&t=833s

Learning the Generative Process

Pdata (x)

Initialize:
lteratively sample from:

—log ps(xo) <

Generative Process

p(xr) = N(xr;0,I) and
po(xi_1|xt) = N(@i_1; po(xs, 1), So(as, 1))

- 10gp0(x0) g5 DKL(Q(IIleTle) || p&(x1:T|$0)) (Variational Lower Bound on log-Llikelihood of data)

[g\T1.T7|To
= —log pe(z0) + Eq\.r~a(@ririze) |108 W] Expanding KL-divergence
= logpe(mo) + Eml;TNq(xl;Tlmo) log %] Re-writing the denominator
L po(Z0)
_E - a(wirlzo) . o
= L2y p~g(zr7|20) | 108 W Got rid of the log-likelihood term!

Picture taken from Stanford CS236 Lecture series.

https://www.youtube.com/watch?v=VsllsC2JMGY&list=PLoROMvodv4rPOWA-omMM6STXaWW4FvJT8&index=16&t=833s

Learning the Generative Process

«
Generative Process
T
Lyvip=E; | Dkulq(x | po(r))+ Y Dxw(g(@ei|zr, zo) || po(wi_i]ay)) — log %}0@1)
t=2 Liy Lo
1 . 9
=]El?o W ”M(Tt, .’170) — ,U,g(iL’t, t) ”2 Closed-form solution for KLD between two gaussians (and variance ignored)
oll5
= Efl?t,et ||€t — Eg(ai‘t, t)||2 Reparameterized as: Mg(Zt,t) = \/%(xt — 1'_1——0;1 €g(xe, 1))
N J
Y

Final Loss Function

Picture taken from Stanford CS236 Lecture series.

https://www.youtube.com/watch?v=VsllsC2JMGY&list=PLoROMvodv4rPOWA-omMM6STXaWW4FvJT8&index=16&t=833s

Training Algorithm

ming ||eg(xt, 1) — et

Noisy sample

Denoising Diffusion Probabilistic Models (NeurlPS, 2020)

https://arxiv.org/abs/2006.11239

Sampling (Generation) Algorithm

2~ N(0,1)

N(0, 1) t eg(wt, 1) X,

Timestep = 0
(Timestep = T) (Timestep = 0)

Intermediate Sampling step

Denoising Diffusion Probabilistic Models (NeurlPS, 2020)

https://arxiv.org/abs/2006.11239

The Score Function and
Diffusion Models

The Score Function

Xy p(.’l?) Goal: Estimate the distribution with a NN TN P /Y Y Y 1
?ﬂkﬁsﬂw‘*~

'/{7?‘1':{77_ 1M N A G Ay P ;

Ti— NNy | fo(;) @§I\,,,,,,, ‘

& ‘ 1 I gl \ X \ AW\ A »

e AL :

exp (_f9<xz)) Intractable!! g OB g, e i) \

po(x;) = A \

Zy Zy= [ea(-fo@)de v vy o

X C L BAUK WA X :

- 2 NA B AL TN =

Inpy(z;) = —fp(x;) —In Zy =)

V:vi In pg(a?i) — —Vx.ife (xi>_v$z>ld9

\ J Score function interpretation on a mixture

N
_ of two gaussians in 2D.
Score function

Image from Song et al., 2019

Interpretation of the Score Function

e Learning the score function allows sampling from the data
distribution.

Step-size Gaussian noise

| |

X;11 ¢ X; + €Vylogp(x) + V2% 3, 4=01 K
Z; NN(O,I)

Prevents mode collapse and allows for sampling
from regions with low-data density

Langevin Dynamics

Generative Modeling by Estimating Gradients of the Data Distribution (Song et al., 2019)

https://arxiv.org/abs/1907.05600

Score-based Diffusion Models

Noising Process

dx = f(x,t)dt + g(t)dw

score function

dx = [f(x,t) — ¢° (t)&x log py (x)]] dt + g(t)dw

Generative Process

sg(x,1)

(Time-conditioned score network)

.. . : 2
Training objective: 0* = argemm Et{/\(t)Ex(o)]Ex(mx(o)[||se(x(t), t) — V() log por (x(t) | x(O))||2]}

Score-based Generative Modeling through Stochastic Differential Equations (Song et al., 2021)

https://arxiv.org/pdf/2011.13456

Conditioning of Diffusion
Models

Class Conditional Diffusion Models

Generate: xne\y\r g p(mz) (Unconditional)

What if we want to generate: Lnew " p(%‘ | y) (where 'y' is a class label)

General strategy: Train the generative model with class awareness.

