
Anoop Kunchukuttan
Microsoft AI Core, Hyderabad

anoop.kunchukuttan@gmail.com 

For CS772 at IIT Bombay, Sep 2025

Course Instructor: Prof. Pushpak Bhattacharyya

The Transformer Model

mailto:anoop.kunchukuttan@gmail.com


Outline
• Recap
• Transformer: Introduction
• Transformer: Motivation
• Deep-dive into transformers

• Key Ideas
• Important components: Residual connections, Layer Normalization
• Putting the whole thing together

• Self-study
• Assignment
• Additional Topics



Recap
• Discussed tasks which require processing text sequences

• Language Modeling 
• Sequence Labeling Tasks
• Sequence to Sequence Tasks

• Techniques
• Feed-forward LMs
• RNN LMs
• LSTM LMs
• Encoder-Decoder models
• Attention Mechanism



Transformer – revolutionizing NLP 
and AI

More than 200k citations

Made AI more scalable 

Building complex systems from simple 
building blocks composed in a scalable 
way

Underpins all NLP models: BERT, GPT, 
Claude, Gemini, translation models, etc. 



Large impact outside of NLP – vision transformers, 
protein folding research 



Absolutely fundamental topic  

Lot of cutting-edge work is based on deep understanding of transformers 

Understand the ins and outs – lots of resources available



Sequence Modeling Approaches

I read the 

Feedforward Layer

book

Concat

Not scalable to long contexts

Feedforward LLM

I read the 

RNN Layer

book

Prev State

Context captured in a single 
state vector via recurrence

RNN/LSTM LLM



Limitations of RNN-based approaches

I read the 

Feedforward Layer

book

Concat

Not scalable to long contexts

Feedforward LLM

I read the 

RNN Layer

book

Prev State

Context captured in a single 
state vector via recurrence

RNN/LSTM LLM

Long-distance dependency 
paths
Sequential Processing

Unidirectional Processing



Can we use ideas from attention to overcome these 
limitations?

I read the 

RNN Layer

book

Prev State

Context captured in a single 
state vector via recurrence

RNN/LSTM LLM

I read the 

Feedforward Layer

book

Concat

Not scalable to long contexts

Feedforward LLM The RNN State vector is a 
representation of the entire context

From attention over encoders,
we know that attention mechanism 
can also be used to build source 
representations relevant to target 
token 

Can we use the same idea within 
the same sequence – aka
SELF-attention?



Can we use ideas from attention to overcome these 
limitations?

I read the 

Feedforward Layer

book

Attend

Context captured in a single 
summary vector via 
attention

Self-Attention

I read the 

RNN Layer

book

Prev State

Context captured in a single 
state vector via recurrence

RNN/LSTM LLM

I read the 

Feedforward Layer

book

Concat

Not scalable to long contexts

Feedforward LLM



मैं

s0 s1

e1 e2
e3 e4

c1

a11 a12 a13

a14

Attention Mechanism: Recap

For generation of ith output character: 
ci : context vector 
aij : annotation weight for the jth annotation vector
ej: jth annotation vector 



Self-Attention

I read the 

Feedforward Layer

book

Attend

Context captured in a single summary 
vector via attention
Attention over words in the same sequence
Attention over what?
    Representations from previous layer

Dependency path length is minimized to 1
      - All words impact the target word

All words can be processed in parallel

Bidirectional context can be naturally 
modelled

A method to obtain contextualized distributed 
representations

I read the book

I read the book Layer (i)

Layer (i+1) Query 
words

Key/Value 
words

Models can be more interpretable



Is Attention All You Need?
There is quite a bit of machinery & trick in getting this to 
work at scale

Let’s dive into the details



Transformer - Overview

• Encoder-Decoder model for sequence-to-sequence 
modeling

• Stacked layers of transformer blocks in both encoder and 
decoder

• Encoder and decoder blocks are largely similar 
• Decoder has an additional attention module

• Each block is a combination of self-attention and feed-
forward modules

• Other key ideas
• Multi-head Attention
• Positional Embeddings
• Layer Norm
• Residual Connections



Self-Attention Explored

Source: Stanford CS224n

 

Modify attention by scaling dot-product

   

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1246/slides/cs224n-spr2024-lecture08-transformers.pdf


Self-Attention Visualized

Capturing dependency relationships Capturing anaphora

The model learns to focus on the right context dynamically when processing a sequence



We want to look at word and their relations from different perspectives

e.g. 

