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Few-shot Model Adaptation

Given a trained model M(𝚯) on a large diverse dataset D

T

𝐷4

𝐷2

𝐷3
𝐷1

𝐷5

𝐷7 𝐷6

User interested in a target task Q, gives a small labelled data 

T: {𝑥1 𝑦1 𝑥2 𝑦2 𝑥3 𝑦3 …… 𝑥𝑘 𝑦𝑘} ~ Q

Model adaptation = Find the best blend of M(𝚯) and T

D: A large diverse training set

Train 𝑀(𝜽) Model 

adaptation
𝑀𝑇(𝜽)

D may contain a part 𝐷𝑗 that is relevant to target task, but it is not explicitly identified.  

𝑥𝑡𝑒𝑠𝑡~ Q

ො𝑦



Example: model adaptation

Conversation assistant           → New users

Concerts Football Travel Countries Books

𝑀(𝜽) Target task

Text-to-SQL system               → Private pharma database

A large language model         → NER on physics documents

Diverse topics and tasks



The challenges of model adaptation

● Accuracy: requires delicate balance.

● Robustness: Small T leads to high variance across T~Q

○ Cannot introduce additional instabilities, e.g. due to ordering

● Efficiency: 𝚯 is large

○ Time of adaptation: Offline  Vs Online (On-the-fly)

○ Test time: time for using after adaptation.

T: Small but relevant 𝑀 𝜃 : Large, mixed relevance

Adapt too much → overfit, forget old Adapt too little → No change



Model adaptation over the Ages
Thousands of paper under variants like domain adaptation, transfer-learning, few-shot learning..



Model adaptation methods

● Fine-tuning and its variants

● Mixture of experts

● Task-vectors

● Matching-based methods

Each category explicitly planned for adaptation either when

• Training M 𝚯 , or when 

• Adapting with T 



Fine-tune parameters via gradient descent on T

Training of 𝑀(𝜃):   

Normal loss on D

Parameters 𝜃

Gradients σ𝑇 ∇𝜃𝐿(𝑀𝜃 𝑥 , 𝑦)

Explicit update of model parameters Θ to minimize loss on target data T

Generally provides good accuracy for modest sized T

T

𝑀(𝜽)

Model adaptation

𝑀𝑇(𝜽)

Adaptation with T: 

Update 𝜃 via gradient descent on T

𝑥𝑡𝑒𝑠𝑡~ Q

ො𝑦



Does fine-tuning define the accuracy ceiling?

D is diverse, and of mixed 

relevance to target

.

𝐷4

𝐷2

𝐷3
𝐷1

𝐷5

𝐷7 𝐷6

D

Train 𝑀(𝜽)

T

Fine-

tuning 𝑀𝑇(𝜽)

𝑀(𝜽) trained on D, may 

not preserve subparts

such that fine-tuning with 

T recalls relevant parts   



An accuracy ceiling: Revisit the source D

● Identify relevant 𝐷1 explicitly from D, Retrieval problem.

● Fine-tune with 𝐷1 ∪ T.

.

T

𝐷4

𝐷2

𝐷3
𝐷1

𝐷5

𝐷7 𝐷6

D

Train 𝑀(𝜽) Fine-Tune 

using 𝐷1 ∪ 𝑇
𝑀𝑄(𝜽)

Probe

Retrieve 𝐷1



Revisit the source for adapting word embeddings

Revisiting source significantly better than best fine-tuning.
Not practical.  Cannot revisit source

Useful intuition: important to maintain task identities for later specialization

Topic-Sensitive Attention on Generic Corpora Corrects Sense Bias in Pretrained Embeddings. Piratla, Sarawagi and 

Chakrabarti In ACL, 2019.

Revisit the source

Fine-tuning variants



A practical approximation: mixture of experts

Model: mixture of experts with a task selector

Multi-Source Domain Adaptation with Mixture of Experts. EMNLP 2018.  Guo, Shah, Barzilay

x
Task selector

𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟕

Combine outputs

P(y)

Separate parameters for each task may be too much.

