The Transformer Model

Anoop Kunchukuttan
Microsoft AI Core, Hyderabad

anoop.kunchukuttan@agmail.com

For CS772 at IIT Bombay, Sep 2025

Course Instructor: Prof. Pushpak Bhattacharyya

mailto:anoop.kunchukuttan@gmail.com

Outline

* Recap
* Transformer: Introduction
* Transformer: Motivation

* Deep-dive into transformers

* Key Ideas
* Important components: Residual connections, Layer Normalization
* Putting the whole thing together

 Self-study
* Assignment
» Additional Topics

Recap

* Discussed tasks which require processing text sequences
* Language Modeling
* Sequence Labeling Tasks
* Sequence to Sequence Tasks

* Techniques
* Feed-forward LMs
« RNN LMs
e LSTM LMs
 Encoder-Decoder models
* Attention Mechanism

Transformer - revolutionizing NLP

and Al

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* f FPukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin* *
illia.polosukhin®@gmail.com

More than 200k citations
Made AI more scalable

Building complex systems from simple
building blocks composed in a scalable
way

Underpins all NLP models: BERT, GPT,
Claude, Gemini, translation models, etc.

arge impact outside of NLP - vision transformers,
rotein folding researc

e

pall N

Attention Map

Protein Folding

Systems ML

The international journal of science / 26 August 2021

N -

Softmax I]] I]]
“sa— "™, M.lr\lmnl]]] IIH

LY oL - LSTM Layer 4 [D'IH]{D] 'III]'II[' L5TM Laver & Il[l{m
Image Classification oo G B B
[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms veesonrs (AR AT e |]]]'|I|]-I]]]

ResNet-based baselines with substantially less compute. stzer: [THHE-- AL s (DA
wewee (100 OJOC e OO O

Ours-JFT Ours-IFT Ours-121% BiTL Noisy Student Encoder Decoder
(ViT-H/14y (ViT-L/16) (ViT-L/16) (ResNetl532x4) (ElficientMNel-L2)

ImageNet BB.55+004 BT.Th+o00s 85.30+002 87514002 B8.1/88.5° M L fo r Syste m s

ll]
Il

v

i
L
ATH]
AT
A
AMH
N

TmageNet Real. 90.72+005 MW.54+003 3R62+o0s 90,54 0.55
CIFAR-10 89.50+008 99421003 9915 +0.03 99.37 + 008 -
CTFAR-100 94.56+001 93.90+007 9325 +000 0351 +0.08 - [ZhOU et al. 2020] A Transformer-based
Oxford-LIT Pets 97.56L001 721011 9467 +oas 96.62 to.2a - R
Oxford Flowers-102 99.68=0.0z 99.742000 99.61k00: 99632000 - compiler model (GO-one) speeds up a
VTAR (19 tasks) TT.B3+021 T6.28+046 T2.72+03 T6.29+1.70 - r dell
TPUv3-care-days 2.5k .68k 0.23k 9.9k 12.3k Transformer model!
— - Run time Search
Maodel i#devices) “"";“ }t: “:“\!‘L“' | H(:;P | Ap‘!ed up ;;;;up
N N - over 1P ¢ HIDE aver HDWP
Zlayer KNNLM (2) e 0355 0191 9% /9.6% 295
| - A-layes RNNLM (4} 023 0.503 0251 138%/163% 1.76x
3-layer RNNLM (81 0332 QOM 0.764 3.8%) 58.1% 27.82
m i T Ty ONMT 038 B3 (v 6 11435 i
: te | ow | o | weme | gh
[umper et al. 2021] aka AlphaFDld2 layer Transformer AL (2) 0288 037 a6z 20.1% /174% A0k
buyer Tranaforn 027 00M 0259 174% / 12.6% 267
fuyer Transformer. 246 oM 0425 23.0%/167% 1675
032 O0OM O30T 2666 01 0% T35
Inceprion (2) bt 0331 ooM 0458 12.1%/20.3% 2105
AmaochiRet (4} [LERY LEN LESE] FRTRTAT ELES
I-gtack [B-laver WaveNet (2) D3% oM 0354 1868 /11 7% b.6lx
4-stack M6-layer WaveNet (4) 0988 O0OM 071 50% 1 9.4% i
GEOMEAN 05% / 18.1% 18x