Generative Model

v - Idogl

Classifier Guided Diffusion

Dhariwal and Nichol, 2021 propose an
additional guidance scale:

Diffusion models beat GANs on image synthesis (NeurlPS, 2021)

Wewant: Zpew ~ P(2|y) (where'y' is a class label)

p(y | z) - p(z)
p(y)
logp(z | y) = logp(y | x) + logp(x) — 10y

SN

Unconditional data probability
(modeled using a diffusion
model)

p(z|y) =

Label probabilities (can be
obtained from a pre-trained
image classifier

log p(z|y) o log p(z) +pllog p(y|x)

Guidance scale

https://dl.acm.org/doi/10.5555/3540261.3540933

Classifier Guided Diffusion

e \/arying the guidance scale allows us to have a trade-off between diversity and fidelity.

V:logp,(z | y) = V. logp(x) +vV.logp(y | z).

v =10.0

Generated images from the class "Pembroke Welsh Corgi" with different guidance scales.

Diffusion models beat GANs on image synthesis (NeurlPS, 2021)

https://dl.acm.org/doi/10.5555/3540261.3540933

Arbitrary Conditioning of Diffusion Models

e (lassifier guidance doesn't allow for arbitrary conditioning mechanisms.

What if we want to Tnew ™~ p(a?,i |y) (where 'y’ can be natural language text, image layout, etc.)
generate:
"Monster Baba vaga house with in a forest, ‘A young badger delicately sniffing a
dark horror style, black and white.’ vellow rose, richly textured oil painting.’

SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis (Podell et al., 2023)

https://arxiv.org/pdf/2307.01952

Classifier-free Guidance

What if we want to generate: Lnew "~ p(a:,,; |y) (where 'y' can be natural language text, image layout, etc.)

p(z | y) - p(y)
p(z)

Re-formulate: P(y | 37) —

logp(y | z) = logp(z | y) + logp(y) — log p(z)

From classifier guidance: log p7<a3 y) X log p(x) + 7y log p(y|x)

log p~(|y) o< log p(z)+~(log p(x|y)+1dsy)—log p(x))

log p(2|y) o< (1—7v) log p(x)+7 log p(x|y)

| |

Train a conditional and an unconditional model in tandem.

Classifier-Free Diffusion Guidance (Ho et al., 2022)

https://www.semanticscholar.org/paper/Classifier-Free-Diffusion-Guidance-Ho/af9f365ed86614c800f082bd8eb14be76072ad16

Classifier-free Guidance

log py(z|y) o< (1—7) log p(x)+ log p(x|y)

Samples from OpenAl
GLIDE text-to-image
model (Nichol et al.,

2021) with
classifier-free
guidance.

Prompt: A stained glass window of a panda eating bamboo.

Sander Dielemann’s blog on Diffusion guidance

https://sander.ai/2022/05/26/guidance.html

Diffusion Models For Text

Why Diffusion Models for Text?

Humans do not necessarily process
text sequentially.

Eg: The food service of the restaurant was

Autoreg ressivg mode.l: suffers from brilliant. The plate was cold and so was
sampling drifts, major cause of the food.

hallucination

Sequential generation does not take
advantage of GPU parallelism (which
can boost generation in long-contexts)

What are Diffusion Models doing Differently?

Iterative Denoising: allows
reconsideration of already generated
tokens

Non-autoregressive Generation:
Generate all tokens in parallel

Exhibit better control

Continuous Diffusion Models
For Text

Continuous Diffusion for Text

e (aussian diffusion processes defined on word embeddings.

| want to go to the playground

Add gaussian noise to word embeddings

' : Embeddin Roundin
q(zt|zo) = N (2 Varwo, (1 — ayp)l g g

n

2 1 0

N(0, 1)

Denoising of word embeddings @ Word embeddings
O Gaussian Noise

[Diffusion-LM Improves Controllable Text Generation (Li et al., NeurlPS 2022)]

https://arxiv.org/pdf/2205.14217

Continuous Diffusion for Text

Gaussian Noise Denoising Rounding Text
Po(X¢—1 | X¢ po(W | Xo)
O ORISR ONe
"—
q(x¢ | Xt—1) qg (%o | W)
Noising | Embedding |

Continuous embeddings Discrete text tokens

e Embedding step: Maps discrete tokens to an embedding space.

