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Few-shot Model Adaptation

Given a trained model M(®) on a large diverse dataset D

User interested in a target task Q, gives a small labelled data

T:{xr ¥y1 X2 Y2 X3 Y3 e X Vit~ Q

Model adaptation = Find the best blend of M(®) and T

y

T

D, B Ds Train >M (9) —| Model _> MT (3)
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D: A large diverse training set T Xiest™~ Q

D may contain a part D; that is relevant to target task, but it is not explicitly identified.



Example: model adaptation

M(0) Target task
Conversation assistant - New users
Text-to-SQL system - Private pharma database
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Concerts  Football Travel Countries BooOks

A large language model - NER on physics documents
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The challenges of model adaptation

e Accuracy: requires delicate balance.
T: Small but relevant M(0): Large, mixed relevance

Adapt too much - overfit, forget old Adapt too little > No change

e Robustness: Small T leads to high variance across T~Q
o Cannot introduce additional instabilities, e.g. due to ordering

e Efficiency: O is large
o Time of adaptation: Offline Vs Online (On-the-fly)
o Test time: time for using after adaptation.



Model adaptation over the Ages

Adaptation of Maximum Entropy Capitalizer: Little Data Can Help a Lo
Ciprian Chelba  A. Acero Computer Science - Computer Speech and Language - 2006

Domain adaptation of natural language processing systems Domain Adaptation of Conditional Probability Models Via Feature Subsetting
Fernando C Pereira  John Blitzer Computer Science, Linguistics - 2008 Sandeepkumar Satpal  Sunita Sarawagi Computer Science -

European Conference on Principles of Data Mining... - 17 September 2007

Domain adaptation of information extraction models

Rahul Gupta  Sunita Sarawagi Computer Science - SGMD - 20 March 2009
Structured Case-based Reasoning for Inference-time Adaptation of Text-to-SQL parsers

. . .. . . . Abhijeet Awasthi  Soumen Chakrabarti  Sunita Sarawagi Computer Science -
Adversarial Discriminative Domain Adaptation

AAAl Conference on Artificial Intelligence - 10 January 2023
Eric Tzeng  Judy Hoffman  Kate Saenko  Trevor Darrell

Computer Vision and Pattern Recognition - 17 February 2017 LoRA: Low-Rank Adaptation of Large Language Models

J.E.Hu YelongShen +4 authors Weizhu Chen Computer Science

. . . International Conf Learning... - 17 June 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks E— e

Chelsea Finn P Abbeel S Levine Computer Science - International Conference on Machine Learning -
Unsupervised Domain Adaptation by Backpropagation

Deep Transfer Learning with Joint Adaptation Networks Yaroslav Ganin V. Lempitsky Computer Science - International Conference on Machine Learning -

Mingsheng Long  Hanhua Zhu  Jianmin Wang  Michael I. Jordan 26 September 2014

International Conference on Machine Learning - 21 May 2016




Model adaptation methods

Fine-tuning and its variants
Mixture of experts
Task-vectors

Matching-based methods

Each category explicitly planned for adaptation either when
Training M(©), or when

« Adapting with T




Fine-tune parameters via gradient descenton T

Training of M(6): Adaptation with T:
Normal loss on D Update 6 via gradient descenton T
Model adaptation y

T

M (9) SN Gradients Y. VoL (Mg (x), y) : M 9
T — & ) ~ ?( )

Parameters 6 Xeest™ Q

Explicit update of model parameters 0 to minimize loss on target data T
Generally provides good accuracy for modest sized T



Does fine-tuning define the accuracy ceiling?

D is diverse, and of mixed
relevance to target

M (@) trained on D, may
not preserve subparts

such that fine-tuning with
T recalls relevant parts

Train >M(9)—»

e | My (0)

T/




An accuracy celiling: Revisit the source D

e |dentify relevant D; explicitly from D, Retrieval problem.
e Fine-tune with D; UT.

—= Retrieve

D, . D, \
D, D. D¢ Train >M(0) — Fine-Tune $MQ (9)

: usingD; UT
D, Ds D, /

D Probe




Revisit the source for adapting word embeddings

|« Revisit the source

A Fine-tuning variants
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Revisiting source significantly better than best fine-tuning.

Not practical. Cannot revisit source

Useful intuition: important to maintain task identities for later specialization

Topic-Sensitive Attention on Generic Corpora Corrects Sense Bias in Pretrained Embeddings. Piratla, Sarawagi and

Chakrabarti In ACL, 2019.