Absolutely fundamental topic
Lot of cutting-edge work is based on deep understanding of transformers

Understand the ins and outs - lots of resources available

Sequence Modeling Approaches

Feedforward LLM RNN/LSTM LLM
@ @

Feedforward Layer RNN Layer

@ 1)

@ @® * @«

m- O

Not scalable to long contexts Context captqred in a single
state vector via recurrence

read

Limitations of RNN-based approaches

Feedforward LLM RNN/LSTM LLM

Long-distance dependency

@ @« paths

Feedforward Layer RNN Layer Sequential Processing

L) L) Unidirectional Processing

* @ * @«

m- e

Context captured in a single
Not scalable to Jong contexts state vector via recurrence

read

Can we use ideas from attention to overcome these

limitations?
Feedforward LLM RNN/LSTM LLM The RNN State vector is a

representation of the entire context

f f From attention over encoders,

L we know that attention mechanism
Feedforward Layer AR Lete can also be used to build source

7" @ representations relevant to target

token
* o« 1 L)
1 B read

Context captured in a single

Not scalable to long contexts state vector via recurrence

Can we use the same idea within
the same sequence - aka

SELF-attention?

Can we use ideas from attention to overcome these
limitations?

Feedforward LLM

1)

'y
Feedforward Layer RNN Layer
@

L)

RNN/LSTM LLM Self-Attention

'y
Feedforward Layer

1)

ead Bl = =X ead
Context captured in a single Context captured in a single
Not scalable to long contexts state vector via recurrence summary vector via

attention

Attention Mechanism: Recap

‘ij = g(sj—1, €, emb(y;_1))

ai; = izzxp(%)
exp(ag;)
C, i=1
1=N
Cj = Z aijez-
1=1

For generation of i" output character:
C; . context vector

a;. annotation weight for the j annotation vector
e/ j" annotation vector

Self-Attention

@

Feedforward Layer

@

* @ @«

Context captured in a single summary
vector via attention

Attention over words in the same sequence

Attention over what?
Representations from previous layer

read

Dependency path length is minimized to 1
- All words impact the target word

All words can be processed in parallel

Bidirectional context can be naturally

modelled
Models can be more interpretable

A method to obtain contextualized distributed
representations

Layer (i+1) Query

Layer (i) Key/Value

Is Attention All You Need?

There is quite a bit of machinery & trick in getting this to
work at scale

' [] [] 4
= Let’s dive into the details
> Add & Norm J Mult-Head
Feed Attention
Forward t } Nx
—
N Add & Norm
Add & Norm e
Multi-Head Multi-Head
Attention Attention
At At 2
— | \ —)
Positional Positional
E H '9 G' .
ncoding Encoding
Inpu Outpi
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Transformer - Overview

Output
Probabilities

* Encoder-Decoder model for sequence-to-sequence
() modeling
Feed « Stacked layers of transformer blocks in both encoder and
,—'ﬁ: decoder
| Add & Norm . .
([~ | | | * Encoder and decoder blocks are largely similar
Fomward g | Decoder has an additional attention module
— m%: * Each block is a combination of self-attention and feed-
Nx Add 8 Norm '
{addeton) Meckod forward modules
Leion e, * Other key ideas
—] = * Multi-head Attention
Bl QU & e * Positional Embeddings
Input Output b Layer NOrm
Embedding Embedding . .
i i * Residual Connections
Inputs QOutputs
(shifted right)

Figure 1: The Transformer - model architecture.