• Dependency relations
• Anaphora 
• Structural relations 
• Semantic similarity

How can we capture different kinds of relations between 
words?

Use Multiple Heads

Multi-head Attention - 
Motivation



Multi-head Attention (MHA) - Implementation

Attention
Head 1

Output 1

Output vectors 

Input vectors 

Concat

 

Attention
Head 2

Output 2

Attention
Head 3

Output 3

Attention
Head 4

Output 4

d

d/4

d



As we encode the word "it", one attention head 
(orange) is focusing most on "the animal", 

Another (green) is focusing on "tired" -- in a 
sense, the model's representation of the word 

"it" bakes in some of the representation of both 
"animal" and "tired".

One is capturing anaphora, the other is 
capturing dependency

Source: Illustrated Transformer

Multi-head Attention (MHA) - Visualized

https://jalammar.github.io/illustrated-transformer/


Feedforward Module

• Attention Module helps build distributed representations of words 
• However, its expressive power is limited 

• Simple averaging of vectors  linear operation
• No non-linearies  limited learning (remember Perceptron!)

Note: 

Self-attention looks at the entire sequence at a time, 

Generates a distributed word representation

The feed-forward module looks each representation 
independently – applied in parallel 

Up projection (~4x)  non-linearity  Down-
projection

Adds lots of parameters, typically a large fraction 
of parameter budget goes to feedforward 
module



Problem – No Structural/Positional Awareness

The dog barks at the 
man

The man barks at the 
dog

Dog  has the same representation irrespective of its role in the 
sentence 
Same for man

The old boy taught the little 
boy The two boys have the same representation, although they have 

different roles

The self-attention and feed-forward computations are position 
invariant 



Positional Embeddings

 

Learned Embeddings
Positional embeddings are additional parameters that are learnt

Sinusoidal Embeddings



Where are we?

We have covered the most important concepts

Let’s fill in the rest



Let’s look at the decoder side of things

Many of the module are the same as encoder, but 2 
differences because of the nature of the decoder

Difference 1
The decoder has to also look at the encoder 
representation (from last lecture) 

 Extra cross-attention module
 Similar to self-attention, look at top encoder 

layer instead of previous layer

 

Cross-
attention 
module



Let’s look at the decoder side of things
Many of the module are the same as encoder, but 2 
differences because of the nature of the decoder

Difference 2
Decoder is generation module, generating from left 
to right – so self-attention does not have access to 
future tokens

Self-attention layer uses masked attention
 



Now for the final pieces to train deep 
networks

Layer Normalization

Residual Connections



Layer Normalization [Ba et al., 2016]



Residual Connections [He et al., 2016]

Difficult to train deep networks because of 
• Vanishing gradient (again! - now between layers)
• Degradation – deep networks find it difficult to learn 

representations from scratch

Residual module: add previous layer’s output to current 
layer’s output  

Network is now learning residuals F(x)

Direct connection for gradient flow 
   (similar to what LSTMs did – without the gating)

So far we have looked at modules in a single layer – now 
let’s look between layers 



Layer Normalization Revisited (Xiong et 
al., 2020)

Post-norm Pre-norm

Original transformer paper used Post-Norm 
implementation

Training instability due to improper 
gradient flow 

All modern transformers use Pre-norm



Summarizing Transformers
Self-Attention: enables distributed representations that can be 
learnt parallelly and without gradient vanishing issues. 

Multi-head Attention:  help look at different perspectives of a 
token

Positional Encoding: encode positional information

Feedforward Module: the brains of the networks

Scaling to deep networks: residual connections and layer 
normalization



Transformer Variants
• Transformer Encoder  BERT, XLM-R, ModernBERT and all 

other encoder-only models.
• Use only the encoder part of the transformer

• Transformer Decoder  GPT and all modern generative 
LLMs

• Use the decoder part only – masked self-attention, but cross-
attention is not needed.



Dive Deep!
Understand the math for each component and understand the paper: The Annotated Transformer

Read through network architecture of transformers in Fairseq or HuggingFace code

Implement a minimalist transformer model: nanogpt

Go through the reading list and dive into the suggested readings

Exercise: Can you count the number of parameters in the network given its architecture?

Exercise: What is the time and space-complexity of processing a sequence?

https://nlp.seas.harvard.edu/annotated-transformer/
https://github.com/facebookresearch/fairseq
https://huggingface.co/
https://github.com/karpathy/nanoGPT


Reading List
1. Vaswani, A., et al. (2017). Attention Is All You Need. In Advances in Neural Information Processing Systems (pp. 