A practical approximation: mixture of experts
Model: mixture of experts with a task selector

t P(y)
Combine outputs
1 1 T
0, |03
t L L _1 _
Task selector

I X

Training of M(0): Task
selector supervised by
tasks in D

Adaptation with T:
recognize the most
relevant expert

Separate parameters for each task may be too much.

Multi-Source Domain Adaptation with Mixture of Experts. EMNLP 2018. Guo, Shah, Barzilay



Modern Mixture of Experts: Switch Transformers
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR 2022 Fedus, Zoph, Shazeer



Greater accuracy gains on fine-tuning MoEs

©
(@)

Base model: Flan T5
MoE variant: Flan-MoE-T5

Evaluation Accuracy
N w B (&) (o)) ~ (0]
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Various NLP tasks

Accuracy after fine-tuning.

CondaQA PubMedQA  SearchQA

[ | FIanT5 m Flan-MOE-T5

Mixture-of-Experts Meets Instruction Tuning: A Winning Combination for Large Language Models. ICLR 2024.
Shen, Hou, Zhou, Du, Longpre, Wei, Chung, Zoph, Fedus, Chen, Tu Vu, Yuexin Wu, Wuyang Chen, Albert Webson, Yunxuan Li, Vincent

Zhao, Hongkun Yu, Kurt Keutzer, Trevor Darrell, Denny Zhou



Adaptation with Task vectors

Another way to

maintain task y — loss(6, ) Tralnlhg: B
identities t ® Train 0, ¢ jointly
M(6) { ® Requires task boundaries

|

X g :Task vector Adaptation:

| 1 Use T to extract g, = Ay (T)

x € DT Af) Y = M(Xtest » 9t)
(]

NLP Service APIs and Models for Efficient Registration of New Clients. 2020.Shah, Piratla, Chakrabarti, Sarawagi



Adaptation with Matching Networks

_~ loss(6) Va loss() Training:

" Match of y,y’ ® Train O as usual

T T ® Contrastive K, (x,x") so example
M(?) Ky (x,x") g pairs with same labels are close

L — 1 N "
X xSy = mes \ﬁ(w’i\'d’;ptation:
e ) (€T @ Use kernel method to get

WW” g =qe predictions from T using

M(H) Kernel method: e.g. KqNL\I_ Kt,b(x'x')’ x' €.
\/\ ® Blend with predictions from
M(x|6
Xtest T Ky (x16)

+ Labeled Memory Networks for Online Model Adaptation. In AAAI, 2018. Shiv Shankar and Sunita Sarawagi —
+ Speech-enriched Memory for Inference-time Adaptation of ASR Models to Word Dictionaries Mittal, Sarawagi, Jyothi. EMNLP 2023.
+ Conditional Tree Matching for Inference-Time Adaptation of Tree Prediction Models. Varma, Awasthi, Sarawagi /ICML 2023 _-



An example matching-based adaptation for
Text2SQL

Conditional Tree Matching for Inference-Time Adaptation of Tree Prediction Models. Varma, Awasthi, Sarawagi
ICML 2023.



Text to SQL

Schema
Department
Id Name Description
14 Informatik
11 Software system
21 Engineer

Degree programs

Id Name Dept id

1 PhD 14

2 Masters 21

3 Bachelors 21
Question

How many degrees does the
engineering department offer?

X

Relational Algebra Tree
representation of SQL

Il

P

TN
Text2SQL . /\ 7~ T—

mOdel departments  degree_programs = >
M(0)

departments.deparment_name  "engineer”  departments.deparment_id  degree_programs.deparment_id

= -

34



Designing matching kernel: K((x,y), (x',y"))
Two parts since y is structured. T&T

e Node-level reasoning of the relevance of specific sub- k

trees of labelled examples to current question
o Fine-grained sharing.

e Similarity based on alignment of respective trees 2>
structurally informed



Fine-grained relevance scoring
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Alignment based relevance- welghted K((x,y), &,y )

x’ Contextualized
Relevance weighted

O\, labeled tree ',

* document_id

X Contextualized
candidate tree y,

document_id

paragraphs A paragraphs .--- >
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Conditional Tree Matching for Inference-Time Adaptation of Tree Prediction Models. Harshit Varma, Abhijeet Awasthi and Sunita
Sarawagi In ICML 2023.



Accuracy after adaptation with few examples

car_1 Doc_Template dog_kennels flight 2 world_1
Database schema

SQL Match Accuracy
© © ©o ©o © o o o ©
- N w ESN (@) (o)) ~ (0] O

o

m Zero shot m Few shot



Greater robustness to irrelevant examples

100
90
80

7
6
5
4
3
2
10 .