Self-Attention Explored

Step 1: For each word x;, calculate its query, key, and value.

qi = WQxi ki = WKJC,_' D; = WVxI- kO —7
ki F—
« Step 2: Calculate attention score between query and keys. K v,
k q k;, ™
E. . — . e .
ij = 4i K, v,
. . : ke Vs
« Step 3: Take the softmax to normalize attention scores. 3
! ks —
exp(e;;) ,
a;; = softmax(e;;) = ——— k, —
Y expler)
k
« Step 4: Take a weighted sum of values. we Wk W"allowyou to look at same input

vectorfrom 3 different perspectives
Outputi = Zaijv]- P P
i

Modify attention by scaling dot-product

To avoid dot product taking extreme values,
as its variance scales with dimensionality d,,

e;; = (q;. k;’)/\/dk —

Source: Stanford CS224n

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1246/slides/cs224n-spr2024-lecture08-transformers.pdf

Self-Attention Visualized

AUNQV
<S03>

uoiuido
Aw
u

Buissiw
ale

oM
1eym

sl

siyj

isnl

o2q

pinoys
uonesidde
sy

Inq

Joapad
3q
Janau
1M
MeT
QYL

<ped>
<peds>
<peds>
<peds>
<ped>
<ped>
<S03>

Hnoyup
alow
ssa00.d
Bunoa

uonelisibal
ay}

Bunyew
6002
LIS

sme|

Mmau
passed
aney
sjuswulanob
ueoaWYy

Aolew
eyl

ds
siy}

uonelsibel
sy}
Buyew
6002
aouls

SMe|

mau
pessed
aney
sjuawulonob
ueolaWyY

Aolew
eyl

wds
siy}

<peds>
<S03>

uojuido
Aw
u

Buissiw
ale

oM
1eyMm

sl

siy}

isn(

oq

pinoys
uoneosidde
si

Inq

109)1ad

oq
Janau

Capturing anaphora

(1M

ayl

<ped>
<ped>
<ped>
<ped>
<ped>
<ped>
<803>

unowisll
alolW B

ssa00.d
Bunjoa

Capturing dependency relationships

The model learns to focus on the right context dynamically when processing a sequence

Multi-head Attention -
Motivation

We want to look at word and their relations from different perspectives

e.g.

Dependency relations
Anaphora

Structural relations
Semantic similarity

How can we capture different kinds of relations between

words? l

Use Multiple Heads

d/4

Multi-head Attention (MHA) - Implementation

Output 1

Attention

Head 1

Output vectors

I Concat

Output 3
L] L)

Attention

Attention

Head 2 Head 3

L)

Input vectors

Output 4

L)

Attention
Head 4

]

Each token is looked at by multiple
heads independently.

Each head has its in own
we w% w"parameters.

Each attention head generates part
of the final output vector

Final output vectoris a
concatenation of each head’s
output

Multi-head Attention (MHA) - Visualized

Layer:| 5 4| Attention: | Input - Input 4

The_ The_
animal_ animal_
didn_ didn_ As we encode the word "it", one attention head
- - (orange) is focusing most on "the animal”,
t_ t
C'ct’::‘ fr::ss' Another (green) is focusing on "tired" -- in a
—y street_ sense, thg model's representation of the word
because_ because_ "it" bakes in some of the representation of both
it_ it_ "animal" and "tired".
—~ was_
-~ too_ One is capturing anaphora, the other is

capturing dependency

Source: Illustrated Transformer

https://jalammar.github.io/illustrated-transformer/

Feedforward Module

» Attention Module helps build distributed representations of words

However, its expressive power is limited

* Simple averaging of vectors =» linear operation
* No non-linearies = limited learning (remember Perceptron!)

m; = MLP(output;)
W, * ReLU(W; X output; + by) + b,

FF

FF

The

i !
FF FF

! T

self-attention

! !
FF FF

self-attention

W W3

chef who

food

Up projection (~4x) = non-linearity = Down-
projection
Adds lots of parameters, typically a large fraction
of parameter budget goes to feedforward

module
Note:

Self-attention looks at the entire sequence at a time,
Generates a distributed word representation

The feed-forward module looks each representation
independently - applied in parallel

Problem - No Structural/Positional Awareness

The dog barks at the
man Dog has the same representation irrespective of its role in the

gente ce

The man barks at the ame jor man

dog

The old boy ;iught e e The two boys have the same representation, although they have
Y different roles

The self-attention and feed-forward computations are position
invariant

Positional Embeddings

We need to encoder position information into our word representations

Add a position-specific embedding to each token

Typically, down at the embedding layer EMBEDDING
3?;: = X; +p; SIGNAL
where p; is the unique embedding vector to identify position i POSITIONAL

ENCODING

EMBEDDINGS

Learned Embeddings
Positional embeddings are additional parameters that are learr NPUT

Sinusoidal Embeddings

/sin(i/100002*1/d)\
cos(i/100002%*1/%)

Pi

d
sin(i/lOOOOZ*%/d)
. 2x—=/d
Lcos(i/10000%°2/%))

Dimension

Index in the seauence

Where are we?

Qutput
Probabilities

Linear

Add & Norm
Feed

Forward We have covered the most important concepts

| Add & Norm ;

Multi-Head

Attention Let’s fill in the rest

]) Nx
Add & Norm

Masked
Multi-Head
Attention

t
L .

Nx

Multi-Head M
- Aon J

Positional
Encoding

-7

& A
—\
e J
Output
Embedding

Inputs Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.

Let's look at the decoder side of things

Qutput
Probabilities

Cross-
attention
module

(¢)
Add & Norm

Feed
Forward

e ™\
_ i
SIS Multi-Head
Feed Attention
Forward Nx
Nix Add & Norm
p—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
“_t At
o J . —)
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Many of the module are the same as encoder, but 2
differences because of the nature of the decoder

Difference 1
The decoder has to also look at the encoder
representation (from last lecture)

= Extra cross-attention module
= Similar to self-attention, look at top encoder
layer instead of previous layer

Let's look at the decoder side of things

Many of the module are the same as encoder, but 2
Promabities differences because of the nature of the decoder

Difference 2
(o) Decoder is generation module, generating from left
== to right - so self-attention does not have access to

Forward

future tokens
N m‘ﬁ

4 1
L Add & Norm J Multi-Head
Feed Attenti . .
Forward feon y Self-attention layer uses masked attention
} N
— We can look at these
Nx ﬁ@'@ oy = (not greyed out) words
Cl
Multi-Head | MmutiHea ’ [\
Attention Attention o A A
it L ..
]) U) [START] To enable parallelization, we
Positional s : Positional - mask out attention to future
' S : Th . .
Encoding Encoding o encoding) words by setting attention
lnpUt, OUtqu these words scores to —oo T . .
Embedding Embedding chef . q; k],‘] < i
7 €ij = .
f N o =3
Inputs Outputs who
(shifted right) SqiTkj, j<i

Figure 1: The Transformer - model architecture.

Now for the final pieces to train deep
networks

Layer Normalization

Residual Connections

Layer Normalization [Ba et al., 2016]

* Problem: Difficult to train the parameters of
a given layer because its input from the layer
beneath keeps shifting.

* Solution: Reduce variation by normalizing to
zero mean and standard deviation of one
within each layer.

H
1 .
Mean: ¢ = I Y ai Standard Deviation: o' -
i=1

xf_yf

ol +¢

xt’ =

Output
Probabilities

(¢)
Add & Norm

Feed
Forward

Add & Norm

Multi-Head

A
’
A Attention
t) Nx
—
Nix Add & Norm

f_'l Add & Norm I Masked
Multi-Head Multi-Head
Attention Attention
At At
— J \ —)
Positional Positional
Encod & ¢ .
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Residual Connections [He et al., 2016]

So far we have looked at modules in a single layer - now
let’s look between layers

Difficult to train deep networks because of

* Vanishing gradient (again! - now between layers)

* Degradation - deep networks find it difficult to learn
representations from scratch

Residual module: add previous layer’s output to current
layer’s output

Output = F(z) + =
Network is now learning residuals F(x)

Direct connection for gradient flow
(similar to what LSTMs did - without the gating)

Output
Probabilities

Feed
Forward

\.