4o (2o|lw) = N(&(w), 00l)

e Rounding step: Finds out the most likely token given an embedding (reverse of what embedding step does).

(each component represents a position in the sentence modeled
with a softmax function)

po(wl|zo) = TI;—; po(wilz:)

The rest of the forward process is defined in the same way as shown earlier.

[Diffusion-LM Improves Controllable Text Generation (Li et al., NeurlPS 2022)]

https://arxiv.org/pdf/2205.14217

Training Continuous Diffusion for Text

%(370|w>
Loss = Lyvrin + E |log——=
VLB olw) © po(w|o)

, E a0,) — el + log go (wof) — log po(aw]o)|

xi~q(xt|20), To~qe(To|w)

= E lea(@e, t) — el * + [|E(w) — po(ay, ||* — logf)ﬁ(u’|x0)]

ze~q(wi|wo), zo~qy(ao|w)

The first term can be reparameterized by letting the neural network directly predict x, instead of predicting noise. Li et al., 2022
found that doing so reduced rounding errors.

- E 1o, t) — ol + [|€(w) — polr, DI = log pa(wlo)

zp~q(xt|To), To~qy(To|w)

predicted X, at timestep t Cross-entropy loss

[Diffusion-LM Improves Controllable Text Generation (Li et al., NeurlPS 2022)]

https://arxiv.org/pdf/2205.14217

Controllable Continuous Diffusion for Text

e \We can develop controllable diffusion LMs with classifier guidance!

Tnew ™~ p(xz' |y) ('v"is a control signal)

Gaussian Noise Gradually Denoising Word Vectors Text
Diffusion-LM aa_.008 2’ i log p(x)
Imusion- Starbucks is a
B % Bga % qu% EEm % EBB é COffe:Shf):)S. p
v 4
. . Gradient :
. Classifier\) ; Update
; N
i
Classifier ParseTree= IR log p(y|)
3 o e 4

log p(2|y) o< log p(a) + vlog p(y|x)

[Diffusion-LM Improves Controllable Text Generation (Li et al., NeurlPS 2022)]

https://arxiv.org/pdf/2205.14217

Controllable Continuous Diffusion for Text

e \We can develop controllable diffusion LMs with classifier guidance!

target POS PROPN AUX DET ADJ NOUN NOUN VERB ADP DET NOUN ADP DET NOUN PUNCT

FUDGE Aromi is a non family - friendly fast food coffee shop in the riverside area with a low Customer
Rating .

Diffusion-LM Fitzbillies is a cheap coffee shop located on the outskirts of the city .

FT Aromi is a fast food pub located at the centre of the city.

target POS PROPN AUX DET NOUN VERB NOUN ADJ NOUN PUNCT PRON NOUN NOUN AUX
ADJ

FUDGE Cocum is a family - friendly coffee shop , that has a low price range and a low customer rating

Diffusion-LM Zizzi is a pub providing restaurant Chinese food . Its customer rating is low
FI Zizzi is a pub providing kids friendly services. Its customer rating is average

[Diffusion-LM Improves Controllable Text Generation (Li et al., NeurlPS 2022)]

https://arxiv.org/pdf/2205.14217

DiffuSeq (Gong et al., 2022)

® (aussian diffusion processes on word embeddings corresponding to the target sequence.

Src: | want to go to the playground
Tgt: H Wl & HEIT H STAT AT8AT &

Add gaussian noise to target word embeddings

. . Embeddin LM-head
q(@t|zo) = N(xr, Vauxo, (1 — ar)l -

N, 1)
Predict target tokens from
- - denoised target embeddings
C tgt

src tgt src tot src src sr
XT XT XT— 1 XT- 10 mrrrresessaan X 5 X2 X 1 1 o O

@ Source sequence embeddings

Denoising of word embeddings @ Target sequence embeddings
(O Gaussian Noise

DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models (Gong et al., ICLR 2023)

https://arxiv.org/abs/2210.08933

GENIE(Lin et al., 2023)

® Seqg-to-seq generation with encoder-decoder style architecture.