Concert_singer Employee_hir Network Orchestra Pets
Database schemas

m Zero shot mFew-shot (Ours) = Few-shots in Prompt

SQL Accuracy
O O O O O O

o

Reasoning about fine-grained relevance of few-shots is important for
robustness
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Model adaptation methods

e Fine-tuning and its variants
e Mixture of experts and task-vectors

e Matching / memory augmented methods.

Each category explicitly planned for adaptation either when training M(@)
or adaptingto T




Emergent Model Adaptation in LLMs

e Solution to model adaptation just emerges in the form of
In-context learning!

e Models trained with next-token prediction loss on huge

natural document collections can be adapted just with
few labelled examples in-context..

Language models are few-shot learners. Brown et al NeurlPS 2020



Adaptation via In-Context Learning in LLMs

Training: Default

Predicted label § ~ M (x;05:|6)
I Adaptation: Just a

M(6): LLM forward pass.
X1 V1 X2 V2 X3 Y3 e Xk Yk Xtest

T—

Language models are few-shot learners. Brown et al NeurlPS 2020



Examples

42
)
LLM: M(8)
4r
213=06, 313=9, 514=20, 6!17=
63
i)
LLM: M(6)
4™

213=6, 313=9, 514=20, 9!7=



Why does ICL work?

e Hypothesis 1: Transformers implement gradient descent
algorithm over IC examples

e Hypothesis 2: IC examples recognize tasks in pre-training
e.g. via task vectors

e Hypothesis 3: Self-attention implements matching-based
adaptation via induction heads



We observe a parallel between these hypothesis and age-old
methods of model adaptation.



Hypothesis 1: Transformers implement
gradient descent over label loss during ICL

But how can GD be implemented in one forward pass over T?
o No obvious loss on IC examples, leave alone gradients on loss?
o No 6 parameters are updated!

M(6): LLM

— )

Layer 2: Causal Attention
4

Layer 1: Causal Attention

3{1 Y1 X2 Y2 X3 Y3 e Xk }’k, Xtest
Y

T




Assume

e |nput stacked as [xi,yi]

. . y
e Task s linear regression T
© X s a real vector Layer 2: Causal Attention
O Vi = WX | :
. Layer 1: Causal Attention
e |oss is square loss X Xy Xz oo Xy, Xpest
O mMi}n Z(xi’yi)ET(yi — wx; )2 Y1 Y2 Y3 Ve 0

e Transformer attention is
linear: no softmax.

What can transformers learn in-context? a case study of simple function classes. NeurlPS 2022. Shivam Garg,
Dimitris Tsipras, Percy Liang, and Gregory Valiant.



Each layer implements a gradient step during forward pass of ICL

Parameters I/,

!

o
(-]

Cradients Y7 VwL(M,(x),y)

Parameters W

Gradient Descent Loop

Gradients ¥, V,,L(M,, (x),y)

!

Parameters W;

!

Gradients ¥ V,,L(M,,, (x),y)

1

Parameters W,

Unrolled Gradient Descent

Possible to craft Output ¥ = W} Xtest
attention parameters °
so transformers can °

simulate GD I

Layer 2: Causal Attention

Hidden vectors contain [W;, Xtest ]

Layer 1: Causal Attention

xl xz X3 ------ xk xtest
Y1 V2 Y3 e yi O

Forward pass of Transformer w/ ICL

Transformers learn in-context by gradient descent. Johannes Von Oswald et al. ICML 2023
What learning algorithm is in-context learning? investigations with linear models. Ekin Akyurek et al. ICLR 2023




But can we learn these parameters that
implement gradient descent using standard
next-token loss?



Proved for special cases

Special case |: One-layer linear Transformer
o Optima of training loss leads to transformer parameters that
iImplement single pre-conditioned gradient descent step.

y

Single Linear Attention
xl xz x3 ------ xk xtest

Y1 V2 V3 e yr O

« Trained transformers learn linear models in-context. JMLR 2024. Ruigi Zhang, Spencer Frei, Peter L. Bartlett
« Transformers learn to implement preconditioned gradient descent for in-context learning. NeurlPS 2023.
Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, Suvrit Sra



Proved for special cases

Special case lI: Linear Multi-layer looped Transformer
y

Same parameters Layer 2: Linear Attention

6 in the two layers < f

of the transformer Layer 1: Linear Attention
X1 Xg X3 e Xi Xtest
Y1 Y2 Y3 o Vi O

But these results are for numerical regression tasks, and that too on special
transformers trained for this task. Do not generalize to text and NLP

Can looped transformers learn to implement multi-step gradient descent for in-context learning? ICML 2024.
Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar



What about text and pre-trained LLMs?