(¢)
Add & Norm

| Add & Norm ﬁ

Nx

J/

Positional
Encoding

AL Em Multi-Head
d Attention
orward)
Nix Add & Norm
/—Pl Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
A+ # A 2
I J . =
D @
A
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Positional
Encoding

Figure 1: The Transformer - model architecture.

Layer Normalization Revisited (Xiong et
al., 2020)

Xl+1 Xi+1

addition
ry

L Original transformer paper used Post-Norm
T implementation
P
e e Training instability due to improper
Layer Norm | IEition ! gradient fIOW
addition Multi-Head
Attention All modern transformers use Pre-norm
Multi-Head
LAﬁen Layer Norm
X Xy

Post-norm Pre-norm

Summarizing Transformers

Qutput
Probabilities

Linear

(¢ N\
Add & Norm
Feed
Forward
4 1 N\ I Add & Norm z
el Multi-Head
Feed Attention
Forward 2) Nx
—
Nix Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 2 At 2
— J . —)
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Self-Attention: enables distributed representations that can be
learnt parallelly and without gradient vanishing issues.

Multi-head Attention: help look at different perspectives of a
token

Positional Encoding: encode positional information
Feedforward Module: the brains of the networks

Scaling to deep networks: residual connections and layer
normalization

Transformer Variants

* Transformer Encoder = BERT, XLM-R, ModernBERT and all
other encoder-only models.

* Use only the encoder part of the transformer

* Transformer Decoder = GPT and all modern generative
LLMs

* Use the decoder part only - masked self-attention, but cross-
attention is not needed.

Dive Deep!

Understand the math for each component and understand the paper: The Annotated Transformer

Read through network architecture of transformers in Fairseq or HuggingFace code
Implement a minimalist transformer model: nanogpt

Go through the reading list and dive into the suggested readings
Exercise: Can you count the number of parameters in the network given its architecture?

Exercise: What is the time and space-complexity of processing a sequence?

https://nlp.seas.harvard.edu/annotated-transformer/
https://github.com/facebookresearch/fairseq
https://huggingface.co/
https://github.com/karpathy/nanoGPT

O o N o U~ W N

—
©

—
—
.

Reading List

Vaswani, A., et al. (2017). Attention Is All You Need. In Advances in Neural Information Processing Systems (pp.
5998-6008). (Link).

Alammar, J. (2018). The Illustrated Transformer. [Blog post]. (Link)

Rush, A. M. (2018). The Annotated Transformer. (Link)

Anna Goldie. (2024). Transformers. (Link)

Mitesh Khapra and Arun Prakash. Lecture 16: Transformers/CS6910. (Link)

Ba, J. et al. (2016). Layer Normalization. arXiv preprint arXiv:1607.06450. (Link)

He, K. et al. (2016). Deep Residual Learning for Image Recognition. CVPR. (Link)

Xiong, R., et al. (2020). On Layer Normalization in the Transformer Architecture. ICML. (Link)

Devlin, J., et al. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
NAACL. (Link)

Radford, A., Narasimhan, K., Salimans, T. and Sutskever, 1. (2018). Improving Language Understanding by
Generative Pre-Training. (Link)

Fleetwood (2024). You could have designed state of the art positional encoding. Blog Post. (Link)

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/annotated-transformer/
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1246/slides/cs224n-spr2024-lecture08-transformers.pdf
https://iitm-pod.slides.com/arunprakash_ai/lecture-17-transformers-ce11cb/fullscreen
https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1512.03385.pdf
http://proceedings.mlr.press/v119/xiong20a/xiong20a.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://huggingface.co/blog/designing-positional-encoding

Assignment

Build your transliteration model

* Transliteration: converting text from one script to another
* Sequence to sequence mode]

 Build a transformer-based transliteration model

 Task: Indic scripts to Roman and vice-versa

Assignment Details to be provided by the end of the week

Additional Topics

Subword Vocabulary

The Vocabulary
Problem

- The input & output embedding layers are finite
- How to handle an open vocabulary?