Adaptation with T: 

recognize the most 

relevant expert

Training of 𝑀(𝜃): Task 

selector supervised by 

tasks in D



Modern Mixture of Experts: Switch Transformers

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR 2022 Fedus, Zoph, Shazeer



Greater accuracy gains on fine-tuning MoEs

Base model: Flan T5

MoE variant: Flan-MoE-T5

Mixture-of-Experts Meets Instruction Tuning: A Winning Combination for Large Language Models. ICLR 2024. 
Shen, Hou, Zhou, Du, Longpre, Wei, Chung, Zoph, Fedus, Chen, Tu Vu, Yuexin Wu, Wuyang Chen, Albert Webson, Yunxuan Li, Vincent 

Zhao, Hongkun Yu, Kurt Keutzer, Trevor Darrell, Denny Zhou
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Adaptation with Task vectors

NLP Service APIs and Models for Efficient Registration of New Clients. 2020.Shah, Piratla, Chakrabarti, Sarawagi 

𝐴𝜙

𝑀(𝜃)

𝑥 ∈ 𝐷𝜏

𝑥 𝑔𝜏:Task vector

𝑦 𝑙𝑜𝑠𝑠(𝜃, 𝜙)
Training:

● Train 𝚯,𝜙 jointly

● Requires task boundaries

Adaptation:

Use T to extract 𝑔𝑡 = 𝐴𝜙(𝑇)

ො𝑦 = 𝑀(𝑥𝑡𝑒𝑠𝑡 , 𝑔𝑡)

𝐷𝜏T

Another way to 

maintain task 

identities



Adaptation with Matching Networks

𝑀(𝜃)

𝑥

Match of y,y’

𝑙𝑜𝑠𝑠(𝜓) Training:
● Train 𝚯 as usual

● Contrastive  𝐾𝜓 𝑥, 𝑥′ so example 

pairs with same labels are close

Adaptation:

● Use kernel method to get 

predictions from T using 

𝐾𝜓 𝑥, 𝑥′ , 𝑥′ ∈ 𝑇.

● Blend with predictions from  

𝑀(𝑥|𝜃)T

𝐾𝜓 𝑥, 𝑥′

𝑥′

𝑦

• Labeled Memory Networks for Online Model Adaptation. In AAAI, 2018. Shiv Shankar and Sunita Sarawagi

• Speech-enriched Memory for Inference-time Adaptation of ASR Models to Word Dictionaries Mittal, Sarawagi, Jyothi. EMNLP 2023.

• Conditional Tree Matching for Inference-Time Adaptation of Tree Prediction Models. Varma, Awasthi, Sarawagi ICML 2023

𝑙𝑜𝑠𝑠(𝜃)

Kernel method: e.g. KNN

𝐾𝜓

𝑀(𝜃)

𝑥𝑡𝑒𝑠𝑡

ො𝑦



An example matching-based adaptation for 

Text2SQL

Conditional Tree Matching for Inference-Time Adaptation of Tree Prediction Models. Varma, Awasthi, Sarawagi 

ICML 2023.



Text to SQL

34

How many degrees does the 

engineering department offer?

Department

Id Name Description

14 Informatik ..

11 Software system ..

21 Engineer …

Question

Text2SQL 
model

𝑴 𝜽

Degree programs

Id Name Dept id

1 PhD 14

2 Masters 21

3 Bachelors 21

Schema Relational Algebra Tree 

representation of SQL

𝒙 𝒚



Designing matching kernel: 𝐾( 𝑥, 𝑦 , 𝑥′, 𝑦′ )

Two parts since y is structured.

● Node-level reasoning of the relevance of specific sub-

trees of labelled examples to current question

○ Fine-grained sharing.

● Similarity based on alignment of respective trees →

structurally informed



Fine-grained relevance scoring
Relevance score each subtree

36

[List, all, document, ...][List,document, ...] [𝛾, Π, σ, ...]