Tgt: ﬁm*%ﬁmmé The decoder takes denoised output

Encodes input tokens to
hidden representations

H;

() () (s) (B (s]

Cross Attention i

Encoder

T

Encoder Inputs

embeddings (i.e. x,) as input and

outputs converts them to output tokens.
T /

Decoder/Grounding

§ " denoise g

4)

Xt—1

» Language Diffusion Model

_ - H Transflormer J
S
I ’ blocks
[xr] I

Initial Gaussian Noise Status x;, time step ¢

Src: | want to go to the playground

\

Denoiser or the language diffusion

model is responsible for denoising
the output representations.

[Text Generation with Diffusion Language Models: A Pre-training Approach with Continuous Paragraph Denoise (Lin et al., ICML 2023)]

https://proceedings.mlr.press/v202/lin23d/lin23d.pdf

Discrete Diffusion Language
Models

Discrete Diffusion

e (an we directly denoise in the token space (which is discrete)?

e No need to define extra embedding and rounding steps which are harder to train jointly with the diffusion model.

Continuous Diffusion Discrete diffusion

Add Gaussian noise (continuous distribution) Add discrete noise (what is discrete noise)?

Diffusion process converges to a categorical

Diffusion process converges to a gaussian distribution (which categorical distribution)?

Masked Diffusion Language Models

e Defines the diffusion processes as iterative masking/unmasking of tokens.

q(vt|ar—1)

Noising
Process

What do you do in the morning? | go for a morning walk with my dog every day.
What do you do in the morning? | go [M] a morning walk with my dog every day.

What do you do in the morning? | go [M] a morning walk [M] my dog every day.

What do you do in the morning? | go [M] [M] morning walk [M] my [M] every day.

What do you do in the morning? [M] go [M] [M] [M] walk [M] my [M] [M] [M].

What do you do in the morning? [M] [M] [M] [M] [M] [M] [M] [M] [M] [M] [M].

po(w—1|xt)

Generative
Process

Training Masked Diffusion Language Models

a I
I
Ba] — [\ e go
for
a
nw]'ning TranSfOI:mer /\[\ € m morning

wit T

walk Bi-directional Cross-entropy Loss
with self-attention /\
[v] N e my Lo
b — [e dog iy T Bt Bl o e)]
every
Ea — |\ s day

\ J
X, Predictions Grour;éj truth

Sample masking ratio
t~U(0,1)

Greedy Sampling Step in Masked Diffusion Language Models

[M]
for

[M]
walk
with
[M]
[M]
every
[M]

Transformer
with
Bi-directional
self-attention

JL DERRREEE - go 0.65

Greedy

early 0.23 selection

A <-moooe- > his 0.13
/\ “mmmmmne- ~ lion 0.25

[An s day 0.59

Predictions

Sample X, from
the predicted
distributions

g0

[M]

[M]

[M]

day

t-1

Uniform Diffusion Language Models

Random replacement probability

Vocabulary
|)
p=0 | go for a morning walk with my dog every day.
A, ability, able,
p=0.1 | go not a morning walk with my dog every day.
p=0.2 | go not a morning walk safe my dog every day.
g(wi|z_y)| P= 0.3 | go not ant morning walk safe my car every day. po(@i—1|2t)

o

o

o

o

......................... z, zeta
p=1.0 Have zeta not ant cross hell safe human car a donut.
\ J
|

Every position in this sentence is simply a uniform
randomly sampled word from the vocabulary

UDLM: Formal Definition

Let z =< x(l), a;-(Q), ,,,,,, : 2 > (sequence of tokens)

Let x, be a one-hot vector of length equal to vocabulary size V

q(zt|xy) = apag+(1—ag)m, where T = Each value in vector mis 1/|V| Forward process

V]

q(z¢_1|zt] 20) fo(wt,t) = NNg(2¢, 1)

True reversc\ Estimate of X,

po(wi—1|zt) = q(@r—1|xt, folat, t))

ome e [T [[N N %\ [(0%,
Loss Function: £ _/t:o Eq[Nat [’_"3 o, Z_ (ii)lgl((ie)j'ii)]]]dt)

Simple Guidance Mechanisms for Discrete Diffusion Models (Schiff et al., 2024)

https://arxiv.org/abs/2412.10193

Diffusion vs. Autoregression

Diffusion vs. Autoregression

Autoregressive LMs Diffusion LMs

Non-autoregressive generation with iterative
denoising

Sequential generation

Harder to control, exhibit sampling drifts. Easier to control

Lot of innovation (Eg: KV-caching, group-query Nascent stage of research, not completely
attention, etc.) practical yet

Can we combine them?