- How to translate named entities?

- Softmax computation at the output layer is expensive

- Proportional to the vocabulary size

exp(0o;i)
m=T

2. exp(0jm)

m=0

softmax (o) =

Subword-level Translation

Original sentence: TARRTS | 43 &A1 dch et dTelt A9 Aell 35T T F 8l 1T 8

Possible inputs to NMT system:

- YT @Q@TTST H 43 & @@ deh I @@H aTell A9 Hell 37Te1 & ¥ &1 141 8
- UWAAST H_43_RAT_dF_IAA_ITAT_ATIAA_NS_d_J[E_gI_T_8

Obvious Choices: Character, Character n-gram, Morphemes =» They all have
their flaws!

The New Subword Representations: Byte-Pair Encoding, Unigram (implemented
in SentencePiece package)

Learn a fixed vocabulary &
segmentation model from
training data

Segment Training Data
based on vocabulary

Train NMT system on the

segmented model

{377 <Io7}
{T &} Segmentatio
{TeT T n model

I @@ITST 43 @@ 77 7 ge7 @@ 7 gTeiT HIe Hedl 377 &
Y& & TaTE

Every word can be expressed as a concatenation of

subwords
A small subword vocabulary has good representative
power

- 4k to 64k depending on the size of the parallel corpus

Most frequent words should not be segmented

Byte Pair Encoding

Byte Pair Encoding is a greedy compression technique (Gage, 1994)

Number of BPE merge operations=3 P,=AD P,=EE P,=P.D

Vocab: ABCDEF

Words to encode Iterations

BADD D BADD ©) BP.D ©) BP.D @ BP,
FAD FAD FP, FP, FP,
FEEDE FEEDE FEEDE FP,DE FP,DE
ADDEE éDDEE P.DEEF P.DPF PP F

Data-dependent segmentation

® Inspired from compression theory

@® MDL Principle (Rissansen, 1978) = Select segmentation which maximizes
data likelihood

Problems with subword level translation

Unwanted splits:

ARTST % T I ¢80 NO secret

Problem is exacerbated for: Explore multiple subword segmentatior

e Named Entities * BPE dropout

e Rare Words * Unigram + subword-regularization

e Numbers

Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates. Taku Kudo. ACL 2018.
BPE-Dropout: Simple and Effective Subword Regularization Ivan Provilkov, Dmitrii Emelianenko, Elena Voita. ACL 2020

Decoding

Decoding

Searching for the best translations in the space of all
translations

[Ran'] [ate] [ricé[with the]

" <

mA] [wed | [(=

Decoding Strategies

Exhaustive Search: Score each and every possible translation— Forget it! = 0(V")
Sampling = O(NV)
Greedy = O(NV)

Beam Search = O(kNV)

Greedy Decoding Sampling

Decoding
W, 0.0
W, 35 W, 0.0
W, 0.0 W2 LZ
W ﬁ ; A 0.0
w, 00 w, = 01
W“ ﬁ.n w, | 0.0
A w, 6.0
4

Select best word using
the distribution

P(yjly<j,x)

Sample next word
using the distribution

P(yjly<j, x)

Generate one word at a time sequentially

Not used to find best translation, but these methods have their uses = for efficiency reas