User Question  𝒙 Labeled  Question 𝒙′, Tree 𝒚′ from T

Wrong nodes marked irrelevant



Alignment based relevance-weighted 𝐾( 𝑥, 𝑦 , 𝑥′, 𝑦′ )

37Conditional Tree Matching for Inference-Time Adaptation of Tree Prediction Models. Harshit Varma, Abhijeet Awasthi and Sunita 

Sarawagi In ICML 2023.

𝒙 Contextualized 

candidate tree 𝒚𝒙

𝒙′ Contextualized 

Relevance weighted 

labeled tree 𝒚′𝒙′



Accuracy after adaptation with few examples
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Greater robustness to irrelevant examples

Reasoning about fine-grained relevance of few-shots is important for 

robustness
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Fine-

tuning
MoE Task 

vectors
Matching

Accuracy

Robustness

Efficiency

Adapt

Test

Others
Difficult 

to train

Online Online

(small T)



Model adaptation methods

● Fine-tuning and its variants

● Mixture of experts and task-vectors

● Matching / memory augmented methods.

Each category explicitly planned for adaptation either when training M 𝚯
or adapting to T 



Emergent Model Adaptation in LLMs 

● Solution to model adaptation just emerges in the form of 

in-context learning! 

● Models trained with next-token prediction loss on huge 

natural document collections can be adapted just with 

few labelled examples in-context..

Language models are few-shot learners.  Brown et al NeurIPS 2020



Adaptation via In-Context Learning in LLMs

Training: Default

𝑀 𝜃 : LLM

T

Predicted label ො𝑦 ∼ 𝑀𝑇 𝑥𝑡𝑒𝑠𝑡|𝜃

Language models are few-shot learners. Brown et al NeurIPS 2020

𝑥1 𝑦1 𝑥2 𝑦2 𝑥3 𝑦3 …… 𝑥𝑘 𝑦𝑘 𝑥𝑡𝑒𝑠𝑡

Adaptation: Just a 

forward pass. 



Examples

2 ! 3 = 6,  3 ! 3 = 9,  5 ! 4 = 20,  6 ! 7 = 

LLM:  𝑀 𝜃

42

2 ! 3 = 6,  3 ! 3 = 9,  5 ! 4 = 20,  9 ! 7 = 

LLM:  𝑀 𝜃

63



Why does ICL work?

● Hypothesis 1: Transformers implement gradient descent 

algorithm over IC examples

● Hypothesis 2: IC examples recognize tasks in pre-training 

e.g. via task vectors

● Hypothesis 3: Self-attention implements matching-based 

adaptation via induction heads



We observe a parallel between these hypothesis and age-old 

methods of model adaptation.



Hypothesis 1: Transformers implement 

gradient descent over label loss during ICL

But how can GD be implemented in one forward pass over T?  

○ No obvious loss on IC examples, leave alone gradients on loss?

○ No 𝜃 parameters are updated!

Layer 1: Causal Attention

Layer 2: Causal Attention

T

𝑥1 𝑦1 𝑥2 𝑦2 𝑥3 𝑦3 …… 𝑥𝑘 𝑦𝑘 𝑥𝑡𝑒𝑠𝑡

ො𝑦

𝑀 𝜃 : LLM



Assume

● Input stacked as [xi,yi]

● Task is linear regression

○ 𝑥𝑖 is a real vector

○ 𝑦𝑖 = 𝑤𝜏𝑥𝑖

● Loss is square loss

○ min
𝑤

σ(𝑥𝑖,𝑦𝑖)∈𝑇
(𝑦𝑖 − 𝑤𝑥𝑖)^2

● Transformer attention is 

linear: no softmax.