Dai et al (2023) support o .
GD hypOtheS|S fOf' ICL fOf' Base GPT GPT fine-tunedon T

text and pre-trained LLMs Xtest Xtest

hFT - hzs ~ hICL - hzs

Base GPT with ICL

X1 Y1 X2 Y2 X3 Y3 e Xk Yk Xtest

Why can GPT learn in-context? language models secretly perform gradient descent as meta-optimizers. ACL
2023. Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei.



|ICL performs Gradient descent hypothesis is
refuted..

Even an untrained transformer has high similarity between
corresponding vectors while showing no capability for ICL

In-context learning and gradient descent revisited. NAACL 2024. G Deutch, N Magar,
T Natan, G Dar.

Others: Li et al ACL 2024, Shen et al ICML 2024



Hypothesis 2:

|ICL identifies task from the pre-training set



|CL does task selection

LLM: M(6)
T
213=6,313=9,514=20,9!17=

LLMs provide the correct answer by recognizing this as a
multiplication problem. They do not really learn to do
multiplication from these examples.



How does task selection capability emerge in
LLMs after pre-training with next token loss?



|CL does Task Selection

Pretraining documents: Prefix of sentence recognizes topic as latent

mix of related topics vectors g, = soft select task - recall words
S :

= Coffee from related documents seen earlier.

Coffee is a popular drink ... drink

Coffee is a drink that invigorates T

Coffee is a brewed drink made ... LLM Layer B

Music F

The most popular music genre ...

L Soft task selection

The first electric guitar was ... gT Task vector

T

S

Coffee, is, a, brewed,

An explanation of in-context learning as implicit Bayesian inference. ICLR 2022. Sang Michael Xie, Aditi Raghunathan, Percy

Liang, and Tengyu Ma

The learnability of in-context learning. NeurlPS 2023. Noam Wies, Yoav Levine, and Amnon Shashua



|ICL goes beyond task selection

Large LLMs do learn novel input-output mappings
o Replacing positive/negative with foo/bar or flipping labels works
for sentiment classification

o Unseen key-value associative mappings are learned

o Totally synthetic formal Markovian languages are learned

What do language models learn in context? the structured task hypothesis. ACL 2024. Jiaoda Li, Yifan Hou,
Mrinmaya Sachan, and Ryan Cotterell.

Why larger language models do in-context learning differently? ICLR 2024. Zhenmei Shi, Junyi Wei, Zhuoyan
Xu, and Yingyu Liang



Hypothesis 3: Self-attention implements
matching-based adaptation



|CL= Matching with Induction circuits

Induction circuits created over two layers

Layer 2: Matching with

Jﬂ « Key = copied previous token,
* Value = current token,
Layer 2: Copy value using gontext similarity based attention « Query = current token
V ‘:
K: <start K: Hello K: 11 K: Goodbye
V: Hello V: 11 V: Goodbye V.77 Q: Hello

Layer 1’s attention copies previous
Layer 1: Context formed with previous token using position based attention token as key.

[Chbio | [ 4 [ ooty J[ 77 [ Heio ]
x! 1 x? y? x*

In-context learning and induction heads. Olsson et al 2022
The mechanistic basis of data dependence and abrupt learning in an in-context classification task. ICLR 2024. Gautam Reddy



But why do transformer parameters orient to
create in-context induction heads during next-
token loss pre-training?



Pre-training data contains repeated phrases

COrpus Contalns CO-0CCU rrlng care. \We will estimate infant and neonatal mortality rates

again in 2015 to see if this trend continues and, if so, to

phrases in Similar templates assess how it can be reversed. Infant mortality in 2013 was

T 2013

W cd

LLM @ = == e e e em e e em e e e e e e e e e e e e e e e e e e e e e ‘ﬁ

.. neonatal mortality rates again in 2015 to see if this ..... infant mortality irc{_I

Parallel structures in pre-training data yield in-context learning. Chen et al. In ACL, 2024. Yanda Chen, Chen
Zhao, Zhou Yu, Kathleen McKeown, He He



Pre-training data contains repeated phrases
Destroy repetitions from

context during training o |
care. We will estimate infant and neonatal mnedaibmaios—y
causes |C|_ tO drop by 50% —aoalnn-2015 to see if this trend continues and, if so, to

assess how it can be reversed. Infant mortality in 2013 was
as against 2% random drops

LLM & - e e e e e e e e e e e e e - = - o

.. strawberries ran December crazy to see if this ..... infant mortality in

Random tokens

Parallel structures in pre-training data yield in-context learning. Chen et al. In ACL, 2024. Yanda Chen, Chen
Zhao, Zhou Yu, Kathleen McKeown, He He
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