Can we Combine Autoregressive LLMs and Diffusion LMs?

e \Why combine? To try to make use of the qualities of both.
e Challenge: Completely different training paradigms!

e \Ways to combine:
o Diffusion model as a helper for LLM

o Adapting an LLM to a diffusion model

Speculative Decoding

e Employs asmall LM to help parallelize token generation from a larger model.

A N
i = Pir1 .. Fity,
Verification 7
Large, | Autoregressive @3 Verify candidate sequences in parallel with a
e ﬂ} Mp e] larger model
A A r A
L1y T2yeeeyly in parallel
...... 6 0%
. i Ligl -+ Tit
Drafting ST
A ive
f osstn::&el ”‘?{}m Mq @@} Generate candidate sequences sequentially from
s a smaller but faster model
™ 9P T LE Ly
L1yT2y+.+43T¢ sequential generation

Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion (Christopher et al., 2024

https://arxiv.org/abs/2408.05636

Speculative Diffusion Decoding

e Use asmall diffusion LM to generate potential candidates.

Verification ATATA

Quality vs speed trade-off can be done by tuning

Aut: i
slol:rr?\:;jel[g{}mwve Mp @@ J the diffusion steps

T4 A B
L1y T2y+..4T45 in parallel
Drafting
-
faftn::c'lel Diffusion steps

Generate candidate sequences
non-autoregressively with a small diffusion
model

i I
L1yL2y ey Lj

Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion (Christopher et al., 2024

https://arxiv.org/abs/2408.05636

Adapting LLMs to Diffusion LMs

Given that we have a lot of pre-trained autoregressive LLMs, can we take advantage of their
pre-training and try adapting them to diffusion LMs?

Naive fine-tuning won't work due to difference in training paradigms.

How to bring these training paradigms closer?

Gong et al, 2024 proposes masked diffusion LMs as a solution!

Adapting LLMs to Masked Diffusion LMs

e Previously, we observed that masked diffusion LM loss can be simplified to cross-entropy.

e (ross-entropy loss is also used to train pre-trained LMs.

/
Qg

1 — «

-1
(Masked Diffusion Loss) L = / IEq(xde)[(Swt,me log fg(a:t)] dt.
0 t

(LLM Loss) xM) " log fo(x 1 i

uMz

e How do we adapt?
o lIssue no.1: LLM uses a causal attention mask while diffusion uses bi-drectional attention.
o Issue no. 2: LLMs predicts for the next position while diffusion predicts on the same one.

Causal Attention to Bi-directional Attention

God sent a gift God sent a gift God sent a gift
God God God
sent sent sent
@ 0 0 ©
a a 5
gift gift gift

Fine-tuning progress

Scaling Diffusion Language Models via Adaptation from Autoregressive Models (Gong et al., 2024)

https://arxiv.org/abs/2410.17891

Training Algorithm

Algorithm 1 Adaptation Training

1: Input: network fp initialized by existing models,
training corpus paara (6"), mask token m.

2: Output: model parameters 0.

3: repeat

(4: Draw TN ~ Daate and set labels +— xg™N
Forward diffusion step 1 5: Sample t € Uniform(0,1)
for masked diffusion] 6: Sample w%:N ~ q(@s|x0)
7: Anneal the attention mask attn_-mask
8: Forward logits < fo(x;™) with attn_mask
9: Right shift logits by one position

Masked diffusion loss: 10: L; = %5wt,7,,,CE(logits, labels) > Eq.7
11: Backprop with £, and update 0
12: until end training

Scaling Diffusion Language Models via Adaptation from Autoregressive Models (Gong et al., 2024)

https://arxiv.org/abs/2410.17891

Supplementary Material

e DDPM blog: https:/lilianweng.github.io/posts/2021-07-11-diffusion-models/

e Score SDE blog: https:/fanpu.io/blog/2023/score-based-diffusion-models/

e Flow matching and Diffusion Models lectures:
https:/vyoutube.com/playlist?list=PL57nT7tSGAAUDNII1LhTO0CXIEPGS19vH&si=L8T3fjOFbhool 9T

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://fanpu.io/blog/2023/score-based-diffusion-models/
https://youtube.com/playlist?list=PL57nT7tSGAAUDnli1LhTOoCxlEPGS19vH&si=L8T3fjOFbhooLj9T

Thank You