5998–6008). (Link).
2. Alammar, J. (2018). The Illustrated Transformer. [Blog post]. (Link)
3. Rush, A. M. (2018). The Annotated Transformer. (Link)
4. Anna Goldie. (2024). Transformers. (Link)
5. Mitesh Khapra and Arun Prakash. Lecture 16: Transformers/CS6910. (Link)
6. Ba, J. et al. (2016). Layer Normalization. arXiv preprint arXiv:1607.06450. (Link)
7. He, K. et al. (2016). Deep Residual Learning for Image Recognition. CVPR. (Link)
8. Xiong, R., et al. (2020). On Layer Normalization in the Transformer Architecture. ICML. (Link)
9. Devlin, J., et al. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 

NAACL. (Link)
10. Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I. (2018). Improving Language Understanding by 

Generative Pre-Training. (Link)
11. Fleetwood (2024). You could have designed state of the art positional encoding. Blog Post. (Link)

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/annotated-transformer/
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1246/slides/cs224n-spr2024-lecture08-transformers.pdf
https://iitm-pod.slides.com/arunprakash_ai/lecture-17-transformers-ce11cb/fullscreen
https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1512.03385.pdf
http://proceedings.mlr.press/v119/xiong20a/xiong20a.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://huggingface.co/blog/designing-positional-encoding


Assignment



Build your transliteration model
• Transliteration: converting text from one script to another 
• Sequence to sequence model
• Build a transformer-based transliteration model 
• Task: Indic scripts to Roman and vice-versa 

Assignment Details to be provided by the end of the week



Additional Topics



Subword Vocabulary



The Vocabulary 
Problem
- The input & output embedding layers are finite

- How to handle an open vocabulary?
- How to translate named entities?

- Softmax computation at the output layer is expensive
- Proportional to the vocabulary size



Subword-level Translation

Obvious Choices: Character, Character n-gram, Morphemes   They all have 
their flaws!

The New Subword Representations: Byte-Pair Encoding, Unigram (implemented 
in SentencePiece package)

Original sentence: प्रयागराज में 43 दिनों तक चलने वाला माघ मेला आज से शुरू हो गया है

Possible inputs to NMT system: 

- प्रयाग @@राज में 43 दि @@नों तक चल @@ने वाला माघ मेला आज से शुरू हो गया है
- प्र या ग रा ज _में _ 43 _ दि नों _ त क _ च ल ने _ वा ला _मा घ मे ला _ आज _ से _ शुरू _ हो _ गया _ है



Learn a fixed vocabulary & 
segmentation model from 

training data

Segment Training Data 
based on vocabulary

Train NMT system on the 
segmented model

{प्रयाग, राज, में दि, नों, तक, चल, ने}

{प्रयाग राज} 
{च ल}
{चल, ने}

प्रयाग @@राज में 43 दि @@नों तक चल @@ने वाला माघ मेला आज से 
शुरू हो गया है

vocabulary

Segmentatio
n model

- Every word can be expressed as a concatenation of 
subwords

- A small subword vocabulary has good representative 
power

- 4k to 64k depending on the size of the parallel corpus
- Most frequent words should not be segmented



Byte Pair Encoding
Byte Pair Encoding is a greedy compression technique (Gage, 1994)

Number of BPE  merge operations=3
Vocab: A B C D E F

BADD
FAD
FEEDE
ADDEE
F

Words to encode

BADD
FAD
FEEDE
ADDEE
F

BP1D
FP1

FEEDE
P1DEEF

BP1D
FP1

FP2DE
P1DP2F

BP3

FP1

FP2DE
P3P2F

P1=AD P2=EE P3=P1D

Data-dependent segmentation

● Inspired from compression theory
● MDL Principle (Rissansen, 1978)  Select segmentation which maximizes ⇒

data likelihood 

1 2 3 4

Iterations

41



Problems with subword level translation

Unwanted splits: 

नाराज़  ना राज़  no secret

Problem is exacerbated for:
• Named Entities
• Rare Words
• Numbers

Explore multiple subword segmentations

• BPE dropout
• Unigram + subword-regularization

Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates. Taku Kudo. ACL 2018.
BPE-Dropout: Simple and Effective Subword Regularization Ivan Provilkov, Dmitrii Emelianenko, Elena Voita. ACL 2020