Greedy Search is not optimal

w, 05 w, | 0.1
0.4 w 0.2 -
o - ? o Probability of best sequence w,w,
W, : W, . _
w, 8.0 w, | 0.1 =0.15
w, 8 0 W, 0.1
W, il) 0 W, 0.2
2
W, 0.5 W, 0.1
w, 04 w, |04
wy; 0.0 w, 02 Probability of best sequence w,w,
w, 8.0 wy, | 0.1 =0.18
w, 8 0 w, 8 0
W, fl) 0 W g 0
2 2

Beam Search

A compromise solution between greedy decoding and exhaustive search

* Explores more translation candidates than greedy search
* More efficient than exhaustive search

2 Core Ideas:

* Incremental construction & scoring of translation candidate (one decoder time step
at a time)

* At each decoder time step, keep the k-most probable partial translations
* =>these will be used for candidates expansion

* Not guaranteed to find optimal solution
http:/7www.phontron.com/slides/nlp-programming-en-13-search.pdf

http://www.phontron.com/slides/nlp-programming-en-13-search.pdf

Partial
[Hypothesi Hypothesi
S S

Final
Hypothesi

a9 A
“ T O

- — SIE
_—> d[dd]
\ —
[

< \ * Incremental construction

* Each hypothesis is scored using the
model

* Hypotheses are maintained in a priority
gqueue

Empty
Hypothesi
S

Backtranslation

The models discussed so far do not use monolingual data

Can monolingual data help improve NMT models?

Backtranslation
monolingual target lanquage corpus

: T'm Decode usin Sim
Create pseudo-parallel corpus using G gt >
Target to source model (Backtranslated) yStem

corpus)

Jointly train the true

Need to find the right balance between gggg Zg“tmns/afed

true and backtranslated corpus

Why is backtranslation useful?
Train new SRC-TGT MT Inodel

- Target side language model improves
- target side is clean
- Adaptation to target language domain
- Prevent overfitting by exposure to diverse
corpora

SRC-TGT MT System

S T

p p

Particularly useful for low-resource languages

Sennrich, Rico, Barry Haddow, and Alexandra Birch. "Improving neural machine translation models with monolingual data.” ACL 2016

25.5
Make backtranslation more diverse -
« Sampling = Ll
* Restricted Sampling . s :b gé,?fjg_ T samine
* Beam+noising sM. sM 1IM 1M 29M

Total training data

Make it easy for the model to distinguish between natural & synthetic
Input

Noise type Example sentence
. [no noise] Raise the child, love the child.
Tag g ed Backtranslation 2 P3BT child Raise the, love child the.
add a special token indicating that the input js ~ NoisedBT Raise child __love child, the.
TaggedBT <BT> Raise the child, love the child.
synthetic TaggedNoisedBT | <BT> Raise, the child the __ love.

Tagged BT and Noised BT serve the same purpose = distinquishing inputs

Sergey Edunov, Myle Ott, Michael Auli, David Grangier . Understanding Back-Translation at Scale. EMNL
2018.
Ternre (Crciaoll Cinvinn Cholbha DavzidAd (croonmior Trnnod Roacl Tronclatinn WAMT 2N 10

Thank Youl!

Write to me at anoop.kunchukuttan@gmail.com in case you have any
guestions

mailto:anoop.kunchukuttan@gmail.com

	Slide 1
	Outline
	Recap
	Transformer – revolutionizing NLP and AI
	Large impact outside of NLP – vision transformers, protein fold
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Where are we?
	Let’s look at the decoder side of things
	Let’s look at the decoder side of things (2)
	Now for the final pieces to train deep networks
	Layer Normalization [Ba et al., 2016]
	Residual Connections [He et al., 2016]
	Layer Normalization Revisited (Xiong et al., 2020)
	Summarizing Transformers
	Transformer Variants
	Dive Deep!
	Reading List
	Assignment
	Build your transliteration model
	Additional Topics
	Subword Vocabulary
	Slide 38
	Slide 39
	Slide 40
	Byte Pair Encoding
	Slide 42
	Decoding
	Decoding (2)
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Backtranslation
	Slide 51
	Slide 52
	Slide 53
	Thank You!