Layer 1: Causal Attention

Layer 2: Causal Attention

𝑥1 𝑥2 𝑥3 …… 𝑥𝑘 𝑥𝑡𝑒𝑠𝑡
𝑦1 𝑦2 𝑦3…… 𝑦𝑘 0

ො𝑦

What can transformers learn in-context? a case study of simple function classes. NeurIPS 2022. Shivam Garg, 

Dimitris Tsipras, Percy Liang, and Gregory Valiant. 



Each layer implements a gradient step during forward pass of ICL

• Transformers learn in-context by gradient descent. Johannes Von Oswald et al. ICML 2023

• What learning algorithm is in-context learning? investigations with linear models. Ekin Akyurek et al. ICLR 2023 

Gradient Descent Loop Unrolled Gradient Descent Forward pass of Transformer w/ ICL

Parameters 𝑊

Gradients σ𝑇 ∇𝑊𝐿(𝑀𝑤 𝑥 , 𝑦)

Parameters 𝑊0

Gradients σ𝑇 ∇𝑤𝐿(𝑀𝑤0
𝑥 , 𝑦)

Parameters 𝑊1

Gradients σ𝑇 ∇𝑤𝐿(𝑀𝑤1
𝑥 , 𝑦)

Parameters 𝑊𝐿

Layer 1: Causal Attention

Hidden vectors contain  [𝑊1, 𝑥𝑡𝑒𝑠𝑡]

Layer 2: Causal Attention

Output  ො𝑦 = 𝑊𝐿 𝑥𝑡𝑒𝑠𝑡

𝑥1 𝑥2 𝑥3 …… 𝑥𝑘 𝑥𝑡𝑒𝑠𝑡
𝑦1 𝑦2 𝑦3…… 𝑦𝑘 0

Possible to craft 

attention parameters 

so transformers can 

simulate GD 



But can we learn these parameters that 

implement gradient descent using standard 

next-token loss?



Proved for special cases

Special case I: One-layer linear Transformer

○ Optima of training loss leads to transformer parameters that  

implement single pre-conditioned gradient descent step.

• Trained transformers learn linear models in-context. JMLR 2024. Ruiqi Zhang, Spencer Frei, Peter L. Bartlett

• Transformers learn to implement preconditioned gradient descent for in-context learning. NeurIPS 2023. 

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, Suvrit Sra

Single Linear Attention

𝑥1 𝑥2 𝑥3 …… 𝑥𝑘 𝑥𝑡𝑒𝑠𝑡
𝑦1 𝑦2 𝑦3…… 𝑦𝑘 0

ො𝑦



Proved for special cases

Special case II: Linear Multi-layer looped Transformer

Can looped transformers learn to implement multi-step gradient descent for in-context learning?  ICML 2024. 

Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar

Layer 1: Linear Attention

Layer 2: Linear Attention

𝑥1 𝑥2 𝑥3 …… 𝑥𝑘 𝑥𝑡𝑒𝑠𝑡
𝑦1 𝑦2 𝑦3…… 𝑦𝑘 0

ො𝑦

Same parameters 

𝜃 in the two layers 

of the transformer

But these results are for numerical regression tasks, and that too on special 

transformers trained for this task. Do not generalize to text and NLP



What about text and pre-trained LLMs?

Dai et al (2023) support 

GD hypothesis for ICL for 

text and pre-trained LLMs

Why can GPT learn in-context? language models secretly perform gradient descent as meta-optimizers. ACL 

2023. Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. 

Base   GPT

𝑥𝑡𝑒𝑠𝑡

ℎ𝑧𝑠
GPT fine-tuned on T

𝑥𝑡𝑒𝑠𝑡

ℎ𝐹𝑇

Base GPT with ICL

ℎ𝐼𝐶𝐿

𝑥1 𝑦1 𝑥2 𝑦2 𝑥3 𝑦3 …… 𝑥𝑘 𝑦𝑘 𝑥𝑡𝑒𝑠𝑡

ℎ𝐹𝑇 − ℎ𝑧𝑠 ∼ ℎ𝐼𝐶𝐿 − ℎ𝑍𝑆



ICL performs Gradient descent hypothesis is 

refuted..