Decoding



Decoding

Ram    ate    rice   with the 
spoon

राम ने चम्मच से चावल खाये 

Searching for the best translations in the space of all 
translations



Decoding Strategies
 



Sampling 
Decoding

Greedy Decoding

Generate one word at a time sequentially

0.0
30.7
0.0
50.1
0.0
80.0
4

w1

w2

w3

w3

w4

w5

0.0
30.7
0.0
50.1
0.0
80.0
4

w1

w2

w3

w3

w4

w5

 
 

Not used to find best translation, but these methods have their uses  for efficiency reasons 



Greedy Search is not optimal

0.5
0.4
0.0
50.0
20.0
10.0
2

w1

w2

w3

w3

w4

w5

0.1
0.2
0.3
0.1
0.1
0.2

w1

w2

w3

w3

w4

w5

Probability of best sequence w1w3 
=0.15

0.5
0.4
0.0
50.0
20.0
10.0
2

w1

w2

w3

w3

w4

w5

0.1
0.4
50.2
0.1
50.0
80.0
2

w1

w2

w3

w3

w4

w5

Probability of best sequence w2w2  
=0.18

   



Beam Search

A compromise solution between greedy decoding and exhaustive search

• Explores more translation candidates than greedy search 
• More efficient than exhaustive search 

2 Core Ideas:

• Incremental construction & scoring of translation candidate (one decoder time step 
at a time) 

• At each decoder time step, keep the k-most probable partial translations 
•  these will be used for candidates expansion 

• Not guaranteed to find optimal solution
http://www.phontron.com/slides/nlp-programming-en-13-search.pdf 

http://www.phontron.com/slides/nlp-programming-en-13-search.pdf


राम ने

चावल

चम्मच

खा लिया

चम्मच से

चावल

खाये

• Incremental construction
• Each hypothesis is scored using the 

model
• Hypotheses are maintained in a priority 

queue 

Empty 
Hypothesi

s

Partial 
Hypothesi

s
Final 

Hypothesi
s

Hypothesi
s 

Expansion



Backtranslation



The models discussed so far do not use monolingual data

Can monolingual data help improve NMT models?



Train new
SRC-TGT MT System

Decode using
TGT-SRC MT System

  

 

  

 

SRC-TGT MT model

Create pseudo-parallel corpus using 
Target to source model (Backtranslated 
corpus)

Need to find the right balance between 
true and backtranslated corpus 

Why is backtranslation useful?
-  Target side language model improves 
   - target side is clean
- Adaptation to target language domain
- Prevent overfitting by exposure to diverse 

corpora

Particularly useful for low-resource languages

Backtranslation
monolingual target language corpus

Jointly train the true 
and backtranslated 
corpus

Sennrich, Rico, Barry Haddow, and Alexandra Birch. "Improving neural machine translation models with monolingual data." ACL 2016



Make backtranslation more diverse 

Make it easy for the model to distinguish between natural & synthetic 
input

• Sampling

• Restricted Sampling

• Beam+noising

Tagged Backtranslation  

  add a special token indicating that the input is 

synthetic

Tagged BT and Noised BT serve the same purpose  distinguishing inputs
Sergey Edunov, Myle Ott, Michael Auli, David Grangier . Understanding Back-Translation at Scale. EMNLP 
2018.
Isaac Caswell, Ciprian Chelba, David Grangier.  Tagged Back-Translation. WMT 2019



Thank You!
Write to me at anoop.kunchukuttan@gmail.com in case you have any 
questions

mailto:anoop.kunchukuttan@gmail.com

	Slide 1
	Outline
	Recap
	Transformer – revolutionizing NLP and AI
	Large impact outside of NLP – vision transformers, protein fold
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Where are we?
	Let’s look at the decoder side of things
	Let’s look at the decoder side of things (2)
	Now for the final pieces to train deep networks
	Layer Normalization [Ba et al., 2016]
	Residual Connections [He et al., 2016]
	Layer Normalization Revisited (Xiong et al., 2020)
	Summarizing Transformers
	Transformer Variants
	Dive Deep!
	Reading List
	Assignment
	Build your transliteration model
	Additional Topics
	Subword Vocabulary
	Slide 38
	Slide 39
	Slide 40
	Byte Pair Encoding
	Slide 42
	Decoding
	Decoding (2)
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Backtranslation
	Slide 51
	Slide 52
	Slide 53
	Thank You!