Even an untrained transformer has high similarity between 

corresponding vectors while showing no capability for ICL

In-context learning and gradient descent revisited.  NAACL 2024. G Deutch, N Magar, 

T Natan, G Dar. 

Others: Li et al ACL 2024, Shen et al ICML 2024



Hypothesis 2: 

ICL identifies task from the pre-training set



ICL does task selection

LLMs provide the correct answer by recognizing this as a 

multiplication problem.  They do not really learn to do 

multiplication from these examples.

2 ! 3 = 6, 3 ! 3 = 9, 5 ! 4 = 20, 9 ! 7 = 

LLM:  𝑀 𝜃

63



How does task selection capability emerge in 

LLMs after pre-training with next token loss?



ICL does Task Selection
Pretraining documents: 

mix of related topics

• An explanation of in-context learning as implicit Bayesian inference. ICLR 2022. Sang Michael Xie, Aditi Raghunathan, Percy 

Liang, and Tengyu Ma 

• The learnability of in-context learning. NeurIPS 2023. Noam Wies, Yoav Levine, and Amnon Shashua

Prefix of sentence recognizes topic as latent 

vectors 𝑔𝜏 → soft select task → recall words 

from related documents seen earlier.

LLM Layer 2

Soft task selection

𝜽𝟏

Coffee,  is,    a,    brewed, 

LLM Layer 1

𝑔𝜏: Task vector

Coffee

Music

Coffee is a brewed drink made …

Coffee is a popular drink …

The most popular music genre …

The first electric guitar was …

drink

Coffee is a drink that invigorates



ICL goes beyond task selection

Large LLMs do learn novel input-output mappings  

○ Replacing positive/negative with foo/bar or flipping labels works 

for sentiment classification

○ Unseen key-value associative mappings are learned

○ Totally synthetic formal Markovian languages are learned 

• What do language models learn in context? the structured task hypothesis. ACL 2024. Jiaoda Li, Yifan Hou, 

Mrinmaya Sachan, and Ryan Cotterell.

• Why larger language models do in-context learning differently? ICLR 2024. Zhenmei Shi, Junyi Wei, Zhuoyan

Xu, and Yingyu Liang



Hypothesis 3: Self-attention implements 

matching-based adaptation



ICL= Matching with Induction circuits

In-context learning and induction heads. Olsson et al 2022
The mechanistic basis of data dependence and abrupt learning in an in-context classification task. ICLR 2024. Gautam Reddy 

Layer 1’s attention copies previous 

token as key. 

Induction circuits created over  two layers 

Layer 2: Matching with

• Key = copied previous token,  

• Value = current token,

• Query = current token

Layer 1: Context formed with previous token using position based attention

Hello

𝐱1
11

𝒚1
Goodbye

𝐱2
77

𝒚2
Hello

𝐱∗

K: <start>

V: Hello

K: Hello 

V: 11

K: 11

V: Goodbye

K: Goodbye

V: 77 Q: Hello

Layer 2: Copy value using context similarity based attention 

11



But why do transformer parameters orient to 

create in-context induction heads during next-

token loss pre-training?



Pre-training data contains repeated phrases

Corpus contains co-occurring 

phrases in similar templates. 

Parallel structures in pre-training data yield in-context learning. Chen et al. In ACL, 2024. Yanda Chen, Chen 

Zhao, Zhou Yu, Kathleen McKeown, He He

LLM

.. neonatal mortality rates again in 2015 to see if this  …..infant  mortality in

2013



Pre-training data contains repeated phrases

Parallel structures in pre-training data yield in-context learning. Chen et al. In ACL, 2024. Yanda Chen, Chen 

Zhao, Zhou Yu, Kathleen McKeown, He He

Destroy repetitions from 

context during training 

causes ICL to drop by 50% 

as against 2% random drops

LLM

.. strawberries ran December crazy to see if this  …..infant  mortality in

2013

Random tokens
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